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Abstract

In a general stability condition obtained by the author in a pre-
vious work physically motivated test functions are introduced. This
leads to simplfied versions of the stability functional, which makes
its evaluation and minimization more tractable. In the case of special
force-free-fields the simplified functional reduces to a good approxima-
tion of the exact stability functional derived by other means.It turns

out that in this case the condition is sufficient for nonlinear stability
also.

The purpose of this note is to simplify the general resistive stability condi-
tion presented in [1] by restricting the space of test functions to a "physically
desirable” space. The condition proposed in [1] has the form of an "energy
principle” whose sufficiency with respect to purely growing modes was proved
in [2]. The analysis in [1] suggested that this condition can be considered
as "nearly” necessary and sufficient for all modes under reasonable physical
approximations. This condition or "energy principle” is given by(see [1] and

(2])

SV = /dr(7Pg(V-£)2+(f'v-Po)vf)
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+/dT(VxA fdr{xJVxA+
+p-p- [dr3-(A—¢x B)(BV)(1/10)(Vio- V x A)
—fdr(A——{xB)-Vx(VxA)l/no (1)

where Fy, J and B are, as usual, the equilibrium pressure, the current density
and the magnetic field respectively. V is the Pfirsch-Schliiter flow velocity
and no the unperturbed resistivity.£ is the fluid displacement and A the per-
turbed vector potential. p.p. denotes the "principal part” and the integration
is over the plasma volume with perfectly conducting boundary conditions,
all quantities in the integrand being taken real. For £ and A complex it is
recommended to symmetrize (1) by integration by parts (see [2]).

The test functions { and A in (1) are general and constitute together
a six-dimensional test-function-space. As mentioned in [2] ideal MHD can
be recovered by restricting to A = £ x B. In the tokamak scaling and for
V - £ = 0 one recovers the resistive principle derived in [3] .

In this note we introduce a physical restriction by the following argu-
ments. Perpendicular to the magnetic field a weakly dissipative plasma be-
haves like in ideal MHD but parallel to B it may behave quite differently
essentially because of resistivity. This suggests the following restriction in
test-function-space

A=¢(xB+Ap, (2)

where Apar is the part of A parallel to B. Crossing relation (2) with B we

find for ¢ B y A
£ &+ sar (3)

where £,,, 1s the part of £ parallel to B.
If we insert (2) and (3) in (1) we obtain a first simplified version of (1)

B A Bx A BxA

W fd‘f’ '7P0(v ( +Epar))2 ( 32 VPO)V ( gpur))
faf-.r(VxA)2 fd (BXA+5,M,)><J VxA+

i fd'r(J  Ayar)B-V)1(1/00) (Vo - V x A)
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_ /dmpa, V x (V x A)1/no.

(4)

Instead of a six-dimensional test-function-space we have now a four-
dimensional one. One is tempted to minimize (4) with respect to &, as
in ideal MHD. This does not lead to V - ¢ = 0 but to a rather compli-
cated expression together with a difficult equation for ,,,. Despite this
fact expression (4) is already simple enough to minimize either numerically
or analytically(e.g. for perturbations localized about magnetic surfaces or

magnetic lines).

A further simplification consist in setting V - £ = 0 from the outset. In

this case one can solve for {,,, setting

gpar =aB
and using (3) to obtain
Bx A
V( I )+B:-Va=0
whose solution is BxA
; X
a=-(B.-V)'V. Bz

(5)

(7)

Inserting (5) and (7) in (4) we obtain as a further simplified version of (1)

BxA
B?

—p-p-fdf((B-V)"IV-

sW = /d—r((v x A)? — (
Bx A
BZ

pp: [dr3- Awr)(B- V)7 (1/10)(Tio - V x A)

- fdrApa, .V x (V x A)1/n0.
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Application to force-free-fields

In the case of a resistive field obeying
J=)B 9)

with ) = ct. one knows (see [4]) that also 7 has to be constant and V = 0.
The field satisfies

B = —no\’B. (10)

Though expression (1) is derived in [1] for time-independent equilibria it
should hold in the limit 7o — 0. Therefore inserting (9) and (10) in (8) as
well as V = VP, = no = 0, then §W from (8) reduces to

§W = jdr((v x A)? — AMoperp - V % A) (11)

where A,.,, is the part of A perpendicular to B. Expression (11) compares
very well with the exact 6W derived in [5] for the field (9)-(10), which is

6W=/d'r((VxA)2—)\A-VxA)20, (12)

sufficient for stability. The difference between (11) and (12) is in an Apar
term not containing the singularity (B - V)™! which means that this term
vanishes smoothly for o — 0.

In view of the physical (but formally not exact) restrictions in the test-
function-space this is a remarkable result and gives us hope that expressions
(4) and (8) for the simplified §W are good even for equilibria with pressure
and A # ct. .In those cases, however, inaccuracies of the kind above can be
amplified by the singularity (B- V)~ despite the "principal part” before the
integral.

Finally let us prove that condition (12) derived in [5] for the linear case
still holds for nonlinear resistive incompressible fluids. The finitely perturbed
equations are

V+v:-Vv=JoxB;+ji x Bo+j1 X By (13)




Wit - v 0,75 = KB A =
A =v x (Bo+By) — 71, (14)

B, = V x (v x (Bo + B1) — 5j1). (15)

Multiply scalarly (13) by v and (15) by B; add and integrate over the volume
to obtain

9 rd -
a/-21(#+B§)=,\]dwao-Bl—fd'rmf- (16)

Many quadratic and cubic terms integrate to zero because of the boundary
condition taken as perfectly conducting. Multiplying (14) scalarly by B; we
can solve for v X By - By and insert into (16) to obtain

d rdr g ;
o [ S0P+ BI-AA -V x A) = =y [dr(i—ABy-ji).  (17)

Equation (17) is identical with the stability equation derived in [5] for linear
perturbations. This proves that condition (12) is sufficient for linear as well
as for nonlinear stability.
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