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Abstract

An analytical solution to an one-dimensional linear kinetic transport equation
(slab model) is presented and applied to investigate the influence of elastic collisions
between neutral atoms and plasma ions on neutral gas transport under typical
tokamak boundary conditions. By comparing solutions obtained for neutral helium
and neutral hydrogen the possibility of local helium enrichment in divertors or pump
limiters is considered in detail. Here we reinvestigate the inverted pump limiter
concept of Prinja and Conn, however with applications to the issue of helium removal
in general, e.g. also by divertors. By using a general Monte Carlo algorithm to
solve the same kinetic equations, the analytical solutions are verified. Furthermore
some of the simplifying approximations, which were necessary to obtain closed form
analytical solutions, are then removed in the Monte Carlo solution. This allows a

critical assessment of such approximations.
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1 Introduction

The transport of neutral particles in tokamak boundary plasmas is dominated by elastic
(at small plasma temperatures, below 20 eV) and inelastic interactions between the neutral
and charged particles. Viscous effects on neutral gas transport can in many (but notably
not in all) cases be neglected. This and comparing characteristic length and mean free
paths under typical tokamak edge plasma conditions clearly points to the need for linear
kinetic models for neutral particles transport.

General 3 dimensional solutions, for almost arbitrarily complex boundary conditions
and collision integrals can routinely be found by using Monte Carlo simulation methods.
General trends and parametric dependencies, nevertheless, can only be investigated by
analytic methods. However, analytical treatment is often only possible for strongly sim-
plified model equations. Combining these two methods of solution can be benefitial with
regard to at least two aspects. As already pointed out in ref. [9], the concept of condi-
tional expectation estimators allows to combine analytical and stochastic information in
the Monte Carlo solution without violating it’s applicability to very complex problems
but with the potential of tremendous savings in CPU-costs.

A second aspect, discussed in this report, is the trivial fact that a Monte Carlo com-
puter code, if sufficiently flexible, can easily be reduced to also solve exactly the approxi-
mate kinetic equations solved by the analytical methods. Thus Monte Carlo can assist to
assess the effects of the simplifying assumptions on the closed form analytical solutions.
In this paper we make use of this latter concept with regard to the frequently discussed
issue of decoupling of neutral hydrogen and helium transport in boundary plasmas, on
the basis of different atomic physics for the two particle species involved. Starting point
and motivation for this present study was the analytical investigation of neutral hydrogen
versus helium tranport in ref. [8], which resulted in a proposal for an “inverted limiter con-

cept” for preferential helium removal from tokamak plasmas. Apart from the point made
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in ref. [11] that this issue can not be discussed in terms of neutral gas transport alone
but critically depends on the mutual effects of neutral and charged particle transport, one
remaining confusing fact was the significant discrepancy of the analytical solutions given
in [8] and the Monte Carlo solutions for a seemingly identical kinetic equation [10]. In this
report we will firstly reinvestigate this problem and show how perfect agreement between
analytical and Monte Carlo treatment of this relevant kinetic equation can be achieved.
Secondly we will extend the previous analytical investigation of ref. [8] to include more
physical effects such as different boundary conditions, or elastic interaction between neu-
tral and charged particles. Finally we will critically examine the approximations in the
model equation by returning to Monte Carlo solutions with less restrictive assumptions.

Our analysis tends to confirm results obtained earlier by [12] on the relevance of elastic
collisions (for a different configuration discussed there).

Our analysis will, in principal terms, contribute to an optimisation of the positioning
of the pump duct entrance with respect to the neutralizing target, in terms of neutral

particle mean free paths, for efficient helium removal.

2 Analytical model

2.1 Model equations and boundary conditions

The starting point is the linear time-independent kinetic equation for the distribution
function f4 of atomic neutral particles of species A
7-Vfa= 3 Calfa). (1)
ioz el
We will use the following terminology and assumptions throughout this report: k4 and
k4 denote rate coefficients, v4’s the corresponding collision frequencies. The ion density

is defined by ng+ := [dbfa+, fa+ 1= fa+ /na+ is the normalized ion velocity distribution
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function and has to be specified (e.g. as Maxwellian f,;+ = \/rme""ﬂ"?/znﬂ at
the ion temperature Tq+). na+ = n. (electron density), Tpi=[di 7 fa (neutral particle
flux).

The interactions of neutral atoms with the fixed, prescribed plasma background are
described by the following model collision terms:

Electron impact ionization (ei):
Ci = —ki(Tnefa = ~viifa. (2)

For the ionization rate coefficient k% the polynomial fits given in the database [1] are
used.

Charge exchange (cz):
CF = —kF (T )nefa + K (Tas)nefas Na = v§ (= fa + fas Na) 3)

The cx rate coefficient k§'(v,Ta+) :=< v,Q%(v,) > depends, in general, on both the
neutral’s velocity v and the ion temperature Ty+. < ... > denotes averaging over the
ion velocity distribution f+ (vi) and v, =| ¥ — ¥; | is the relative velocity of the collision
partners. Here we use the good approximation k§¥ 2 v2Q(v?) with vy = (8T 4+ [T g+ +
v?)1/2 (cf. [2]) and furthermore, we replace v by v 4+ s B = \/TT/mA: (thermal velocity
of the ions A*). Q% is again taken from [1]. This replacement of the explicite neutral
particle velocity dependence by T4+ in the cx rate coefficient removes the functional
dependence of the model collision term on the neutral particle distribution function. This
term then only depends on the neutral particle density N4 := [d#f4. That permits to
derive an integral equation for the spatial neutral particle density profile N4 (cf. [3]).
After having solved this equation, one can then calculate the distribution function f4 in
a second step, ie. all the higher momenta of f4.

Elastic collisions (el):
CY = —kY(Tasne(fa = Nafar) = —3(fa — Nafs) (4)
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The elastic interaction is considered here in a very crude approximation only as a relax-
ation of f4 to the ion distribution function fA+. This relaxation i1s described by a rate
coefficient, in which the explicite velocity dependence has again been suppressed using the
same scheme as for the charge exchange collision rate: k%(T4+) ~ k%(va+,Ta+). Thus
at least particle conservation is ensured (cf. [4]). In case of elastic collisions between
particles of different masses, such as collisions between helium atoms and proton ions, we
assume a relaxation of the neutral particles to the energy distribution (not the velocity
distribution) of the background ions. In this paper we have used the cross section evalu-
ated in [5]. (Retaining a full BGK collision term to describe elastic collisions would lead
to a nonlinear problem which can not be solved analytically (cf. [6]).)
For simplicity and because, in general, surface recycling is the dominant source of neutral
particles in tokamak boundary plasmas, recombination is neglected.

We consider a planar semi-infinite half-space geometry. Then the kinetic equation in

the only spatial coordinate = reads

9fa

vy, TVa fa=v} fasNa, (5)

vy =v§ +v§ +vey, vii=0vF + 04
This is the basic equation which we solve employing the analytic solution given in [7]. In

particular we are refering here to the MODEL I ("neutrals from the wall”) of [7]. In that

paper it was shown, that the formal solution of (5) can be written as:

fa(n,v) = 0(v) f3(n,v) +0(—v) fx(n,v) (6)

with
1) = £, + [ SR f ) R, (™)
filnv) = —f:o djne"”’”"’” Fae(n'y0) Na(n'); (8)




fE = 0(2v)far, aa = vh/vi, n(z) := [ dzvz(2’). We have made use of the fact that
the product N4 := a4 - Ny is a function of the generalized spatial coordinate 7 only.
The boundary condition at the left recycling surface is assumed to have the following

form:

££(0,v) = Toafoa(v) +/D dv'Ra(v, —v')f3 (0, —v"),v > 0, 9)
DIy n [ dv'’ —n'/v' nFf= (! ’
= Toafoa + jo dn'Na(n )fo —re M Ra(v, =) [ (0, —v).
The reflection function R4 is a linear combination of specular and diffusive reflection:
Ry = Rs,gts(‘v — v') + RDAFDA‘U' (10)

with
/0 dvvfou(Fpa) = 1. (11)

and Hs4 and Rpy are free parameters of the model.

The second boundary condition, at infinity, is

fa(oo,v) =0V v. (12)

2.2 Solution

Now we solve for the neutral particle density profile. After that the full kinetic solution is
obtained (eqgs. (6)-(8)), using for f4+ an ion velocity distribution which must be consistent
with the approximations in the collision integrals eqs. (2), (3) and (4). (For example, in
this report, f4+ is taken to be a double delta function throughout. For electrons, however,
we retain a maxwellian distribution function, which is intrinsic in the rate coefficients for
electron impact collisions.)

The solution for the density is taken as given in ref. [7], however with three further

simplifying assumptions as compared to the full results in [7]:

A




1. Homogeneous plasma temperature and plasma density,

2. double delta function distribution for the ions At
A 1
fa+ = 3 [6(v —va+) + 6(v + va+)],

3. monoenergetic and one-dimensional reflection function

5(v—va)

V4

foa= Fpa=

(13)

(14)

v4 is the injection velocity of the atoms A. (Note that under these pathologic

conditions and for v4 = wyu+, the diffusive reflection becomes identical with the

specular reflection.)

With these assumptions we obtain for the normalized density the solution [7]:

— Ny 1+ AsRpa 1 —u% _ta
N = — A u
A(&A) POA/'UA-Q- uy 1 — 6“2415:246 A
S
+ ]-+'U-A 1—6A 1+ﬁ%ﬁ'RSAe_5A Eu
1+5A'U.AI——6A‘RA DA
Rsa Rpa
Dai=1-(1—6 ( )
4 ( A) 1+5A+1+6A‘u,4

ST
A._1+6AU.ADA

with the definitions

£ ! et
Ea(e) = = / da 2= ), g = %‘-, Sa=vVi—az=.24
0 + VA

Va+

Aa =|T4(0) | /Toa (Albedo).

(15)

(18)

(19)

Here the dimensionless variables é4 and 64 correspond to the optical depth and to an

inverse penetration depth for generated particles, respectively.




We now proceed to calculate the higher momenta, thereby retaining the distribution

functions (13) and (14). The momenta are defined by

(eo]

M () = [ dv v faEv) (20)

-00

They can be calculated using egs. (6)-(8) to

n n F n =3
M = o [ = 1) + Naea)], (2)
. e - d n
JML&.2 ) = Toa Ui (1- 1/“3&)6 “ - vat d_f,: ﬁ{f(f ) (Eals (22)
MO = N M =T 2

If the first term of both equations can be neglected the diffusion approximation results.
These terms vanish exactly for ug = 1 (i.e. for v4 = va+) or for v4 — 0. Both cases will
be considered below. We note here that the perfect reduction of the full kinetic solution
to the diffusion approximation for us = 1 is a consequence of the assumption 2 of a one-
dimensional monoenergetic ion velocity distribution. In general, and in particular for the
three-dimensional ion distribution function in ref. [8], the diffusion solution is, at best,
only approximate, even for otherwise identical conditions.
Using eqs. (15) and (22) the particle flux can be calculated to

= T'a 1
Lala) =1~ = 7 T-5243

l4us 1-46a 1+-}-:_—3i‘RSA

1-— 2
Ua (62111.31 + AARDA) e 5ata (24)

e~ bata,
146qusl —bauas Dy
We next discuss a few special cases:
(i) ug =1 (thermal injection velocity)
reflecting left boundary
s e—fala  _ ba¢
(R) Rsa+Rpa=1:Na= 5 , [a=e"44 (25)
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absorbing left boundary

e~ tata f‘A - _2_6L e~ b4t (26)

1464 ’ T 1464

(0) R3A=RDA=0:NUA=

These results are exact within the model assumptions, in particular with egs. (13) and
(14).

(i) us — 0 (low velocity injection)

— —if _
(R) Rpa=1, Rsa=0: Nu= I_(S_Ae-a,‘ ¢4 Ta=(1—64)e 4t (27)
A

(0) Rpa=Rsa=0: Ny=(1—6a)e®4%, T,y=064(1-6a)e % (28)

These are approximate solutions, as well as u4 = 0 is an unphysical limiting case only.

2.3 Helium enrichment

The first analytical treatment of the problem was given in [8] for a slab model with
absorbing left wall. Elastic interaction had not been taken into account there so that
for helium atoms the plasma is a purely absorbing medium. In this section we will show
how the boundary conditions and in particular the elastic interaction may influence local
helium enrichment. The results of the foregoing section are used to calculate the helium
enrichment factor, which is defined by the ratio of helium to hydrogen normalized particle

fluxes

7= = (29)
The interaction processes which are included are: Electron impact ionization, charge
exchange (only for hydrogen) and elastic interaction (H/H*, He/H¥). Describing the

elastic interaction He/H* by the model collision term (4) energy conservation is not

ensured so that this description is rather crude. The rate coefficients of these processes

are displayed in Figs. la,b.
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The solution for the first special case (i), with boundary condition (R), takes a partic-
ularly simple form and we refer to it as “standard solution” 7,. The solution for the other
special cases considered here can then be expressed in terms of this standard solution.

Special cases:

(1) ug = uge =1

(R) n=n,:= ™ ¢u=bne LHe  (standard solution) (30)
_ 6He 1+ 6H
0 7=t M, (31)
(H) ‘U,H—io, uchl
1
25}[, 1
0) n= s 33
0) = T+ 6m. 60 (L—6m) " (33)
(lli) ug =1, uge—0
(R) n=(1-8xc) s (34)
146
(0) 7= Ee(1 = 611e) —5 s (35)
H
(iV) ug — 05 UHe — 0
1= 6Hc
R = y
(B) n=T"2%n (36)
_ bHe 1 —bpe

Discussion:
The standard solution 7, has a very simple analytic form. In this case the enrichement
factor 7 scales exponentially with the line density [ dzn.. For temperatures for which the
total collision rate for helium is larger than for hydrogen atoms, one finds an exponential
increase in 7, otherwise an exponential decrease. But this holds true only for the special
case ug = 1, condition (R) and, in particular, the ansatz (13). In this case the transport
of each particle species is characterized by one single decay length. Under more general

conditions this dependence is more complicated.
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In order to compare our results with those of [8] we calculate helium enrichment at
a distance @ = 20cm into the slab, and for an electron density n. = 1083em=3. We
investigate the temperature range between 3.2 ¢V and 100 eV. To elucidate the influence
of the different interaction processes we calculate also helium "enrichment” by means of

the density

na =2 ;e (38)
H

and denote n by n; ("flux’).
Now we consider the four special cases which are redefined as follows
case (i) : ug = upge = 1 (R) (standard solution)
case (ii) : uy = uge = 1 (0)
case (iii) : ug = 0.l,uge = 1 (R)

case (iv) : ug = 0.l,ug. = 1 (0)

Quantities calculated without including the elastic interaction are denoted by a suffix
0 and displayed by a dashed line. Figs. 2a, b show that elastic interaction lowers both
damping rates 8 4. This is particularly pronounced for the helium component. In contrast
H/H* collisions only slightly affect 65. As expected, for temperatures above 20 eV éye
approaches 1, i.e. the damping rate 6%, without elastic collisions. Figs. 3a,b show how
the elastic interaction lowers the total mean free paths for the both velocity combinations
uy = uge = 1 and uyg = 0.1,ug. = 1.

Figs. 4-7 show analytically calculated enrichment factors for the four special cases (i)
- (iv). In general elastic interaction may affect enrichment for temperaturss below 20eV'.
The standard solution Fig. 3b yields a maximum enrichment factor of about 2 which is
slightly increased by elastic collisions. The enrichment calculations of [8] obtained without
including elastic interaction are also displayed. Our results show that such high values

can only be obtained for rather unphysical model assumptions, as can be seen in the
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following figures. For the case (ii) of an absorbing boundary (Fig. 5b) helium enrichment

is enlarged and elastic interaction has a strong influence.

3 Monte Carlo model

3.1 Method of solution

Linear neutral particle transport codes, based on the Monte Carlo method, are often
considered as tools to empirically simulate some physical process, which is often only
marginally precise defined (such as "neutral atoms penetrating a plasma boundary re-
gion”). It is, however, made clear in almost every textbook on Monte Carlo methods for
neutron transport that a well defined linear transport equation is actually solved by the
Monte Carlo procedure. This has also been emphasized e. g. in [9] for the plasma edge
neutral gas transport code EIRENE. For the present study we have used EIRENE to solve
eq. (1) in the following precise sence (loc. cit): The solution to the kinetic part of eq. (1),
i. e. the left hand side, with the right hand side replaced by a delta function, yields the
Greens function T, which is used as transition probability for a free flight of a test particle
from one point of collision (or from the point of birth at the left boundary) to the next
point of collisions. The right hand side of eq. (1) is taken as transition probability C from
a pre - to a post collision state of the test particle, with exactly the same approximations
retained in the collisions terms as in section 2.1.

A large set (about 100,000) of random walks starting at the left boundary with the
distribution egs. (9) and (10), is generated by alternatively applying the kernels T ans C
for random number generation.

Clearly, and for exact proofs of this the reader is refered to any textbook on Monte
Carlo methods, the distribution of test particles is then given by f4, the solution of eq.

(1). Simply by counting, but also by employing more sophisticated "estimators”, the
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moments N4, ['4 and in general Aff,(q") are obtained.

The major advantage of Monte Carlo methods over numerical or analytical solutions
rests on the fact, that this procedure remains valid for almost arbitrarily complex bound-
ary conditions or transport and collision kernels T and C, as long as random numbers can

be generated from them.

3.2 EIRENE results and comparison with analytical results

A first investigation of helium enrichment due to different neutral gas transport charac-
teristics for hydrogen and helium, and a comparison with the result in ref. [8], by using
the EIRENE code, was attempted in ref. [11]. The agreement was rather unsatisfactory,
whereas in view of section 3.1 it should have been perfect. In the EIRENE runs the same
atomic data, collision terms and boundary conditions as in [8] had been included. This
present study, and in particular the perfect agreement of Monte Carlo and analytical so-
lutions using the formulars of ref. [7], resolve that issue. Retaining only the discrete part
of the spectrum of the linear Boltzmann operator in [8] is equivalent to a diffusion like
approximation. Whereas this diffusion approximation happens to be exact for the ansatz
eq. (13) in the case (26) and (31), it is only approximate for the corresponding ansatz of
a monoenergetic but isotropic distribution for f4+ in [8]. On the other hand, this latter
ansatz function is definitely closer to reality, a nearly 3 dimensional maxwellian (possibly
shifted) velocity distribution. The significant disagreement between the exact (Monte
Carlo) solution and the diffusion approximation for this otherwise identical model equa-
tion, clearly demonstrates the great care needed when describing neutral gas transport in
the tokamak plasma edge by diffusion like approximations.

Finally, having verified perfect agreement between the general analytical solution (24)
and the Monte Carlo solution we proceed from the simplified model of section 2 to a more

complete one, which then, however, can be solved conveniently only by the Monte Carlo
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method. In a first step, we have replaced the ansatz (13) by a 3 dimensional (in velocity
space) maxwellian distribution at temperature T4+.

In a second step (to be published later), we will use the full Monte Carlo model,
however, for the same infinite slab configuration. In this model, neutral particles are
created at the left boundary from recycling ions, employing detailed surface interaction
models, and, in particular, allowing for hydrogen molecules. The charge exchange process
is now correctly treated retaining the full explicite velocity dependence in the collision
term. Elastic processes will be included in a more consistent way.

Present results:

We have verified a perfect agreement between analytical and Monte Carlo results which
is within the thickness of lines in the figures. An essential result of our investigations is
shown in Fig. 8 where the standard solution is displayed together with a Monte Carlo
correction. The use of a full Maxwellian ion distribution function confirms our analytic

estimation of a low helium enrichment factor.

4 Conclusions

In this report we have demonstrated the possibility of decoupling of neutral hydrogen and
neutral helium transport under typical tokamak edge plasma conditions, due to signifi-
cantly different atomic processes for the two particle species.

Whereas the qualitative picture of [8] remains valid, the correct results obtained in
this paper lead to much smaller ratios of local neutral helium enrichment in the plasma.
This overestimation in [8] was a result of the diffusion approximation used there, whereas,
under the conditions investigated, a kinetic treatment (either analytically or with a Monte
Carlo procedure), turned out to be necessary.

We have further shown that the elastic collision processes between neutral atoms

]
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and plasma ions, usually neglected in tokamak neutral gas transport models, can play
a significant part under low temperature, high density plasma conditions, which become
more and more accessible near divertor target surfaces in the new large divertor tokamaks
such as ASDEX UPGRADE.

We finally would like to point out, that, although not mentioned explicitely in this re-
port, for the same reasons, which cause that decoupling of hydrogen and helium transport,
the hydrogenic ions created by ionisation in the plasma tend to have much higher energies
than the helium particles. This is due to more efficient thermalization, whereas helium
atoms are predominantly cooled at divertor chamber surfaces without recovering their
energy in the plasma. This could also be the origin of different transport characteristics
of these two charged species. Mutual influence of neutral and charged particle transport
then renders the problem of helium enrichment in pumping stations rather inpredicable,
and results are, in general, only valid for one particular set of plasma and configurational

conditions.
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Fig. 8. Comparison of analytic with Monte Carlo calculations for helium enrichment 7,

for case (i) (s. text): analytic (with (- e -), without (...) elastic interaction)

for 26 ion distribution and Monte Carlo for a fully Maxwellian ion distribution function (—).




