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Abstract

The conditions for the existence of negative-energy electrostatic waves (which
could be nonlinearly unstable and cause anomalous transport) are investigated for
the case of an inhomogeneous force-free Vlasov-Maxwell equilibrium with sheared
magnetic field. The method of investigation consists in evaluating the general
expression for the second-order wave energy derived by Morrison and Pfirsch
[Phys. Rev. A 40, 3898 (1989); Phys. Fl. B 2 1105 (1990)] in the form given
by Correa-Restrepo and Pfirsch [Phys. Rev. A 45, 2512 (1992)]. In Cartesian
coordinates, the equilibrium magnetic field is given by B = BO(sinaye, +
cosaye;). In this case, there is an electric current parallel to the magnetic field,
and the charged particles of any species belong (according to the values of their
constants of the motion) to either one of two essentially different groups, either to
the group of gyrating particles (the overwhelming majority in all cases of interest),
which move around the field lines, their motion being confined to a certain y-
region around y = ), or to the group of swinging particles, which move freely
in the y-direction. The two groups of particles must be investigated separately.
Owing to the presence of the electric current associated with nonvanishing a,
the equilibrium distribution function f{® = fO(H,#) (with H(v) the energy
and U(v,y) a certain velocity variable) of at least one particle species v must
be anisotropic, unlike in the homogeneous case. If any f{°) has the property
a f(O)
dv,

vy > 0 for some H and U, negative-energy waves exist for any wave number

)

dvy,
waves with a component ko of k in the direction of B(O)(yo) can possess negative
JiL 05 |

< 0 but A = !"||D <w||0> <eB(y0) . av > >0 (w“() 1S a pa,ra,llel
velocity, the angles represent a certain averaging process), there are negative-
energy waves, with no restriction imposed on either kjo (other than ko # 0) or
the spatial variation of the perturbation perpendicular to B, This result agrees

with that obtained for a homogeneous plasma by Morrison and Pfirsch [Phys. Fl.
(0)

B 3 (2), 271, (1991)] in the context of drift-kinetic theory. If both v, aa < 0 and

k, irrespective of its magnitude and orientation. If v, < 0 holds, only the

energy. If Uy

A < 0, negative-energy modes also exist. In this case, the characterlstlc length
for the variation of the perturbation perpendicular to B(O) is © a~!, which, since
a! is the shear length and is usually very large, is not an important restriction,
and the possible parallel wave numbers are generally limited to a certain interval
related to the magnitude of the gyroradius of the gyrating particles, this also
being so in the homogeneous case. The results of that case are of course regained



by taking the limit of vanishing shear, @ — 0. The new results show that large
perpendicular wave numbers k; are not necessary for the existence of negative-
energy waves in the system under consideration, a feature which enhances the
relevance of these modes.




I. INTRODUCTION

Considering arbitrary perturbations of general Vlasov-Maxwell equilibria, Mor-
rison and Pfirsch?? derived expressions for the second variation of the free en-
ergy and concluded that negative-energy perturbations (which are potentially
dangerous because they may become nonlinearly unstable and cause anomalous
transport®*) exist in any Vlasov-Maxwell equilibrium whenever the unperturbed
distribution function f{°) of any particle species v deviates from monotonicity
and/or isotropy in the vecinity of a single point, i.e. whenever the condition

(v-k)(k-ag—io))>0 (1)

holds for any particle species v for some position vector x and velocity v and
for some vector k. The proof of this result is based on infinitely strongly local-
ized perturbations. This raises the question of the degree of localization actually
required for negative-energy modes to exist in a certain equilibrium. Studying
a homogeneous Vlasov-Maxwell plasma with constant magnetic field, Correa-
Restrepo and Pfirsch® showed that negative-energy waves exist for any deviation
of the equilibrium distribution function of any of the species from monotonic-
ity and/or isotropy, without having to impose any restricting conditions on the
perpendicular wave number ky, i.e. without requiring large k;. These investi-
gations are extended in the present paper to the more interesting case of an in-
homogeneous, y-dependent, force-free equilibrium with a sheared magnetic field.
Although the calculations are considerably more involved than in the case of the
homogeneous magnetic field, substantial simplification of the problem is achieved
by the introduction of appropriate coordinates in v —y space and by a convenient
representation of the perturbations. It is concluded that negative-energy modes
exist in the inhomogeneous plasma as well whenever any of the equilibrium dis-
tribution functions deviates from monotonicity and/or isotropy (in fact, owing to
the inhomogeneity of the configuration, the equilibrium distribution function of
at least one particle species must be anisotropic), and that large perpendicular
wave numbers are not required in this case either. If there is only anisotropy,
the presence of shear merely requires that the perturbations have a characteris-
tic variation length perpendicular to the equilibrium magnetic field B of the
order &~ a~!, which is not an important restriction, i.e. negative-energy modes
persist without any major modification in the presence of shear, a feature which
enhances their importance.

The equilibrium electromagnetic field is introduced in Sec. II, and the con-
stants of the motion of the particles, from which the equilibrium distribution




functions can be constructed, are derived. In Sec. III, the expression for the
second-order wave energy from Refs.!**® is put in a simpler and more concise
form by introducing a representation of the perturbations which is particularly
appropriate to the equilibrium under consideration. The minimizing perturba-
tions are obtained in Sec. IV, where the expression for the minimized energy is
also obtained. In deriving this expression, the difference between gyrating and
swinging particles plays a major role. Section V is devoted to an extensive dis-
cussion of the energy expression. This discussion leads to the main results, which

are then summarized in Sec. VI.

A considerable part of the calculations is carried out in the APPENDICES.
Particularly convenient v space coordinates are introduced in APPENDIX A. The
motion of the charged particles is exhaustively treated in APPENDIX B, and
the two essentially different groups of particles, namely the gyrating particles
GP and the swinging particles SP are introduced. In APPENDIX C, a first-
order partial differential equation which appears in the minimization problem is
solved by the method of characteristics. APPENDIX D introduces two different
coordinates systems in v — y space which are particularly appropriate to the
treatment of the two different groups of particles. In APPENDIX E, several
quantities which appear in the expression for the minimized wave energy are
calculated, in particular several mean values along the particle orbits. Finally, in
APPENDIX F, an expression is derived for the perturbed electric charge density,
and it is shown that this can be made to vanish by an appropriate nontrivial
choice of the perturbations.

II. EQUILIBRIUM ELECTROMAGNETIC FIELD AND
DISTRIBUTION FUNCTIONS

The magnetic field of the equilibrium under consideration has constant mag-
nitude and straight field lines which have a constant twist as one proceeds in
a given direction. Associated with this shear of the magnetic field, there is an
equilibrium electric current.

In Cartesian coordinates z,y, z with unit basis e,, e,, e., the equilibrium vec-
tor potential A and the corresponding magnetic field B(®) are given by

©) R(0) _
A = T[" sinay e; + (1 — cosay )e.] , (2)

B = B(U)(sin aye; + cosaye;) . (3)




The y-independent part of the vector potential is such that A(®) remains well
defined in the limit a — 0.

The electric current density associated with this magnetic field is

T T g
j =B (4)

where ¢ is the velocity of light. j(©, of course, vanishes as a« — 0 and the equilib-
rium magnetic field becomes homogeneous.

It is assumed here that there is no equilibrium electric field E(®). The La-
grangian of a particle of species v with electric charge e, and mass m, is then
given by

L, = &(;ﬁ 9242+ Sy A
C

2
s %ﬂ(;&? 24+ + 2% isinay + 5(1 — cosay)] (5)
e, B ; ;
where we have set w, = . The canonical momenta derived from Eq. (5)
myc

are s o
Py = My& — ——sinay (6)
Pyv = muy 3 (7)
Py = Tk + — (1 —cosay) , (8)

and the Hamiltonian is therefore given by

mywy

1 2
H, = [[ oy + sinay] +p§,,

2m,,

myw,

# [pe - (1—cosay)]2] | )

Since the Hamiltonian does not depend on either z, z or ¢, the canonical

(@2 + 9 + 2%) are constants of the

my,

2

momenta p,,, p., and the energy H, =
motion.

The equilibrium distribution function f(°) for particles of species v can be
constructed from the constants of the motion H,,ps,,p... The presence of an

electric current, Eq.(4), requires f(®) to be anisotropic for at least one particle
species v.




Generally, the current density, as derived from the particle motion, is

j9=Ye [dovi®, (10)
which, taking into account Eqgs. (3) and (4), yields
~ ZaBYsinay = }:e,,fd% ifO =Y e,N, (&), , (11)
™ v v

0= e [E0if® =T eN. (i), , (12)
and &
_ 4_,13(0) cosay = ZeudeU 2fO =% "e,N,{3), , (13)
™ v v

with N, the density of particles of species v and (&),, (9),, (£), the mean val-
ues of the components of the velocity. Eq. (12) is automatically satisfied since
O (H,, pey, pzy) is symmetric in g. Egs. (11) and (13), however, impose con-
straints on f(%(H,, pzvs s ). In particular, these equations imply invariance un-
der the transformation sinay <= cosay, ¥ <= z. A combination of variables
which is invariant under this transformation, and which suggests itself because 1t
is the parallel particle velocity along B, is @sinay + zcosay. This, however,
is not a constant of the motion. On the other hand, as derived in APPENDIX
C, an appropriate expression is given by

a .. i
u, = 4% 4+ &sinay + Zcosay
2w,

a .
- 2wuvismz¢ + 7, (14)
vy, ¢,v) being the local cylindrical velocity coordinates introduced in APPENDIX
A. That U, is indeed a constant of the motion becomes evident when it is ex-

pressed as

a a zv
U = —H, — —— (0%, +7) + = . (15)

myw, 2w, m? my,
The distribution functions we consider are therefore of the form
T fO(H,,U,). (Admissible distribution functions are, for example,

O ~ U, exp (—const.'H,,),fLU) ~ exp (—const. H, — const.U?), etc... .)
More explicitly, one has

fL(,O) — fﬁo) (’HV — %(mz +9* 4+ 2‘-2), U, = QZ y* + &sinay + :i'cosay) g
m, a .
5O = 19 (= B0+ o), Uy = polsin®s +uy) (16)




Note that in the coordinates (vy, @, v,y) f{? does not depend explicitly on y,
and this is the great advantage of using these coordinates for the problem under
consideration. A functional dependence of the form given by Egs. (16), together
with the expressions for 2(vy,d,v),y) and 2(vy, @,v),y), Eqs. (A.8) and (A.10),
derived in APPENDIX A yield, when inserted in Eqs. (11) and (13),

c sin a sin a
_ £ ,.BO v | _ y

47raB { cos ay } { cos ay }XU:E"’N"<U|I>,, : (17)

Evidently, the density of particles of species v,
NV - ]fLEO)(Huqu{u)da'U = /fio)(Hy,Uy) U_Ldvld(ﬁ‘dv" 3 (18)

and the mean parallel velocity of species v,
1

(o), = 7 [ o (o, Us) v dvs gy (19)

do not depend on y.
The following useful relations can be derived from Eqgs. (16):

afl” ; : af®
B | = a(z cos ay —zsmay)a—u; Hbey
aro
= av; == €y 5 (20)
M, |y

(vq is the component of the velocity in the direction of the vector e; introduced
in APPENDIX A),

af a5 N e
a—vx m,y, aHV HVV+ B—L{I/HV(LQ_VUJ'Slnéey_!_eB)
2| . a 2f® a e
= ™|, w a |, V_(JT”_“Q o, |, - Y

Here, the projection w of the velocity in the planes perpendicular to e, has been
introduced, i.e.

W=V —ye,=V—v,sinde, =ve; + v ep = vy cospe; + yjep. (22)

A further useful quantity is

9
oM,

a 9l

afL0
=9 v
w, O0U,

Dflgo)(HVaL{V) =m = :
H, dy*

(23)

Uy X, &,z




III. SECOND-ORDER WAVE ENERGY

In the context of Maxwell-Vlasov theory, Morrison and Pfirsch!? derived ex-
pressions for the free energy 62H available upon arbitrary perturbations of an
arbitrary equﬂ]buum In the absence of an equilibrium electric field, 6*H can be
expressed as®

&Pz o 1l G, \ 0G
2 . _ ) v v
o Z ./ 2m, { { (v 0x ) dx
oG, G, BC
(0) . (0) %
( A7 By ) (mycB v +2 Ix )

i Prgyx D (B“’) e )]

myc v ox

of® [ (9G, G,
o[ (e ) v+ @

+f© (Ec'iéA)z _pe 08 [du(GyéA) G- 6A)]}

BG,,]

c Ov Bx(

1
= d3. E2 2
+87r/ +(6E? + 6BY) , (24)

where G, (x, V) is a generating function for the perturbation of the particle posi-
tion and velocity, §A is the perturbation of the vector potential and § E* /87 and
§B?/8r are the perturbations in the electric and magnetic field energy densities.
The operator d, is the equilibrium Vlasov operator, i.e.

7] 9,
i =v-2Lia@. % o < B© 5

v ax + ay av 7 u mucv ( 5)
(in the absence of an equilibrium electric field). Using velocity coordinates
vy, ¢, v||, one has

A(0) . d d

a, av —Ww, a—qs . (26)




and

d - d a
y = 6 i —lyy e
ax v 6¢ X, vy ,‘U'“
= v.ai —.cm_v”sim;bcosqS(,:)i
= UJ.n¢|U|| UL x.";6“”"
+av“si112<;‘) _@_ " avi sin ¢ cos ¢ i
aqs x,u_L,ﬂ“ av" X,U_L,QS
d
S (27)
a¢ X,UJ_,U"

By taking into account the identity

of e 0 [ne 9G] _ 0 8G,] df)
oy 'mG~VX53lB x| = “w|% [ | e XY

3Gu} af© oG,

Bx v X (28)

T [EB ‘ av V" oy

and Eqgs. (20)-(23), the expression for §2H can be put in a more convenient form,
namely

>z v

o = 3 [ G-l ey

aftgo) a aGy (0) () 2
i (v en) ] e+ 10 (2)

e, f 0
]‘ 3 2 2
+ S—Wfa’:c(ﬁE +6BY) . (29)




Since the equilibrium is independent of = and z, an appropriate ansatz for the
generating function G, (x,Vv) is

1 Bl . T A
Gu(x,v) = 5 |9y, Ve X g3y, v)e e X (30)

The wave vector k,, introduced here is defined by
k:cz = Kz€; + kzez (31)

and therefore lies on the planes of the B(®)\-lines. (G, is obviously a real function
since g* is the complex conjugate of g, .

The investigation is now limited to purely electrostatic perturbations, i.e. we

choose
| SA=0. (32)
Inserting Eq. (30) in Eq. (29) and then integrating over a periodicity surface
S’
zo4 25 2042
s=j°"’/°"‘dmdz, (33)
o 20
yields

2

#i = 1o [ @0 dy{- (D) [ +iCv- s

i af;SO) a 7 = * 7 ’ *
+§W (w—w = 63) ke [g,,d,,gu —g,d,g, — 2i(v - ku)gygu]

]‘ 3 2
+5 / PrSE? (34)

where the operator d, has been introduced. d, is the equilibrium Vlasov operator
for functions which depend on v and y, but not on z or z, i.e.

d. = yi W ﬁa_
ay v BQS R
; ; d
= vJ_squa— ——avJ_v|151n¢cos¢a—
y UJ_,qb,v" v1L ‘y;e‘ﬂ.vu

Havpin®d —w) 2|+l sing cosd - 3

av||sin Wy 29 av] sin Bv“ ( ! )
UL, Yy,
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It is convenient to represent the complex function g,(y,Vv) as

gv(ya U1, ¢) U]]) = \Ilu(yu U1, ¢: U“)eil"p(y,w_,d),v") ) (36)

where ¥, and ', are real functions. Since g, is single-valued, ¥, and I', are
subject to the periodicity conditions

V,(y,v1, ¢+ 2m,v)) = ¥,u(y, v, 8, ) (37)

and
Ly(y,vi, ¢ +2m,v) = Lu(y,ve, d,v)) + 270, , (38)

n, being any integer number, i.e., n, = 0, £1, ...
Inserting Eq. (36) in Eq. (34) yields

i = ¥ [P dy{-[pr0) vy

+ WAL+ (v kﬂ)}?]

(0) 5
+ \Puzaaf‘uu [L_:i-w h eB] . kzz [dyru + (v ' ki‘Z)] }
1
+ gr_ f d3$6E2 : (39)

which is the general expression for the second-order energy of electrostatic per-
turbations of the equilibrium considered.

Note that §2H is a fungtiona,l of ¥,, which appears as ¥, and a?U\IJ,,, and of
I',, which appears only as d,T,.

IV. EXTREMIZATION OF THE SECOND-ORDER
WAVE ENERGY

In order to minimize the wave energy with respect to I',, we now consider the
variation of §2H brought about by a variation 8T, of I',. This quantity can easily
be calculated and is

8r, (82H) = §*H(T, + 6T,) — 82H(T,)

11




vdy{ [51’ \1:2( 2 [Df] [d.T,

e+ Z2 [ ] )

—6T, d, [ ( 2[DfO] [d.Ty + v - ke

(0)
- BJ;/(,, w—yw - eB] k“)]}. (40)

It follows fom Eq. (38) that the variation of I'), 6y, must be periodic in ¢,
1.e.

6T, (vi, @+ 2m,v),y) = 0L, (va, 6, v),y) - (41)

Since only derivatives of I', appear in Eq. (39), 6T, can be taken to vanish at
the boundaries. Therefore, Eq. (40) reduces to

4; f d®vdy 6T, d, {qﬂ (—2 (D]

or,(82H) = =3

. (0)
[dUFV N - k:t‘:z] =+ E)afb‘{,, [_W - eB] : k:nz) }, (42)

and, since 6T, is arbitrary, the condition for the vanishing of ér,(62H) is

ci.,{\vi(—z [P7O] [T + v - ke

+a e [_W ) kr)} 0. (43)

According to the results of APPENDIX C, the solution of this equation is

—20 [DFO] [d.L) + v - o]

+\1ﬂaf(0) [

o au — W — EB] rz — Cu(HuauvayV) ’ (44)

Wy
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where C), is a function of the constants of the motion H,, #,, Y, which still
has to be determined from the boundary conditions on I',. Solving Eq. (44) for
d,T, + v - k,, and inserting the result in Eq. (39) yields

> g [ ot [P0) {~(0y

L2l 5)
[T

Here, the electrostatic energy term (g-) [ d®z6E? has been dropped since the
perturbed charge density can be made zero by an appropriate choice of the signs
of ¥,,, which do not influence Eq. (45). This is explicitly shown in APPENDIX
F.

According to the results of APPENDIX B, the particles of each species v are
divided into two classes, namely the gyrating particles GP, which move around
the field lines and, at the same time, oscillate about the planes y = )),, and
the swinging particles SP, for which ¢ takes values only between ¢yin and @y,
and which never complete a turn around the field lines, moving freely in the y-
direction. In APPENDIX D, coordinates in v — y space are introduced which are
particularly convenient for both kinds of particles. With these results taken into
account, the wave energy is now split into two parts:

§°H = (52H)Gp + (62H)SP ’ (46)

where (62H)p is the contribution of the gyrating particles, and (6*H)gp that of
the swinging particles. With the definitions and results of APPENDICES D and
E, these contributions can be concisely expressed as

iy = T [ P o (g o0

4m? J(gp) |d, é| do

l( L9).. a"l & kn(y.,)r( e,

13




—%[nu 4. Mk"(yv)r} (47)

<‘¥L3>T¢. 2
and
5 B |wy| dH, dU, dY, dy 1 o1 [ 17 12[0% ‘
e = T /SP = 7] 1 -144]"| 5,
7 v _bu :
—t—[(d‘,y)Ty (av2 - 2)k”(y.,)} <\D3>Ty
s \2
(i) :
Ty a (av2+by2)
— 4
<L) [AI‘,,ZW + 5 k‘”(yu)] } ) (48)
¥/
Where 9/ 4 9f© 180
Df‘EO) — a0 fu i fu s fv , (49)

“OH, w, U, Y Oy

1 af(0)>
a, Hu,uu = = v e
lt) = T2, TR oo 4
_ q) 1 Q, of® 50
@y, oy, ool a
) 1 8f(°)>
ay?(ku"’) o <£”y>T[ 0)] <eB(yy .
= = s 955> (51)
~ {dy dy)  [DfO] lw| U,
(), (dy), |
ba(H,Uy) = 7rb— (52)
<d“¢>‘r¢
bua(Hosthy) = l— . (53)
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In deriving Eqs. (47) and (48), use has been made of the fact that d, ¢ and d,y
do not change sign for gyrating particles and for swinging particles, respectively.
This yields for the integrals along the particle orbits

27

ﬁlﬁl = sion f‘l’quﬁ

v

) | ’ , 2r dd)
- [ @) (), f 22

2T

ey [db
= () g 5

and correspondingly for swinging particles.

Note that the only Y,-dependence in the integrands in Egs. (47) and (48) is
given by ky(Y,) and by W, (if the arbitrary W, is chosen to be dependent on Y, ).

V. DISCUSSION OF THE EXPRESSION FOR THE
SECOND-ORDER WAVE ENERGY

A. Homogeneous equilibrium

The expression for §?H which is valid in the homogeneous case is easily ob-
tained from Eqs. (46)-(48) when one observes that, in that case, there is no
electric current, and a = 0. Therefore, there are no swinging particles, accord-

ing to APPENDIX B. Also, U, = v = v,, es(),) = es(y) = ., d¢ = —w,,

(0) ,
Df(o) - Qaafz , b = e y Ayl = ——”—ay, where
vy wl/ Wy
019 / [24 ,
au = [ 8U2 avi . (50)
Therefore
(@ = bn) = Z_ll(l —a), (@ +ba)= w” (1+a,) . (56)

Transforming the volume element according to APPENDIX C and performing
a trivial integration in y, one then obtains Eq. (43) of Ref.”




B. Inhomogeneous equilibrium

In the case of an inhomogeneous equilibrium, one has to consider the contri-
bution from both groups of particles.
1. The wave energy (6°H)gp for gyrating particles

The difference between gyrating and swinging particles is extensively treated

in APPENDIX B. For all cases of interest, the condition for a particle to be a
|

< 1, is satisfied for the vast majority of particles.

v
This is easily seen if one introduces the gyroradius (R )Th corresponding to a

thermal velocity (vy)qyy,, which yields — = R, )Th( ) , and observes that
w L)Th

v

a=! >> (Rg)y, for all cases of interest.

Owing to the symmetry of the system, one can set kj(),) = kjocosal,
without any restriction, and one has to distinguish the following two cases:

a) k=0, i.e. k(),) =0 for all ),
(wave propagation perpendicular to B(©)

In this case, there is wave propagation only in the direction y of the inhomo-
geneity and (62H)qp is given by

sl [ dH A dY,dé [ ov,
(Fer = 200z S Jd.l s ]{ doof [ ‘?5]

(o).,
o] } | (57)
(),
T
(0) ©  gfoO
Then, 62H < 0 if Df® =m A1y + a =2 Iy > 0 for some H.o,Uvo

YOH,  w, 0U, 02

corresponding to gyrating particles, and for any particle species v. This means
that the presence of a local minimum with respect to y?

FOMH, (32,92 22), U (2,92 2,Y)) (58)

guarantees 6 H < 0, without any restrictions in the spatial variation of the pertur-

bations perpendicular to B(©): it suffices to localize ¥, (—— is then also localized)

v,
d¢

16




21"
dy?
other W, are set equal to zero. The U, corresponding to the swinging particles
are likewise all set equal to zero, so that (6?H)gp = 0. The sign of §?H = (§°H)p
is then determined only by the sign of the integrand in the region of localization.

to the region in H,,U, where > 0. Outside this region ¥, vanishes. All

b) k() = kjocosa), does not vanish for all ),
(the wave vector has a component in the direction of B(®)

for all ), except a)), = :l:g + mn)

50 9rO o
oH, w, JU, 0y?
to gyrating particles and for any species v, one again localizes the perturbations

W, around these values, as in the preceding case. All ¥, corresponding to swing-
ing particles are set equal to zero; therefore, (62H)gp = 0.

> 0 for some H,o,U,0 corresponding

If a,; = b,y (local isotropy), all terms in Eq. (47) are negative.

If ayy # by1, one can use n, to make the integrand in Eq. (47) negative. This
is most easily shown if ¥, is chosen independent of ¢. In this case, the integrand
in Eq. (47) is given by

- [Dr@] (gqu);(wi)m [+ anky ()] [+ baky)] - (59)

If a,1b,1 > 0, it suffices to take n, = 0 to make the expression (59) (and thus
62H) negative. For any a,1b,1, it is negative if the factors in the square brackets
are either both positive or both negative. Both factors are positive if

Ny > —a,,lk"(y,,) and n, > —bulk"(y,,) : (60)

Let n}ax(—a,,lk”(yy)) be the maximum of --a,;ky()),) with respect to ), and

correspondingly for —b,1k0().). Then, choosing n, larger than the largest of the
two maxima satisfies inequalities (60). This can be concisely expressed by

n, > Max(H,0,Us0) := max {~anky(h), —buky(3)} - (61)

The expression (59) also is negative if both factors in the square brackets are
negative, i.e. if

N < —a,,lk”(y,,) and n, < —b,,lk”(yu) . (62)
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This is made possible by choosing

n, < Min(H,o,Uy0) := nJl)in {~anky(D), —buiky(V)} - (63)

These choices of n, guarantee that the integrand in Eq. (47) (and therefore
(62H)GP, since the ¥, are localized in H,,U,) be negative for H,o,U,0 and all
Y.

Note that when Df,SOJ(Hug.U,,o) > 0, 62H < 0 is possible without impos-
ing any conditions on either kjo, or the spatial variation of the perturbations
perpendicular to B(©),

are) a 9f© af
(0) — v s [ - v
Wy = o Bl O

to gyrating particles of any species v, one again localizes ¥, around H,o,U,0. All
other ¥,, and all ¥, for swinging particles are set equal to zero. The positive

< 0 for some H,p,U,o corresponding

v

2
contribution of [ ] to the integral in Eq. (47) can be eliminated by choosing

¢
N
U, =V, (H,, Uy, D), ie. aa{; = 0. In this case, §H is given by
68?H = (8°H)gp
o S|wu| dHu du,, d¢ (0) - 2
- T30 o T N0,

<\I’3>T¢('H,,,U,,, Vel [n,, + a,1 ko cos ay,,] [n,, + by1kyjo cos ay,,]} . (64)
Since W, is localized in H,,, U, around H,q,U,0, the condition for §?H < 0 is

] dyu<\I’,2,>T¢(7‘fuo, U, yu)bz1kﬁo

[ i +2cosayy][ o +cosal, | <0. (65)

bakjp b buikyjo

If a,1b,1 < 0, it is clear that choosing n, = 0 satisfies inequality (65) with-
out any condition being imposed on kjo, except kjo # 0. To understand what
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kﬁoaylbul < 0 means, consider Egs. (50) and (52), which yield

ayy bul ==

i {1 [ 1 9 95

(de), L [PF]qled o
B | 1 afi® -
- <&V¢>i¢ [Df;go)] Q||<eB(yu) ’ '_a';/_>7_¢ C ( )

Since Dfﬁo) < 0 was assumed, kﬁoaylb‘,]_ < 0 means that

arlo
k2q<e V) > >0. 67
021{ es(Jo) B . (67)

Since the mean values ('")7‘¢ are built along the particle orbit while the particle
completes a ¢-turn around the field lines, this result closely resembles that ob-
tained for a homogeneous plasma by Pfirsch and Morrison® , Eq. (144.b), in the
context of drift-kinetic theory.

If a,1b,, > 0, it can be shown that the inequality

ny, a, ny
+ —cosal, + cosal,
bulk"O b ] [bulkHO

<0 (68)

can be satisfied in a certain })), interval by appropriately choosing the arbitrary
;j—u, and that inequality (65) can then be satisfied by making a mild assumption
“llo

concerning the dependence of ¥, on }),.
Inequality (68) is satisfied if one factor is positive and the other is negative,
ie. if

n, a1 n,
+ —cosa), >0 and +cosa), <0, 69
bk b b1 kyjo o

or if " . n
Y4 M cos ay, <0 and ~ _ +cosa), >0. (70)

bulk“O bul ' bulk”[)

These inequalities are equivalent to

Ay ny
—cosay, > —
bul bulk”()

> cosal, (71)
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and

(%] ny,
—cosa), < — < cosay, . 72
bur burkyo ()
Z—" can be chosen in such a way that the inequalities
llo
(L% ny a1
> — >1 (for—— > 1 73
bul bvlk“O ( bul ) ( )
" Mgt forst 1) (74)
— < - or
bul bulk“(] bvl

are satisfied. This means that inequalities (71), (72) are satisfied for cosa), =1,
and also in an interval around this value, as shall presently be shown:

v bV
I -2t 5 1, inequalities (73) imply that 1 > — Bv_ - 2! 5 0. One can then
b1 Auifjlo a1

define a Y(®) by the equations

cosaYl® = — = 5. , a0 >0. (75)

a1 k“O

In this case

ny, ay, ny
- cosal, +cosa), | =
bakj b ] [bn ko ]

2
<
—

ny

= |=cosay® +cosa), +1 + cosa), —1 | . (76)
bul R bulk”U N pr——
;fa <0 e et <0 for all ),

N | < 0 after (73)
> 0 for cosal, > cos ayf’)

Inequality (68) can therefore be satisfied if cosa)), — cosa)®) > 0, i.e. if

—aY® < aY, < aP® := arccos l— D ] , (77)

ay1 A'"O

and inequality (65) can be satisfied if ¥,()),) is chosen to vanish whenever
cosa), — cosa)® < 0, i.e. when its integrand is positive. The characteris-
tic length for the variation of ¥,()),) perpendicular to B(®) can therefore be as
large as a~!, which is usually very large.
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Ayl

If g < 1, the assumption a,1b,; > 0 and inequalities (74) imply that
vl
0< o ™ 1. One can then define a Y by the equations
bu] bul k"(]
cos a)V = — it , aY) > 0. (78)
bulk”O

In this case

Ty, ny a1
+ cosa), +-—cosal, | =
lbul k|[0 } [bul k“(} b,y

2 | —cos ayil) +cosa), By +1 + cosa), —1 | . (79)
b1 ——rt Ayl k“O e
;’6 <0 ——— <0 for all Y,

e ” | < 0 after (74)
> 0 for cosa)), > cos a,y},”

As in the preceding case, inequality (68) can be satisfied if

— aYM < aY, < aYM := arccos | — L2 (80)
buikyo

and (65) can be satisfied if ¥,()),) is chosen to vanish whenever cosa), —
cos ayf,l) < 0. The characteristic length for the variation of ¥,(),) perpen-
dicular to B(® is, of course, as in the preceding case, i.e. it can be as large as
~al.

Inequalities (73) and (74) extend to the inhomogeneous case the results ob-
tained for a homogeneous plasma in Ref.® | Eqs. (49) and (50). From Egs. (50)

and (52), one obtains

) 1 Q,19f09
a1 1+ fu

b Ty o

(81)

a quantity which can be interpreted as the local anisotropy of the distribution
function, and which coincides with the previous definition of the anisotropy in
the homogeneous case.

It has just been shown that, when Df{®) > 0, it is always possible to have
§2H < 0 without any restriction on kjp or the spatial variation of the perturbation
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perpendicular to B(®. When Df(® < 0 and a,; and b,, have different signs, i.e.
afo  a .
when q||<e5(y,,) . p > 0, it is also possible to have §2H < 0 , without any
7,

v

restriction on ko, except kjp # 0, and without any restrictions on the spatial
variation of the perturbation perpendicular to B®). In the case that Df(® < 0
and a,1b,; > 0, however, ko is restricted by inequalities (73) or (74), and the
characteristic length for the variation of the perturbation W, perpendicular to
B© must be of the order < a~!, which is not an important restriction.

If Df® <0 and a,3 = b,y for H, = Hyo, U, = Uy, the equilibrium distribu-
tion function is locally monotonically decreasing and isotropic, and inequality (65)
cannot be satisfied for these H,o,U 0. If D fﬁo) < 0 and a,; = b,y for all H,,U,,
then f(® = f)(H,), the equilibrium is everywhere isotropic and homogeneous,
there is no electric current and a = 0. The equilibrium distribution function is a
monotonically decreasing function of the particle energy, and no negative energy
modes are possible, in accordance with the general results obtained in Ref.” .

2. The wave energy (6°H)gp for swinging particles

av
These particles, for which the condition “1'> 1 must be satisfied, do not have
w

v
the same importance as the gyrating particles. They must, however, be treated
whenever the equilibrium distribution functions allow arbitrarily large velocities.
Again, two cases concerning kjo are distinguished:

a) kjjo =0, i.e. k”(yl,) =0 for all ),
(wave propagation perpendicular to B()

In this case, Eq. (48) yields

8|w, | dH, did, dY, dy [Df(o)] {_[ r[@@y]z

(62}1)813 = E d”y ay

— 4m?2 J(sp) |d,y|

E&f;;[SLAFJZ}, (82)

(0) 9 10) (0)
0L | a 0f _ 0l

nd 6211 if DFO) = m, =
an < 01if Df, m o, T oo 9y

responding to swinging particles and for any particle species v. It suffices to

> 0 for some H,q,U,o cor-
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(0)
Fﬁ is then also localized) to the region in H,,U, where 38 - = 0.
Y Y
Outside this region W, vanishes. All other ¥, are set equal to zero. The VU,
corresponding to the gyrating particles are also all set equal to zero, so that
(62H)gp = 0. The sign of §2H = (6°H)gp is then determined only by the sign of

the integrand in the region of localization.

localize ¥, (

b) kj().) = kjp cosa), does not vanish for all ),
(the wave vector has a component in the direction of B©

for all ), except a), = :i:g + mmn)

o1 . w 0f® _ of®
oH, w0, 0y
to swinging particles and for any species v, one again localizes the perturbations
U, around these values, as in the preceding case. All ¥, corresponding to gyrating
particles are set equal to zero; therefore, (62H)sp = 0. Following the same line of
argumentation as in the case of gyrating particles, it is easily shown that §°H < 0
is possible without imposing any conditions on either kjo or the spatial variation
of the perturbation perpendicular to B(©).

I Df® =m,

> 0 for some H,0,U,0 corresponding

o1 . a 07 _ 050
VOH, ' w, 0U, Oy
to swinging particles of any species v, one again localizes ¥, around H,o, ..
All other ¥, and all ¥, for gyrating particles are set equal to zero. The positive

IfD f§°) =m < 0 for some H,,U,o corresponding

0v,]” . . - .
contribution of [—a——] to the integral in Eq. (48) can be eliminated by choosing
Y

38\]?‘, = 0. In this case, 62H is given by
Y

v, = \IJU(Hu,uy, yy), 1.e.

§2H = (6°H)gp

dH,, di, dy
sP)  |d,y|

Z s|wy |
= 4m4

{ DL

A \2
(dyy>,ryfa’yu
<‘D§>Ty (H., U, V) [—QE;AF,, + a2k cos ay,,] [%AFV + by2kyjo cos ayy]} . (83)

Since ¥, is localized in H,,U, around H,o,U,0, the condition for §2H < 0 is
[ a¥(22),. (Huo,to, D)¥eakfo
y
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" tcosa), | <0. (84)

+ —cosa), m

aAT, a9 aAT
2T byg k“g bu'z

If a,2b,2 < 0, choosing AT, = 0 satisfies inequality (84) without any
condition being imposed on ko, except kjo # 0.

If a,2b,2 > 0, one defines V() and aY(V) as in Egs. (75) and (78), but
with a,» and b,, instead of a,; and b,;. It can then be shown as in the case of
gyrating particles that the inequality

aAT, Ay aATl',
bk ko + » cos ayy] [Qﬂ'buzk"o 4+ cosa), | <0 (85)

can be satisfied in the interval

[ AFU i v
—a)® <), <a)O := arccos -— md (for % > 1) (86)
or ) B 7
—aYM < < ayWM .= _ ey oz
ay,’ <a), <a), arccos |~ 2tk (for i <1) (87)
if the inequalities
a,g CLAF,, ayg
— >———>1 (f 1
» > Srbrake >1 (for » =d) s (88)
a2 G.APU Ay
— < —— <1 (for —<1), 89
by2 27Tbu2k||o ( bu2 ) (89)

are satisfied. Therefore, inequality (84) can be satisfied if ¥,()),) is chosen to

vanish whenever ), does not satisfy (86) (for %"3 > 1) or (87) (for :"2 < 1)
v2 v2

Contrary to the case of gyrating particles, inequalilies (88), (89) do not impose
any condition on ko, except ko # 0. kjo can be chosen arbitrarily, and then the
arbitrary AT, can be chosen so as to satisfy inequality (88) or (89). In the case
of gyrating particles, on the other hand, one does not have the arbitrary AL,
but n,, which is not completely arbitrary because it must be an integer number.

It has just been shown that when Df{®) > 0 for some H,,U, corresponding to
swinging particles, 6°H < 0is always possible, without any restriction on ko or on
the spatial variation of the perturbation perpendicular to B(®). When Df(® < 0
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0%
ov
is also possible without any restriction on kjo, except ko # 0, and without any
restrictions on the spatial variation of the perturbation perpendicular to B(®. In
the case that a,;b,, > 0, there is also no restriction on kjjo. However, in this case,
the characteristic length for the variation of the perturbation ¥, perpendicular

to B(® must be of the order ~ a~!, which is not an important restriction.

and a,; and b, have different signs, i.e. when r||<e5(yv) : > >0,6°H <0
T

VI. Conclusions

In the case of an inhomogeneous, force-free Vlasov-Maxwell plasma with
sheared magnetic field, waves of negative energy (6°H < 0) exist for any local
off  a off) _ 3f©®
“or, T ou, oy
for some H,,U,) for any wave number k, irrespective of its magnitude and ori-
entation.

deviation from monotonicity (i.e. if Df® :=m >0

(0)
If 8{; -~ < 0, only the waves with a component kjq of k) in the direction
Y
B©)(y,) can possess negative energy.
afY 2 01" .
If 057 < 0, but kjj, (w) { es(yo) - vl e 0 ((w) is an averaged parallel

velocity, the angles represent averages along the particle orbits), negative-energy
waves also exist, with no restriction imposed on either kyo (other than ko # 0) or
the spatial variation of the perturbation perpendicular to B(®). This result agrees
with, and closely resembles, that obtained for a homogeneous plasma by Pfirsch
and Morrison® | Eq.(144.b), in the context of drift-kinetic theory.

(0) (0)
832;2 < 0 and kj, (w) <eB(yo)- 9),
also exist. In this case, the characteristic length for the variation of the perturba-
tion ¥, perpendicular to B(® is of the order of the shear length a~! (or smaller),
and there is generally a restriction on the possible parallel wave numbers (condi-
tions (73), (74), which are limited to a certain interval, this also being so in the
homogeneous case. The results of that case are of course regained by taking the
limit of vanishing shear, a — 0. The new results show that large perpendicular
wave numbers are not necessary for the existence of negative-energy waves in
the system under consideration, a feature which enhances the relevance of these
modes.

If both

< 0, negative-energy modes



APPENDIX A

Coordinates in v space

The magnetic field of the equilibrium considered is
B® = Beg , eg =sinaye, +cosaye, , (A.1)

where z,y, z are Cartesian coordinates and e, e,, e, are the corresponding unit
basis vectors. For this configuration, it is convenient to introduce, besides the
Cartesian velocities &, ¥, 2, a local cylindrical coordinates system vy, ¢, v in
v space, which is particularly appropriate to the problem and, in fact, makes
it tractable. This decomposition is, of course, space dependent, i.e., for a given
vector v, the components vy, ¢, v will differ depending on where in x space
the decomposition is carried out. In this system, vy is the magnitude of v,, the
projection of v onto the plane perpendicular to B©) and v)| is the projection of
v in the direction of the magnetic field. The remaining velocity coordinate, ¢, is
the angle between v, and the vector e; defined by

e = e, Xep = cosaye; —sinaye, . (A.2)

If one introduces unit basis vectors e,, and e in the direction of v, and
B©) x v, , respectively, then the following relations obtain:

e,, = cos¢ge +singe,
= cos¢ cosaye;+singe, —cos¢ sinaye; , (A.3)

e, = —singe;+tcosge,
= —sin¢g cosaye, + cos¢e, +sin¢g sinaye. , (A.4)

and the velocity v can be expressed as

v = vi(y,v)e, (y,v) + vy, v)es(y) . (A.5)

The relations between v, ¢,v) and the Cartesian velocity coordinates z,y, z are
therefore given by

v, = xcos¢ cosay +ysing — Zcos P sinay , (A.6)

v = Tsinay + Zcosay , (A.7)
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& = vy cos¢ cosay +vy|sinay , (A.8)
Yy = vysing , (A.9)
z = —vjcosésinay +vjcosay . (A.10)

From the foregoing expressions, the following useful relations can be derived:

éz)—;v = —ayjcosgey, %vzaz—ﬂl_sinqbey,

dv

3—:{1 ) = avjcosge,, (A.11)
avl BQS €y 3‘1)“
3vx_e”’ v, v’ -O_Vx_eB’ (A.12)

0
g)_v — eU.L , a_V = Uie¢ » _V = e€p . (A13)
v‘L x,qﬁ,vn 3 45 X,UJ_,U" av“ x,u_l_,r,f:

The volume element in v space is therefore given by the obvious expression

v = vidvidedy . (A.14)

Given a function G,(x,Vv), one then has the following relations:

oG, aG, G,
5 3 — avj|cos ¢ ey
Xy X vL,dy) i x,d.)
v aGy
—I—aﬂsingbaai e, + av, cos ¢ e, , (A.15)
LA ¢ X,U1,Y) (91)” X,p,u
9G, 0G,| L 0G| e
3v x av-l- x,d:,u“ o QS X, UL, vi
aG,
+ 3 ep . (A.lﬁ)
U” x,uJ_,q&
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APPENDIX B

. Particle orbits, gyrating particles
and swinging particles

Owing to the fact that the canonical momenta p;, and p.,, Eqs. (6) and (8)
are constants of the motion, the particles moving in the magnetic field B(0) =
B)(sin ay e,+cos ay e;) can be considered as effectively being in a one-dimensional
potential V(y) and, with the notation of Sec. Il., the Hamiltonian, Eq. (9), can
be expressed as ,

I, = 22+ V) (B.1)

with

mywy mywy

= H, — U, + || - (B.2)
By taking into account that

avy—w, = a(isinay +zcosay)—w,

mawu) cos ay] (B.3)

a s
= — [p_r,, simay + (pz,, —
my

and defining a frequency {2, by

2.2 2%
o = bl (22 ]

2,2
w,mg

e

v

(ST

= [aZUiCOSQ¢ + (av) — w,,)Q] o

=

= [ - *H.. — Tups il —I—wﬁ] (B.4)

my
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and an angle a)), by
|wv| ape,

sina), = — o (B.5)
cosal, = l-;%l (1 — cjf;‘:y) 3 (B.6)
W _ 1 and the effective potential V(y) can then be expressed as
Wy
Al =
o o] v) (B.7)
and ol
m, my W,
V(y) = 51 [Q + w ] e QLA (B.8)
respectively.

The particles moving in this periodic potential can be divided into two classes:
those whose energy H, is so large that they can overcome the potential barriers
determined by the maximum value of V,(y), (V,)max and move freely in the y-
direction , since for them 3 never vanishes, and those (in fact, the overwhelming
majority in all situations of interest) with energy lower than (V, )max, which are
trapped, their motion being confined to a certain y-region around y = )),. The
maximum value of V,(y) can be determined from Eq. (B.8) and is

o T 2
(Ifu)max = ﬁ{ﬂu + lwyl] . (Bg)
The condition for a particle to move freely in the y-direction is then

Hy == (Vim0 - (B.10)

Although the energies for which this condition is satisfied are usually very high

v

(Corresponding to Al _1 > 0, ie. a(Rg)Th(—vl)l— —1 >0, see Sec. V.B. 1.) , the
v VL )k

corresponding particles (which play a particular role in guiding centre theories®?)

must be taken into account when the distribution functions allow arbitrarily large
velocities, for instance when one considers Maxwell distributions.

The two groups of particles, those oscillating about the planes y = ), and
those moving freely along y with § vanishing nowhere, can be characterized by the
behaviour of the quantity d,é, which is, by the definition of d, in Eq. (27), the

rate of change of ¢ experienced by the moving particle, i.e. d = I
along orblts

When d, has no zeros (and ¢ therefore changes monotonically with time along
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the particle orbit), the particles gyrate around the field lines while they osc1llate
about the plane y = ). This is the group of the gyrating particles, GP. If d, ¢
vanishes for a certain ¢y, it also vanishes for 7 — @y (and for —¢o and —m + ®o)-
Calculating the second derivative of ¢ for these values, i.e. [d,(d,8)]( = ¢o),
[dy(d #)](¢ = ® — o), it can be shown that ¢o and 7 — ¢o (the same is valid
for —¢o, —7 + ¢o) are, respectively, minimum and maximum values of ¢. The
velocity v of the particle swings between these two angles, the particle never
completing a ¢-turn. At the same time, it moves freely in the y-direction, y =
v, sin¢ never vanishing. These are the swinging particles, SP. To understand
this relation between d, ¢ and the behaviour of the particles, consider the quantity
H, — (Vi )max, which, taking into account Eq. (B.9), reads

- 5 o2 L
Hi— (Vu)max = Ty iuu -1- (—‘a—zHu = ZE-U., + 1) ]

a? |w, m, w? wy

wy, 2wl

20 1 a?
m,,t-d—” (—a—v” = 1) + —a—vismzcﬁ

I
g N T
_[(w_,,v“_l) +uTz‘UJ_COS qb} } . (B.11)

v

fd,é= avusin2q5 —w, # 0 for all v, ¢, then this means that iv” —-1<0
Wy

since otherwise d, ¢ = 0 would be possible. Then, taking ¢ = 0, v = vjo(Ho, U, ¢ =

0), vi = vio(Hu,U,, ¢ = 0), which does not mean any restriction, since H, —
(V. )max 1s a constant of the motion, Eq. (B.11) yields

Hu = (Vv)max =

2 2 2 3
_muwu [ —g-—v“() - 1‘ [(—vno - 1) + L%E”iﬂ] ] <0 (B.12)

a? Wy -

and the particles are therefore trapped.
If cfi,qﬁ = av"sin2¢ —w, =0 for a ¢o and a v)jp, then

a 1
i = B.13
o, o = S (B.13)
and, settin
e , a® , sin'do
o= “-’—3 e P (B.14)
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one obtains from Eq. (B.11)

m, w? cos?® ¢y

2 a2 sin?® ¢

Hu'— (I'/u)max — [2+C(2:|_2(1 +Cg)%]

m, w? cos? g
2 a? sin? ¢q

[(1+c§)% — 1]2 > 0 (B.15)

and the particles move freely in the y-direction.

A quantity which plays a crucial role in determining the sign of §2H is
0 0
ADflEU) =1m, afl(/ ) a 8.fl£ )

oM, * o, o,
U,p, one can determine to what kind of orbit these values correspond in the fol-
lowing way: by taking into account Eqs. (C.8) and (C.10), the parallel velocity
can be expressed as v = v|(H.,0, U0, ¢) and d, ¢ is then given by

. If this quantity has a certain sign for H,, = H,0, U, =

~

d,¢ = av”singgé——wu

A 2a ¥
sHuo sin ¢ — —U,osin’¢ | . (B.16)

vy, Wy

= 4w,|l+

aqu

If < 0, then d,¢ # 0 for all ¢ and the particles with Hyo, U0 are
Wy
gyrating particles.

If £ 5 0 and the expression on the r.h.s. of Eq. (B.16) has no zeros, the
(%)

particlesuare likewise gyrating particles.
al, -
i == 5 0, and if d,¢ vanishes for any ¢ = ¢, then the particles with
w
g L{ygua,re swinging particles. It should again be stressed that, in most cases

. av v .
of interest, a(Rg)y, < 1, and that == a(Rg)Th——“— > 1, which is necessary
v L

for a particle to be a swinging particle, is only possible for very high values of .

Therefore, the vast majority of particles are gyrating particles.
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APPENDIX C

Solution of the equation d, X = 0

The extremization of the wave energy, Eq. (39), with respect to I';, leads to
an equation of the form

0X X . 90X 0X
+dyvy— +d¢a¢+dt"a" 0, (C.1)

X =4d,
Yoy du,

where d,1 ; d,v 1, etc... represent the change with time of the variables along
particle orbits, i.e.

dy=y=vising, (C2)
dv = —av,v)sin ¢ cos ¢ , (C.3)
d,¢ = avsin®g —w, , (C.4)
cfﬂ)u = av? sing cos ¢ . (C.5)

The solution of Eq. (C.1) can be found by the method of characteristics, i.e.
by solving the system
dy dUJ_ dqﬂ? d‘!)"

— = — = — = —= & (CG)
duy duUJ_ dvaﬁ dvU”

The equation
d’i) I dv"

JV'UJ_ B JU'U”
is easily seen to be equivalent to vy dv, + v|idv; = 0 and leads to the constant of
the motion H,:

(C.7)

m,
Hv = 2 ('UJ_ + 'U”) . (CS)
Using this result, the equation
d¢ dv" (C.9)
d, (;5 d Y|

can be integrated (carrying out some minor manipulations) and yields the con-
stant of the motion 4, :

. visinzqﬁ + - (ClO)

2w,
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The equations

dy do dy dvy
(zuy dAuUJ_

(C.11)
can be written as
(av”sin2¢ —w,)dy = vy singdd , —av||cos2q5 dy = cos ¢pdv; , (C.12)
respectively. The difference of these two equations yields
(av) —w,)dy = d(—vy cos ), (C.13)

which, together with Eq. (B.7), leads to

d|sina(Y, —y) +

lzv|nivl cos (,'b] = 0. (C.14)

This expression yields a convenient relation between the third constant of the
motion, ),, and y,v, and ¢.

For gyrating particles, y — ), is bounded and is given by

1 v
y — ), = —arcsin l:lw laUJ_ cos qﬁv] , (C.15)
a w, 0,
with
_wgarcsin[w iavlcosqﬁ] <m. (C.16)
wlf v

. . a . .
The meaning of ), becomes clear if one asumes that —wv, is small, i.e.

2,
a a v
—_ ~— = e 1. In that
QoL ™~ o a(Rg)Th(vJ—)Th < 1. In that case
V. (Qiuvl—r(}) =y—-:i-cos¢, (C.17)

and y = ), is obviously the plane on which the guiding centre is located.
For swinging particles (which move freely, with nonvanishing ), y is un-

bounded and

27

lwulaU.LCOS (,?5} + [u? 3 lu = Ovﬂ:ivEtC"' ' (018)

w, (1,

1
y — J, = —arcsin l
a

: : 2m o B . .
In this case, y = ), +[,— are the planes on which |7| assumes its maximum value.

When the particle swings from ¢g to 7 — ¢¢ and back again to ¢g, v, returns to
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the same value, as can easily be seen when v, is expressed as vl(H,,,L{,,,sianS).
2

At the same time, the particle moves from o to yo + —.
a

With these three independent integrals, the general' solution of the equation
d,X =0 is given by

X(U_La q—"avllay) = X( HU(‘U_L,’U”),LIV(’U_L, (vbﬂ U”), y,,('UJ_, ¢) Y| y) ) . (Clg)

34




APPENDIX D

The coordinates systems H,,¢,U4,,), (for gyrating
particles, GP) and H,,U,,),,y (for swinging particles, SP)

It is most convenient to introduce coordinates in y — v space which are par-
ticularly adapted to the motion of the particles.

For gyrating particles, the coordinates H,, ¢,U,, ), are introduced. The rele-
vant relations are Eqs. (C.8), (C.10) and (C.15) (together with Eq. (B.4)), which
enable one to calculate the Jacobian

O(H,, ¢, Uy, )

T4l
3(1)1, ¢a Yl y)

oM, OH, - O, JTH,
dvy  0¢  Ov Oy
d¢ 9 94 94

| vy 9 dvy By

= o ou, o - (D.1)
duy  d¢  Ovy Oy
ay, 9y, 9y, 9,
dvy  0¢ Ov Oy

The quantities which appear in the functional determinant can easily be calcu-
lated. They are

?)Z =myvy , ?%—” =) 5 ‘9;;' =myy) , a;;” ey (D.2)
%:0, g—i=1, g—t‘fil:o, g—‘;=0, (D.3)
gi{l = wiuvlsinqu , 3;’; = %”i sin¢ cos ¢
%:1’ aaz”;”=0, (D.4)

Yy _ |wl 1 OV _ el vs

——sin¢ cosa(V, —y) ,

—COS¢’ Cosa(yy - y) ) a(,ﬁ - w Q

v, w, N,
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ayv . avy By,,

av”_ Qz(:o s¢ 9y =4 (D.5)
From the relation
3
dH, dé did, &Y, = |A| dvy dg dvydy = |A|d v dy (D.6)
one then obtains the volume element in y — v space:
3 “y
dvdy = =5 dH, do did, dY,
m,(avsin®g —w,)
= dH, dodU, dY, . (D.7)
m,d, ¢

Since, as was seen in APPENDIX B, cfuqﬁ # 0 for gyrating particles, the coordi-
nates are well defined.

For swinging particles, the coordinates H,,U,,).,,y are introduced. Pro-
ceeding in a similar manner as in the case of the gyrating particles, the volume
element is easily derived. One obtains

Body = |—2 | dH, dU, dY, dy
m,v, sin ¢
= dH, dU, dY, dy . (D.8)
m,d,y

The coordinate system is well defined since J:,y =y = vy sin¢ does not vanish
for the swinging particles.

For gyrating particles, the expression d,T, appearing in Eq. (44) takes the

form o
(duru)(;p = durv(Huauvayva¢) = (dv¢) a(; ) (Dg)
while for swinging particles one obtains
R N s 8l
(duFu)SP = duru(Hvauw yv'ny) = (d,,y) ay (DlO)
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APPENDIX E

Some useful relations for the evaluation
of 6°H

It is convenient to introduce two reference unit vectors e,(),), eg(),) defined

by
e1(V,) =eily=D),) =cosa), e, —sina),e,,
eg(V,) =epg(y=J.) =sina), e, + cosa), e,.
Then, taking into account Egs. (B.7) and (C.15), one obtains

e (y) = cosaye, —sinaye,

= cosa(Y, —y)ei(V,)+sina(Y, —y)es(D,)

|WVI

[(avu —wy)e1(Y,) + av, cos q&eB(y,,)]
and

eg(y) = sinaye, + cosaye,

= - Sina(yu - y) el(yu) + cos a(yu - y) eB(yu)

|,

= o lwscossei(D) = (avy - w)es()]

w]—’
Solving these equations for e;(),) and eg()),), one obtains

|"°'V|

el V) = _WVQV [(av“ —wy,)ei(y) —avy cosqﬁeB(y)]

and
|wv}

es(V) = —-=5- avi cos pei(y) + (v —w.)en(v)] -

Wy

(E.3)

(E.4)

(E.5)

(E.6)

With the help of Eqs. (A.1), (A.2), (22), (B.7) and (C.14), the vector —w — ep
w

appearing in Eq. (44) can be shown to be a constant of the motion:

a a a
—WwW —eg = —uvjcospe; + —uyy=1}ep
wV wU wV
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. '
- —me};(y,,) . (E.7)

It is also convenient to relate the velocity w = v — e, to the vectors e{()),)

and eg(),):

W = uvjep+vyLcos de;
s Jf;lt [(—avicosﬁqﬁ — avﬁ + w,v))ep(V)
+ wyv, cos ﬁb €1 (yv)]
) 2
(i)
+ Wy, v COoSs ¢ el(yu)]
= Qe + 2 cospe ), (B8)
where o] 5
W, a
QUM Uuruy) = [—w i, + 2, v"] (E.9)

has been introduced. Mean values for gyrating and for swinging particles, respec-
tively, are now defined by the expressions

()r, = [;(j@:;/ ;jq;] (E.10)

0 LO

!.ro+?;"r vo+3

b, = fj—yy/ faiy : (E.11)

Yo Yo

where f means that the integrals are taken along the particle orbits, i.e. at

constant H,,,4,,),. Then, taking v, = vy (H,,U,,sin’¢) into account yields
(vlcosqb)%:O (E.12)

since positive and negative contributions compensate each other. On the other
hand, expressing v, cos ¢ as a function of H,,U, and y through Eq. (C.15) and
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~

d,y =y = pzy/m, as a function of the same variables with the help of Egs. (B.1),
(B.8), and taking into account that y does not change sign for swinging particles,
one derives

(vy cos qS}Ty =0, (E.13)

Introducing now the Y, -independent, mean parallel velocities

q(H.,U,) and r(H,,U,) as

a(Hos Uy) = (Q(Ho,Us, vy (Ho Uy, sin’$)) ) (E.14)

T

and

M, U) = (@ ooy (P o 0D = 1), (E.15)

respectively, these results allow concise expressions for the mean value of w and
w - k., namely

(W)T¢ = q“(Hy,uy)eB(yv) 3 (W ’ kz’z)fd, = kll(yu)QiI(Hv,uu) (ElG)

and

(W), = (Mot )es(D) 5 (W-ka)p = kyDImi(Hoth) ,  (BDT)
where the parallel component of the wave vector

k(D) = k. - eB(Jh) (E.18)

has been introduced. These results, together with Eqs. (21), (22), (23) and (E.T),
lead to the relations

()
<eB(yu)' éf; > (Hu,uu)
T

Q, of®
|w, | OU,

8fp(:0) a 3f,£0)
|:m" aHu T (4_): auv q"(HV)uv) +
Q. 3f£0)
|w, | U,

= DfO(M,,U)qy (Mo, U) + (E.19)

and

(0)
<EB(yu) " aaf: > (sz/{u)

Yy
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B f(O) a afo) Q, ofO
n 5‘H * w, U, T"(ku )+ Iw,,[ o,
Q, 8f

= ‘Dféu](Hv,uu)Tn(Hu,uu) +

T (E.20)

It is now straightforward to calculate the constant of the motion C,, which
appears in Eq. (44). Setting

(yu) = .1‘2’ : e](yu) 3 (EQ].)
Eq. (44) can be written as
C, o Bf(o) ©)
Igyl kl(yu)v.l. Ccos ‘]5 4 k”(yu)QH(kuva yu) + Juru . (E22)

For both kinds of particles, the gyrating particles GP and the swinging particles
SP, particularly appropriate coordinates were introduced in APPENDIX D. By
means of these coordinates, the constant of the motion C, can be determined from
Eq. (E.22) and the boundary conditions. For gyrating particles, the boundary
conditions, Eq. (38), expressed in the coordinates H,,U,, ¢, )., are

Do(Histhis @+ Zx: 0 Y = To (Mo U s Vi ) - 210, (E.23)
2

For swinging particles, T, is taken to have given values at y = yo and y = yo+ —W
a

i.e.

2
Pv(Huauuy ywy = yO) = PUO 3 Fu(Hu,uy; yv,y =1 + %) — I‘yl " (E24)

For gyrating particles I', is given by

(TW)ap = Ton(Ho, Us, Vo) + Tui(Ho, Uy 6, D0) (E.25)
A 0)er = (dp) 2 ogdee (E.26)

where [,n is an arbitrary function of its arguments and T',; is determined by
integrating Eq. (E.22) with respect to ¢ along the particles orbits. T', is not
needed explicitly for the calculation of 6%H, it is only C, which is needed.
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The corresponding expressions for swinging particles are

(Cy)ep= Eud Hosillis ¥or) ¥ Tk Ml Vs W) (E.27)
and BT,
dI;V(FV)SP = (duy)Tu;SE . (E.28)

Dividing Eq. (E.22) by d,¢ and integrating along the particle orbits between
¢ = 0 and ¢ = 2 yields the constant of the motion C, for gyrating particles
(designated by C,(ap)):

Q, af©

9
Cu(GP)<q}2> A,,(yu) ol o 2’611(37»)<ea(3’u) b
T

), (ot

v

—2|Df] <cf,,qz$>1_¢nu . (E.29)

Proceeding in a similar way for swinging particles, i.e. dividing Eq. (E.22) by

R 2

d,y and integrating along the particle orbit between yq and yo + —W, yields Cy(sp),
- a

the constant of the motion C, for swinging particles:

1 Q, af© afLo)
Cusn{gz) = O ~ 2O es) - ) ()
viTy y
~2[DfO) (J,,y)Ty/_\rV% , (E.30)
where
AF,, = F,,l = FuO . (ES].)

These expressions can be simplified if it is remembered that

affY a9

DfO =m, R T and the following definitions are introduced:
k(D) af
hul(HV)uU7yV) <d ¢> [ flgo)] eB(yy) " —aT qu ] (E32)
by — k) o
huo(Ho, Uy, V) = <J”9>T 7] <e3(37.,) o . (E.33)
VI(HV:Z’{V, yu) = Jt“”(J):/) <d (:1]> ) (E34)
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"l

B, (H,,U,, V) = k"(yV)W : (E.35)

Note that the only dependence on Y, is given through kj(J,)!
With these definitions one then obtains from Eqs. (E.19), (E.20), (E.29) and

(E.30)
2
1 Q, af©1?
I:CV(GP)<@>T] B [k”(y")lwul 6121»]
[

v

+[2 ['Dflo)] <ﬂ?y¢>m]2 [n,z, + (hu1 + Bui)n, + hulel]

- [2 (D7) (al,qiv)%]2 [n + M] , (E.36)

2
i
[CV(SP] < @>
vi T,

v

2
Q, 9f]
] - |mow s 5|

+2 [P0 (da), | [(Aryzif + (s + Bua) (ATu5- ) + h,,zBﬁ]

T

(hu2 + By?)jl ) (E37)

_ [2 (D7) (J,y>Ty] [AFV% 3 S
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APPENDIX F

Neglect of the electrostatic energy term

The contribution of the electrostatic energy term

1
— | &z6E?
811'./ ol

(F.1)

has been neglected. To justify this, let us consider the perturbed electric charge

density 6p. Generally, the charge density is
p= Zeu/fud?’v ;
and the perturbed charge density is
bp=2e, [6fdv .
v

The perturbation in the distribution function is given by

aflo afLo)
) v = ——| -6 v = * vy
/; ax . Xt op. |, op
with p, the canonical momentum of species v, i.e.
P, = m,V + e_VA(O)(X) E
c
It therefore follows that
010 _ 9y
ov | Wy p. |’
o5 _ 00| )| s
ox |, ox |, ox |, 9(pu);|,
AfO| e,0A g5
- Ox p € Ox 9(p.)|,
df© AfO| e, A 9f©
ax |~ dx |, ¢ ox a(p),

O] e 9ALD 3fO

ox |, mye 9x v .
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(F.2)

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)




The perturbations éx, and ép, are given by

= )
_ Ti aa% R (F.9)
ép, = _aai?: )
- T e . 10

Employing the relations above, one obtains § f, as a function of x and v:

1L [0fO 0G, e [wo . 0G, MO af® aG,
E[@x S Ov _muc(B v ) Tav  ov  ox | (B:LL)

This expression can be transformed by taking Egs. (20)-(23), (25)-(27) and

Bl

. s L0 . .
the relation d, = d, + #— + Z— into account, to obtain

9z | %oz

e e 80
R
- Lo ha + [- oro)ie + 27] 52
) _'rrlzl, :[Df,E”)] 14,6,] + :_ [ey.%f‘(?} e, agf)] , 8&] (F.12)

Taking into account Eqgs. (30), (31) and (36), one then obtains for the per-
turbed charge density

sp = =,

o [eo{ (o] fi.c.
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- o f(0) —_— ;
+% (k.rz - g; ) 0, [6=Fu+:kn-x _ e—:r.,—k“-x]} . (F.13)

Employing the relation

guGu = % [(zy\py] [eﬂ"y+ik”.x + e”irv—ikzz-x]
‘ié‘l’u [cful‘u] [eii"u+1'k“-x _ e—iFu—ik:z.x] ’ (F.14)

one then calculates
fp=-Y f & [

" [[Dfﬁ‘]’] AT, + ks %@] W, [errie e_ir"-m“'x]] L

s

[ ,,‘I',,] [eif‘y-{-iku-x I e—il",,~ikn-x]

Taking d,v, =0, ie U, = v, (H,,U,,Y,), does not have any influence
whatsoever on the results obtained in Sec. V. In this case, the perturbed charge
density 1s

- —gi—:/d%{ [[Df(o)]dr +k,.- gﬂ

v, [eiFy+ik,,-x B e—il"y-iknvx]} _ (F.16)

The perturbed charge density 8p can be made zero since the expressions for
§2H only contain W2, (JU‘IJ,,)z. U, is chosen localized in ‘H,, or U,. The distribu-
tion of signs in ¥, is free. For instance, one can take ¥, piecewise continuous in
H, or U,, with changing signs so that positive and negative contributions to ép
balance each other.
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