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ABSTRACT

Wave absorption in a torus is found to differ significantly from the classical Lan-
dau result. Instead of the isolated resonance at v = w/k, the parametric beating between
the particles’ periodicity and the wave periodicity gives rise to an infinite, discrete spec-
trum of resonances. The spread of wave absorption over the velocity space leads to
an enhancement in damping, particularly for the high-phase-velocity waves. Physical
interpretation of Landau damping as a diffusion-like process ocurring at the parametric

resonances is invoked to explain the phenomenon of toroidal Landau damping.

PACS numbers: 52.25.Mq;52.35.Fp;52.40.Db




Landau damping forms one of the central concepts in plasma waves. It is pivotal
to the understanding of fundamental phenomena such as damping of electrostatic waves,
instabilities both in astrophysical and fusion plasmas, as well as to vital applications
like steady-state current drive in tokamaks. Particles streaming with the phase velocity
v = w/k of a longitudinal plasma wave strongly interact with the wave. In the linear
limit, depending on the phase relative to the wave, they gain or lose energy monoton-
ically. Averaging over a Maxwellian distribution with random initial phases, Landau!
showed that there is net absorption of the wave energy by the group of particles moving
at the wave phase velocity. Landau’s result both fascinated and perplexed physicists
until it was unequivocally verified in the experiments of Malmberg and Wharton? and
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Derfler and Simonen®, some 20 years later. Alternative derivations of Landau’s result

via direct evaluation of the particles’ kinetic energy integrated over the distribution

function are given by Stix* and Swanson®.

A clear physical picture of Landau damping remains elusive to this day. The
best-known physical interpretation is due to Bohm and Gross® according to which par-
ticles moving slightly slower than the wave gain energy, while those moving faster lose
energy. Depending upon the slope of the distribution function, there is net acceleration
or deceleration of the particles moving at the wave phase velocity. Although this ex-
planation is fortuitously correct in straight geometry, it has inadvertently contributed
to erroneous reasoning when applied to Landau damping in toroidal geometry. For ex-
ample, the existing current-drive theory’ for the realization of a steady-state tokamak
assumes that the wave imparts its momentum to particles moving at its phase velocity
averaged over the flux surface. This will be shown to be qualitatively misleading and
quantitatively incorrect. Before proceeding further, it would be instructive to offer a
more uniformly valid interpretation of Landau damping as a diffusion-like process in
velocity space. The change in the particle’s velocity may be expressed as
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After averaging (Av)? over o, diffusivity may be expressed as
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Ast — oo, the first term in the square brackets may be approximated by the Dirac delta

function é6(kvt — wt), while the second term becomes vanishingly small. The diffusion

flux is given by
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where F(v) is the velocity distribution function. The energy absorption rate becomes

ow
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where ¢ is the dielectric permittivity of free space and wpe 1s the plasma frequency.

After performing the integration, one obtains the classical Landau result
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where v, = w/k is the wave phase velocity and W is the energy density. In deriving
Eq. (1), it was tacitly assumed that the step sizes +Av are equally probable; also, while
averaging over the initial phases, the past history of the particle was ignored. Both of
these conditions are satisfied in the linear approximation.

The above derivation holds important clues to the essential nature of linear Lan-
dau damping. If a given geometrical configuration displays a wave-particle resonance
such that particles with velocity v repetitively gain/lose velocity with step size Awv
during each periodic orbit of duration At, linear Landau damping with an effective
diffusivity D(v) =< (Av)? > /At would be present. Note that in the linear approxi-
mation, the random initial phases would cause +Awv to be invariably equally probable.
Linear Landau damping, therefore, may be seen as a resonant diffusion process with
a solitary resonance at v = w/k in straight geometry. For finite wave amplitudes and
in the absence of randomizing collisions, particles retain their phase memory and a

nonlinear treatment would be required.



Unlike the straight geometry case, the toroidal geometry is capable of support-
ing an infinite number of discrete resonances through the parametric beating between
the particles’ periodicity and the wave periodicity. Non-relativistic wave damping in a
large aspect-ratio tokamak has been studied by Grishanov and Nekrasov®. A simpli-
fied derivation retaining Landau damping but excluding cyclotron damping is given in
Ref.9. Starting with the linearized drift-kinetic equation, the expression for the parallel
current (to the local magnetic field direction) in a Maxwellian plasma for an electric

field excitation Ej = E,, exp(im#f) is given as (from Egs.(20-22) of Ref. 9)
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where s = £1 for the parallel velocity component v 2 0,
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subscripts u and ¢ denote untrapped and trapped particles, respectively, ¢ = r/Ry,

Ry is the torus major radius, § and ¢ are the poloidal and toroidal angles, m and n
are the respective wave numbers, ¢ is the safety factor, hy = By/B, U = v/\/2vq,
U, = v“/\/ﬁvte, Up = vp/\/ivte, A = 2uBg/v?, p = (1 + ecos@)v? /2By, By is the
magnetic field at the axis, 6,, = cos™ [(A — 1)/e] is the maximum azimuthal excursion
for the trapped particles, and [] is the elliptic integral of the third kind (its origin is
discussed in Eq.(24) of Ref. 9).

Of the three integrations in Eqs.(3) and (4), the one over velocity U is by far the

most problematic. The numerical evaluation carried out in Ref. (9) is time consuming
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and lacks accuracy. A straightforward approach for obtaining only the imaginary part
of ¥ would consist in contour integration around the singularities ocurring at the zeros

of the denominators in Eqgs.(3) and (4). The poles in Eq.(3) correspond to
X{)(x)=Nr

which using Eq.(5) gives
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where Un 2 0 corresponds to s = 1. Using

lim il - Uk
e f e exp {—22’X,(f)(1r)} 2iBuy(m)

one obtains from Eq.(3) after summing over s = +1,
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where only one-half of the residue contributes to the integral, and
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Averaging over 8 gives
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Equation (7) exhibits the effect of parametric resonances on toroidal Landau
damping ocurring at the velocities given by Eq.(6). Uy is related to the parallel velocity
by

A
UHN=UN\/1-m-

The primary resonance with N = 0 occurs for the group of particles moving on the

average at the parallel phase velocity of the wave. For ¢ — 0, X44(6) — 0 and for
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the case m = 0, the integrand over 6 in Eq.(7) becomes cos(6) — 1. It can be shown
that in the limit ¢ — 0, Eq.(7) reproduces the classical Landau damping result for
the straight geometry. Secondary resonances with N # 0, corresponding to the case
when the particle either gains or loses N complete wavelengths during one period of its
orbit, contribute very little to the damping process for the case ¢ — 0. However, for
larger ¢ and most particularly for large toroidal wave numbers n, even a small slippage
in phase destroys any semblance of cohesion between the wave and the particle, and
the step size Av may be drastically reduced causing decreased Landau damping for
the N = 0 primary resonance. However, secondary resonances for N # 0 begin to
gain prominence, both enhancing absorption and enlarging the velocity spread over
which Landau damping extends. The enhancement in damping is most dramatic for
Up, > 1, since the secondary resonances ocurring at lower velocities involve a much
larger population of particles. This may have direct application to the lower-hybrid-
current-drive spectral-gap problem and will be dealt with in a separate communication.
Each of the resonances corresponding to a specific value of N is broadened by the A
integration in Eq.(7). For large n, this broadening in combination with the decreased
separation between the individual resonances would lead to a continuous absorption
spectrum for Landau damping.

From Eq.(4) the Landau poles for the trapped particles occur at
X7V (Om) = X{(6m) = N7,

or

UN='2B;\£#~ (8)

Proceeding as before, one obtains
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where

Xen(n) = A(n) - -B% '

From Eq.(8) one observes that for the trapped particles there is no N = 0 resonance;
hence, the energy absorption is lowered in comparison with that of the untrapped par-
ticles. This would enhance low-phase-velocity current drive as was shown in Ref. 9.

From Eqs.(2), (7) and (9), one obtains the energy absorption rate

ow 1 .. wr .
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where ¥ = Im ¥, ,,, + ¥y,,»]. Comparing with the derivation of energy absorption rate

using the diffusion model leading to Eq.(1), one may formally relate diffusivity to ¥ as
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where © = mngv}, and ¥(U}) can be obtained from ¥(U).

The remaining integrations over A and 6 in Eqgs.(7) and (9) are performed using
Gauss quadrature. Figure 1 displays the velocity spread in diffusivity (drawn to relative
scale) for increasing ¢ for the case U, = 5, m = 0 and n = 50. For lower n, the individual
resonances no longer overlap and become distinct as seen in Fig.2. Figure 3 shows the
enhancement in Landau damping with increasing ¢, especially for large U,.

To summarize the findings of this paper: (1) Linear Landau damping is the
physical consequence of resonant diffusion in velocity space. (2) The multiplicity of
resonances due to parametric beating between the particle and wave periodicities in a
tokamak leads to a broadening of the Landau damping spectrum in velocity space. (3)
For the low-phase-velocity waves, the dominant toroidal effect is to redistribute Landau
absorption in favor of circulating particles at the expense of trapped particles®. (4) For
Up, > 1, the secondary resonances enhance the net energy absorption, in additon to
broadening the velocity spectrum of Landau damping.

These findings indicate a need for a complete reevaluation of the existing current-

drive theories in tokamak plasmas.
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Fig.1 Velocity spread of Landau damping for increasing €.
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Fig.2 Damping spectrum versus toroidal wave number n.
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Fig.3 Enhancement of Landau damping in a torus.
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