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Abstract—A one-fluid, dissipative magnetohydrodynamic model of plasma equilibrium
in a torus is considered. The equations include inertial forces, finite resistivity and vis-
cosity, and a particle source which sustains the pressure gradient in the plasma; viscosity
is described by the Braginskii operator. Plasma density, resistivity and viscosity coef-
ficients are assumed to be uniform. A boundary-value problem in a general toroidal
domain is formulated, no further assumption on the domain being made besides a suffi-
cient regularity of its boundary. The system of equations is reduced to a problem with
unknowns p, v, B (p denotes the scalar pressure, v the flow velocity, B the magnetic
field). A functional setting of the equations is established and, generalizing the classical
mathematical techniques adopted in the theory of viscous incompressible flow to inves-
tigate the solvability of the steady-state Navier—-Stokes equations, a problem for weak
solutions is formulated which is shown to be equivalent to solving a nonlinear equation
in a separable Hilbert space. Then, by analysing the Braginskii viscosity in the estab-
lished functional framework, we find properties which allow to write the above equation
as a fixed-point equation. Main results of our analysis are the following: (i) We prove
the existence of at least one weak solution if the source is sufficiently small, or viscosity
and resistivity sufficiently large; (i1) We obtain an estimate of the solution(s); (iii) We
prove that, under a condition of the same kind as that for existence, but mére stringent,
there exists only one solution; (iv) The well known existence and uniqueness results for
the steady-state Navier—Stokes problem are recovered when the magnetic field is set

equal to zero.



1. INTRODUCTION
The one-fluid, ideal, magnetohydrodynamic (MHD) model is commonly adopted to
describe the equilibrium of a plasma contained in a torus. According to the ideal MHD

model, the pressure gradient is simply balanced by the magnetic force, viz., the equations
Vp=jxB, j=VxB

hold, where p denotes the scalar pressure, j the current density and B the magnetic field.
The effect of the plasma flow velocity on the force balance is not taken into account.
As is well known, in the presence of axial symmetry solving the above equation reduces
to solving a two-dimensional elliptic equation, the Schliiter—-Grad-Shafranov equation.

The above model has been thoroughly analysed from a theoretical viewpoint by
Grad (GRAD, 1967), who showed that non-pathological MHD equilibria are unlikely
to exist in the absence of axial symmetry. This is connected, as is well known, to the
constraint ¢ ds/B = const which has to be imposed on rational surfaces, this being
unlikely to be possible for a low  plasma. Stellarators are typical examples of non-
axisymmetric configurations, while tokamaks are, in principle, axisymmetric; the finite
number of toroidal field coils, however, gives rise to small deviations from this symmetry
in tokamaks.

Moreover, on one hand the ideal MHD model leads to the appearance in the plasma of
magnetic islands and stochastic regions, on the other it turns out to be unable to describe
them properly. Also, we remark that these phenomena are most likely responsible for
the lack of convergence, at relatively large 3, which takes place when one applies the
Spitzer’s iterative procedure (SPITZER, 1958) to calculate the self-consistent magnetic
field.

The need to mend the ideal MHD model, especially if the domain is lacking in

symmetry, seems therefore well grounded and of significance for the study of plasmas
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confined by means of a magnetic field. For this purpose, the extensive literature con-
cerning the theory of dissipative flow is of great relevance. In fact, on the basis of
the mathematical theory of viscous incompressible flow (LADYZHENSKAYA, 1963;
TEMAM, 1979), one can conjecture that the mathematical pathologies highlighted by
Grad can be due to the ideal character of the model which he analysed, and that the
lack of symmetry of the domain can affect, of course, the shape of the equilibrium, but

not preclude the existence of an equilibrium.

From a physical viewpoint, one can expect that the account in a MHD model of
dissipative terms leads to a smoothing of all mathematical singularities. Moreover,
the account of any force depending upon the plasma flow velocity and, in general,
non-perpendicular to the magnetic field (e.g., the inertial force, the viscous force, the
frictional force) leads to a decoupling of the magnetic surfaces from the pressure sur-
faces, the magnetic field being not any longer constrained to be normal to the pressure
gradient.

A dissipative model of plasma equilibrium, which obviously requires the presence
of source terms in order to sustain the pressure gradient, was already addressed by
Kruskal and Kulsrud (KRUSKAL and KULSRUD, 1958) who heuristically proved exis-
tence and uniqueness of solutions in the limiting case of low pressure. More recently, a
dissipative model including resistivity and friction, but disregarding inertia and viscos-
ity, was addressed (WOBIG, 1986). In this paper, we analyse a model whose equations
include inertial forces, finite resistivity and viscosity, and a plasma source, and address
the question of existence and uniqueness of solutions. The analysis is founded on the
classical mathematical techniques adopted in the theory of viscous incompressible flow

to investigate the solvability of the steady-state Navier-Stokes equations.

As the problem is nonlinear, the question of uniqueness is of no less significance than

that of existence; here, we only derive a sufficient condition for uniqueness, and defer a
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more extensive analysis of bifurcation phenomena for this model to future work.

This paper is organized as follows. Section 2 contains an account of the model and
the formulation of a boundary-value problem whose unknowns are the scalar pressure,
the flow velocity and the magnetic field. Section 3 is concerned with the functional set-
ting of the equations; suitable spaces of functions are introduced and a problem for weak
solutions is established generalizing the techniques of mathematical hydrodynamics. In
Section 4, we show that the weak problem reduces to solving a nonlinear equation in
a separable Hilbert space and, by analysing the Braginskii viscosity in the established
functional framework, we find properties which allow to write the above equation as a
fixed-point equation; the study of the Braginskii viscosity yields results of straightfor-
ward physical significance. By applying the Leray—Schauder principle (GILBARG and
TRUDINGER, 1983), we obtain a condition under which the above fixed-point equa-
tion has at least one solution, of which we get an estimate. Section 5 is concerned with
uniqueness of the solution; we prove that it holds under a condition of the same kind as
that for existence, but more stringent. In Section 6 we concisely summarize our main
results and point out the questions that seem to deserve further consideration. Finally,
in Appendix 1 the well known existence and uniqueness results for the steady-state
Navier-Stokes problem are recovered setting the magnetic field equal to zero, and in

Appendix 2 some nontrivial calculations are elucidated.

2. THE MODEL

We assume that the equilibrium of a plasma, filling a toroidal region 2 of the space

R3, can be described by the following set of one-fluid, dissipative magnetohydrodynamic
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(MHD) equations:

p(v-V)v==-Vp+jxB+Vv (1)
nj=E+vxB (2)
J=Vox-B (3)
V-(pv)=S5 (4)
V-B=0. (5)

Here, p is the plasma density, n the resistivity, v the flow velocity, B the magnetic
field, j the current density, p the scalar pressure, E (= —V¢) the electric field, S a
particle source which sustains the pressure gradient in the plasma. Moreover, Vv is
the Braginskii viscous force field (BRAGINSKII, 1965) given by (Vv); = —0m;j/0z;,
Tij = Ei:o YattaWaij (Y« = —1 for @ = 0,1,2 and v, = 1 for a = 3,4) where
Waij = Aqijki(h)Wi (repeated indices are summed); here, h = B/|B| and W}, is the
rate-of-strain tensor: Wiy = Oivx + Orvr — %SHV v (= Wi); the coefficients Aqij ki,
which are polynomials in h, are given on p. 250 of (BRAGINSKII, 1965).

The system (1)—(5) is incomplete, since the equation of state correlating the density
p and the pressure p is missing. The model which will be analysed in this paper is that
of a uniform density, p = const. With p « pT (where T denotes the temperature),
the pressure gradient is proportional to the temperature gradient. Such a model is also
supported by experimental results in stellarators, where very flat density profiles and
peaked temperature profiles are found in electron cyclotron heated plasmas. It is this
approximation which allows to reduce the system (1)—(5) to the equations of incom-
pressible fluid dynamics and to make use of the mathematical techniques developed in
that field. The resistivity 7 is a function of temperature, but we neglect this dependence

and consider n also as uniform. Similarly, the viscosity coefficients s (a0 = 0,...,4)
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are approximated by constants. Moreover, as far as the electric field is concerned, it is
in general described by a multivalued potential ¢ containing the toroidal loop voltage;
therefore, the model is applicable to ohmically heated equilibria. However, in the first
part of the analysis we consider the case without loop voltage; later on, it will be shown
how the results are modified by a finite loop voltage.

We proceed reducing the system (1)—(5) to a problem with unknowns p, v, B; let us

use equation (3) into (1) and (2), and take the curl of equation (2). Thus, we obtain

p(v-V)v=-Vp+(VxB)xB+Vv (6)
nVx(VxB)=Vx(vxB) (7
pV-v=_8 (8)

and, of course, V-B = 0.

We supplement the system (6)—-(8) with the following boundary conditions:
v=vg on I 9)

B-n=0 and n(VxB)xn=(vp-n)B on T (10)

where I' = 91 is the boundary of {2 and n is the unit outward normal on I'. The second
condition of equation (10) expresses the requirement that the tangential component of
E vanishes on I' (the boundary is assumed to be a perfectly conducting wall).

We assume that € is a toroidal domain (viz., an open connected set) of R?, and
that the boundary I' is a manifold of class C°°; moreover, we assume that (2 is Lipschitz
(MARTI, 1986). Concerning S and vg, they are assumed to be smooth (S € C*(R)
and vo € (C=(T))%; Q is the closure of Q) and to fulfil the compatibility condition
pfrdove-n= [,dz S(x).
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The domain 2 is not simply-connected; specifically, it is doubly-connected. Problem
(6)-(10) becomes well-posed by prescribing the value of the toroidal flux of B (SER-
MANGE and TEMAM, 1983; FOIAS and TEMAM, 1978). Let Bo € (C())® be the

field having the prescribed toroidal flux, and fulfilling the following equations:
V:Bp=0and VxBy=0in Q, Bprn=0 on T. (11)
Because of the topology of 2, problem (11) has non-trivial solutions. Now we set
B=Bo+B, (12)

the field B, being our new unknown. In the following we shall omit the subscript p.
As regards the flow velocity field, let vs € (C*°(2))® be one of the solutions of the
following problem:

pV-vs=5in Q, vs=vy on I (13)

In the following we shall consider vs as given and fixed. Setting
v=vs+u (14)

the field u becomes our new unknown.
Next, we use equations (12) and (14) into the system (6)-(10), and introduce the

approximation h & Bg/|By|. Thus, for the unknowns p, u and B we have the following

problem:

plu-Vvs + p(vs-V)u+p(u-ViIu—-(B-V)B-(B-V)By - (B-V)B

1 A\ o (15)
+V (p+5Bo+B*) ~Vu=fs+(Bo-V)Bo

S
7V % (V x B)+ =(Bo+ B) = (Bo - V)vs = (B V)vs — (Bo V)u AY

—(B-V)u+(vs-V)Bo+(vs:V)B+(u-V)Bg+(u-V)B=0
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V-u=0, V-B=0. (17)

This system is supplemented with the following boundary conditions:

u=0onT (18)

B-n=0 and n(VxB)xn=(vs-n)(By+B) on T. (19)

Here, well known identities as well as equations (5) and (8) have been used. Moreover,

the field fs appearing in equation (15) is defined by

fs = —p(vs-V)vs + Vvs. (20)

Note that fs is a given quantity. It will play the role of an external force field.

3. FUNCTIONAL SETTING OF THE EQUATIONS

Let L*(£2) be the space of real-valued functions on Q which are square integrable for
the Lebesgue measure d*z = dz; dzs dz3; this is a Hilbert space for the scalar product
(&,€') = [ d®z £(x)€'(x). Let H™(Q) be the Sobolev space of functions which are in
L*(Q2) together with their weak derivatives of order less than or equal to m (ADAMS,
1975); H§*(S2) is the Hilbert subspace of H™(f2) made of functions vanishing on T.

Moreover, we use the notations L*(Q) = (L?(Q2))?, H™(Q) = (H™(Q))}, HI'(Q) =
(Hg" ())°.




We shall use the following spaces:
Vi = {ve(Ce@),V-v=0}
Vi = the closure of V; in Hy(f)
- (21)
V, = {B € (C>*(Q))*,V-B=0,B-n|r =0 and /doB-nzO}
5
Vo = the closure of V, in HI(Q)

where ¥ is any smooth manifold of dimension two such that the open set 2\ ¥ is
simply-connected and Lipschitz (i.e., ¥ is not tangent to I'); roughly speaking, ¥ is a
poloidal cut.

We equip V7 with the scalar product
(v, v')1 = (8iv,0:v") (22)

where 9; = 8/0z; and, as always, repeated indices are summed. The above is a scalar
product on HJ(£2) thanks to the Poincaré inequality, and provides the norm on V; given
by [[v[l: = {(v, V)1 }'/2.

We equip V, with the scalar product (SERMANGE and TEMAM, 1983)

(B,B'); =(V x B,V x B'). (23)

The topology of § is here of fundamental importance: since 2 is doubly-connected, the
above bilinear form is actually a scalar product on V; only if (see equation (21)) the
constraint of zero toroidal flux is imposed. Such very technical result can be deduced
from the theorems proved in (FOIAS and TEMAM, 1978). The scalar product (23)
defines a norm on V; given.by ||B|2 = {(B,B))2}!/?, which is equivalent to that
induced by H}(Q2) on V;; see (SERMANGE and TEMAM, 1983).

Finally, we introduce the product space

V=WxW (24)
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and equip it with the scalar product
(@,2") = pu((v,v')1 +n(B,B"); for all & =(v,B), & =(v',B')eV (25)

where p, = %minc,,:o,l,g fa. The above scalar product provides the norm on V given
by [12 = {(@, ®)}/2.

We proceed now establishing a weak formulation of problem (15)-(19).

Let us assume that p, u, B is a smooth solution. The first step is to multiply equation
(15) by a test function w € V; and integrate over Q. Note that, for all { € C®(2), we

have
d’z (V) - w = d’z [V- (W —CGW-—_‘ do(w-n=0 26

and also

/ﬂd%: [(BO-V)BO]-W=/Qd3:r [(VxBo)ng+V(%|Bg|2)] w=0 (27

where we have used equations (11) and (26). Concerning the quantity (—V u, w) arising
from the Lh.s. of equation (15), we proceed in the following way: let us introduce the

following bilinear form
EVixVi =R

(a,b) — &(a,b)

4
£(a,b) = - Z Yala ,/Q d*z Biak(Aaijkt + Aaijik)0;bi. (28)

a=0

One can easily check that, since u is assumed to be a smooth solution and w to belong
to V1, the identity (—Vu, w) = £(u, w) holds. Moreover, by using trivial inequalities as
well as the Cauchy-Schwarz inequality for sums and for integrals, we can easily convince

ourselves that, Va € V; fixed, the mapping

E(a,e):V; = R s
b — £(a,b)
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is a bounded linear functional (we recall that the coefficients Aq;j k1 are polynomials in
h). Therefore, by using the Riesz’ representation theorem, we see that there exists one
and only one a € V; such that £(a,b) = ((a,b)); Vb € V;. Since, for a € V; fixed, the

element a € V; is unique, we can give the following good definition of the operator E:

E:Ifl Tep V] ( )
30

a— Fa=3a

It is advantageous to introduce also the operator E by setting Ps p+E so that, finally,
we have

(—Vu,w) = p.(Eu, W) (31)

Note that the operator E is linear (and, hence, the operator E too), as £ is a bilinear
form.

In order to shorten the notation, we introduce a trilinear form on (H!(Q2))? by setting
666" = [ &= o). (32)
Q

This form is continuous (SERMANGE and TEMAM, 1983).
Thus, by using equations (26)—(27) and (31) as well as definition (32), the above-

mentioned projection of equation (15) yields the following (weak) equation:

p+(Eu,w))1 + pb(u,vs,w) + pb(vs,u,w) + pb(u, u, w)
— b(By,B,w) — b(B,Bo,w) — b(B,B,w) = (fs, w). o
Note that the r.h.s. of equation (33) makes sense because, under our hypotheses, we
have that fs € (C=(Q2))3.
Next, let us deal with equation (16) and remember we are assuming p, u, B to be a
smooth solution. We proceed in the following way (see also (SERMANGE and TEMAM,
1983)): we multiply equation (16) by a test function C € V; and integrate over {2. Note

that the identity [, @*z [Vx(VxB)]-C = [, d*z (VxB):(VxC)- [ do [(VxB)xn]-C
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holds. In its last term we use equation (19); moreover, performing some integrations by
parts in the projection of equation (16) we see that several cancellations take place. As

a result of this straightforward calculation, we obtain the following (weak) equation:

7(B, C))z + b(u, Bo + B, C) — b(Bo + B, u,C)
(34)
— b(Bo + B, vs,C) — b(vs,C,By + B) = 0

where we have used equation (23).

In order to establish a problem for weak solutions in the product space V', we intro-

duce the following operator:

UV -V
(35)
®=(v,B)—»U®=(Ev,B)

Note that U is a linear operator as F is linear.

Furthermore, in order to shorten the notation, let us define the following mapping;:

BV xV =R
(3,8') —~ B(®,d")
B(®,d') = pb(v,vs, V') + pb(vs,v,v') + pb(v,v,v")
— b(Bo, B,v') — b(B, By, v') — b(B, B, v')
(36)
-+ b(V Bo + B,B’) - b(Bo -+ B,V, B')

— 5By + B,vs,B') — b(vs,B', By + B)
where & = (v,B) and ®' = (v',B’). Note that the mapping B is manifestly linear in
the second argument but nonlinear in the first one.
Now, we add equations (33) and (34) and use equations (35), (25), (36); thus, we

obtain the following (weak) equation:
(Ue,¥) +B(2,¥) = (fs,w) (37)

where & = (u,B) and ¥ = (w,C).

13




We can now establish the following weak formulation of problem (15)-(19):

PROBLEM (weak solutions). Under the above hypotheses for 2, vs and By, find
® = (u,B) € V such that equation (37) is satisfied for all ¥ = (w,C) € V.

Note that we do not require that the solution has to be smooth, since we look for it in
V = Vi x V, and not in V; x V,. For a thorough discussion on the weak formulation
of problems of this kind see (LADYZHENSKAYA, 1963; TEMAM, 1979; SERMANGE
and TEMAM, 1983). We only remark here that it is not obvious at all how the second
condition of equation (19) is recovered; as far as this point is concerned, see (DUVAUT

and LIONS, 1972).

4. EXISTENCE AND ESTIMATE OF WEAK SOLUTIONS

We proceed considering the question of existence of the above-defined weak solu-
tions. As we shall see, proving existence also yields an estimate of the solut.;ion(s). The
mathematical techniques we are going to use are classical for problems of this kind (LA-
DYZHENSKAYA, 1963; TEMAM, 1979); nevertheless, since we describe viscosity by
the Braginskii operator while in previous work the Laplace operator was always used,

we shall have to carry out a special analysis with respect to this point.

To investigate the solvability of the weak problem we established above, we are going
“to take the following steps: (i) To formulate the problem in terms of solvability of a
(nonlinear) equation in the product space V; (ii) To write this equation as a fixed-

point equation; (iii) To investigate the solvability of this fixed-point equation by using
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a theorem which yields existence but not uniqueness.

Firstly, we consider the r.h.s. of equation (37). We have trivially that |(fs,w)| <
Ifsllz()lIwliLz(a) < IfsllLze)llWllmayo); moreover, as the norm || e ||; is equivalent to
the norm || e ||1 (@) (TEMAM, 1979), the last quantity is less than or equal to a positive

constant times ||fs||p2(q)||w||1. Therefore, the mapping

V-oR
(38)
U= (W}C) = (fs,W)

is a bounded linear functional (note that, from equation (25), it follows trivially that
lwlls < ||¥]l/+/i= and ||C||2 < ||'¥||/\/7)- According to Riesz’ theorem, the functional
(38) can be represented in the form (fs,w) = ((Fs, ¥)) for one and only one element
Fs € V; obviously, the second component of Fs is equal to zero.

Next, we consider the term B(®,7¥) in the Lh.s. of equation (37). This quantity
(see definition (36)) is a linear combination of b-forms; each b-form has, among its
arguments, either w or C (w and C never appearing together). As the trilinear form
b is continuous on (H!(£2))3, the estimate |B(®, ¥)| < E:,():l crllar||m1(q) clearly holds;
here, ¢, are nonnegative quantities which do not depend on ¥, and a, is either w or
C. Since, as we said, the norms || e ||; and || e |2 are equivalent to the norm || e ||g1(q),
the above estimate holds also with c, replaced by other constants ¢, and the norm in
H!(Q) replaced by || ¢ ||; (for w) and || e ||2 (for C). Finally, remembering the remark
which follows equation (38), the above estimate holds also with ¢, replaced by other
constants ¢’ and the norms |w||; and ||C||2 replaced by ||¥||. Hence, we conclude that,

V® € V fixed, the mapping
B(®,0):V - R
(39)
¥ — B(®,7)

is a bounded linear functional. Proceeding as after equation (29), we see that there
exists an operator B: V — V such that B(®,¥) = (B®, ¥)). The operator B is clearly

nonlinear.
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Thus, going back to equation (37), we can write it in the following way:
(U2, 9) + (B2, ) = (Fs, T). (40)

It is advantageous to introduce the constant operator Cs: V' — V such that ® — Cs® =
Fs for all @ € V, and also the operator Z = Cg — B.

The element ® € V is a weak solution of our problem if and only if equation (40) is
satisfied for all ¥ € V. Therefore, the weak problem reduces to solving the nonlinear
equation

Ud =Zd (41)

in the space V.

The next step is to prove that the operator U is one-to-one, so that equation (41)
can be written as a fixed-point equation. Hence, in the following part of the analysis
we master the properties of U.

As we already remarked, the operator U is linear. Therefore, the mapping

VxV-=R
(42)
(8,¥7)— (U, 7)

is a bilinear form. Moreover, it is bounded; this property is inherited from the bilinear
form £ defined by equation (28). In fact, in relation to the mapping (29), we noted that
€ is bounded in the second argument; we can easily convince ourselves that this holds
for both arguments, so that a constant e exists such that |£(a,b)| < e||al|;||b||; for all

a,b € V;. Thus, we can write the following estimates:

(U2, ¥)| < lUS|[I2]l = \/#*IIEVII? +nlBlZIY] = \/S(V, Ev) +nlBZI¥|

e? e
< JelVIEIEvI: +IBIEI ] < \/ = VI + nlBIZI O < max {1, < L 9]
(43)
where @ = (v, B). Equation (43) shows that the bilinear form (42) is bounded.
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Next, we prove that the form (42) has ancther interesting property: it is coer-
cive. As before, such a property is inherited from the form £. Firstly, note that
(U®,®)) = E(v,v) + 1||B||3. As regards the form £ with equal arguments, we are
going to write a chain of estimates from below which manifestly hold if we notice that:
(i) The tensors Waij (a = 0,...,4) are symmetric, since 7;; is symmetric (BRAGIN-
SKII, 1965); (i) W;; = Zi:o Wai; (BRAGINSKII, 1965); (iii) WaijWpi; = 0 when
a # B (BRAGINSKII, 1965); (iv) -0 _oéa < VR +1(Xn_, €2)!/2 for all (n+1)-tuples
(éo,-..,€n) € R"*! (Cauchy-Schwarz inequality); (v) v=0onT and V-v =0 in Q.
Moreover, setting Gaij,ki = Aaij,kl + Aaijik and carrying out a somewhat long algebraic
analysis, we can see that Gaij ki = Gaki,ij for a = 0,2; Gaijkt = —Gakl,ij for a = 3,4;
and neither equality holds for a = 1. Therefore, remembering equation (28) and setting
£ = Z:mo £a, we have that & and & are symmetric, £3 and &£; are anti-symmetric,
and &; is neither symmetric nor anti-symmetric. The relevant consequence for us is
that the terms a = 3,4 give no contribution to £(v,v). By using, finally, all the above

properties, we can write the following chain of estimates from below:

E(V V) Z: f-"a/ d*z alvk(Am;,kl + Aat;,lk)a v

a=0
2
= Z paf d3r Wi = E‘”“/ d’z (Ojvi + 0ivj ) Waij
a=0 §2
1
=3 S u f &Pz WiiWeij = = E ,,ua/ d*z Wpi;Waij
a=0 aﬁ 0

(44)

P CEDITIEE S o) Kb obc)
2 i3 [ (z W) =5 [ £ w2

a=0
il / &z 3 (00;) = pallvIE.
i,J
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Equation (44) shows that the form £ is coercive. This property has a plain and elegant -
physical interpretation: the viscous forces do always dissipate energy. In fact, we point
out that, if v is smooth, £(v, V) is simply the power dissipated by the viscous forces in
the domain 2, and that from equation (44) it follows that £(v,v) = 0 implies v = 0.
This means, roughly speaking, that the Braginskii viscosity operator is negative definite;
also, note that we have recovered a known property of the gyroviscosity (connected with
a = 3,4): it is nondissipative.

The form (42) inherits the above property, as we have
(U®,2) = £(v,v) +1[|Bl3 2 mlIvIT + 7Bz = [|2]]*. (45)

Since the bilinear form (42) is bounded and coercive, we can deduce, as in the proof
of the Lax—Milgram theorem (GILBARG and TRUDINGER, 1983), that the operator

U is one-to-one and U~ is bounded; moreover, we have that
U8 < 8] < max {1, < | [ al. (46)

Thus, we can go back to equation (41) and write it equivalently as a fixed-point
equation:

U™'Z® = . (47)

To investigate the solvability of equation (47), we apply the Leray—Schauder principle
(LADYZHENSKAYA, 1963). This principle is particularly suitable for problems of this
kind since it guarantees existence but not uniqueness.

The first step is to check that V, the space in which equation (47) is defined, is a
separable Hilbert space (viz., it has a countable dense subset). The space H!(2) is a
separable Hilbert space (ADAMS, 1975). Remembering equation (24), that V; and V;
are Hilbert subspaces of H!(), and that they are equipped with norms equivalent to

the norm || @ |1 (0), we can immediately state that V' is a separable Hilbert space.
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The second step is to check that the operator U™!Z is completely continuous in
V, i.e., it maps any weakly convergent sequence {®,} in V into a strongly convergent
sequence {U"1Z®,} in V. To prove that the operator at issue has such a property, we
need, firstly, some information concerning imbeddings of Sobolev spaces. We recall that
a normed space X is said to be imbedded in the normed space ¥ provided: (i) X is a
vector subspace of Y, and (ii) the identity operator I defined on X into ¥ is continuous;
we write X — Y to designate this imbedding. The condition (ii) is equivalent to the
existence of a constant M such that |Iz||y < M||z||x for all z € X. We say that X
is compactly imbedded in Y if the imbedding operator I is compact. As regards our
problem, from the Rellich—-Kondrachov theorem (ADAMS, 1975) it follows that, under
our hypotheses, the compact imbedding H*(Q) — L(Q) holds, with 1 < ¢ < 6. The
relevant consequence for us is that, if {(un,Bn)} is a weakly convergent sequence in
V, then this sequence converges strongly in L*(Q2) x L*(Q2). (Note that the imbedding

operator is continuous, by definition, and compact, so that it is completely continuous.)

In fact, going back to the complete continuity of the operator U~1Z, we proceed
in the following way. Firstly, note that, since U™! is linear and bounded, it is suf-
ficient to prove that Z is completely continuous. For this purpose, let us consider
an element ¥ € V and the quantity (Z®, — Z2%,,7)) = B(®n,¥) — B(®m,¥). We
must estimate the r.h.s. of this equality; remembering definition (36), using (as al-
ways in this analysis) trivial inequalities and the Cauchy-Schwarz inequality for sums
and for integrals, and devising plain artifices, we obtain after rather long calculations
that |B(@n,¥) — B(@m, )] < T, callaiullLacay 1 Z]l; here, cin remain bounded as
n,m — oo because of the strong convergence of the sequences {u,} and {B.r}in L*(Q),
and as;); is either u, — u,, or Bp — Bp,. Therefore, setting ¥ = Z®,, — Z®,, we have

that || Z®, — Z®,|| — 0 as n,m — oo, namely, the operator Z is completely continuous.

Since V is a separable Hilbert space and U~'Z is a completely continuous operator,

19




the Leray—Schauder principle guarantees that, if all possible solutions of the equation
AU—1Z® = & for A € [0,1] lie within some ball ||®|| < R, then the equation (47) has at
least one solution inside this ball.
We proceed noticing that
12V)? < (U™, eM) = (Az2e™,e™))
= A(Fs,2™) — AB(@™, ™) (48)
< |Fsllle™] + 1B(2™, e™)|
where we have used equation (45) and the fact that U is linear. Next, we must consider
the mapping B with equal arguments. A careful analysis of this quantity shows that
several terms annul each other; the result of this nonbanal calculation is the following
(see Appendix 2):
B(@™M,eM) = p/ d®z (vs x uM) . (V x u™)
2 (49)
+ /9 dz [(Bo + BW) x vs] - (V x BW),
Now, we estimate suitably the r.h.s. of equation (49). After a rather long calculation

we obtain

3vV3pM. M.
1B(@N,8M)| < |8M12||vs|lLacay (-—~———‘f” -+ —2)
*

. (50)

1
+ —1;II‘I’“’IIIIVSIIL4(9)IIBoIlL4(n)-

7

Here, M; (i = 1,2) is the imbedding constant of the compact imbedding Vi(]|  ||:) —

L*(2); note that it depends only on 2. Using equations (48) and (50) we obtain

3vV3pM; M. 1
@™V [1 — |IvsllLaa) (u—l + “;73)] < ﬁll"SHL*(mllBOIIL*(m + || Fs]l. (51)

From equation (51) it follows that, if

(52)

M.
3/3pMi + —2) <1,
/R 7

IvsliLa) (
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then the norms ||®(*)| are uniformly bounded. Therefore, if the condition (52) is satis-
fied, at least one weak solution of our problem does exist. The requirement is that the

source must be sufficiently small, or viscosity and resistivity sufficiently large.

Moreover, for the solution(s) the following estimate holds:

ZrllvsllLac)lIBollLaca) + | Fs|l

1= [lvsllLsca) (%’:& 13 A—fﬁ)

]l < (53)

As one could expect, the above estimate shows that the larger are viscosity and resis-
tivity (or the smaller is the source), the smaller is ||®||: the dissipation quenches the
flow velocity and the plasma currents. In particular, if the source vanishes we have that
® = 0, viz., the flow velocity vanishes and no current flows in the plasma. (We recall
that we assumed there is no loop voltage; in the presence of-loop voltage, another posi-
tive quantity would appear in the numerator of equation (53) and a nontrivial solution

could exist even if the source vanishes.)

As we already remarked, the solution(s) whose existence we have proved may be
non-smooth. As a matter of fact, they may have so little regularity as to be hardly
considered significant from the point of view of physics. Nevertheless, we point out
that, for the steady-state Navier—Stokes equations, C*°-regularity of the domain and of
the force field implies C*°-regularity of the solution(s) (see (TEMAM, 1979) on page
172); it is clear that the same can be expected to hold for the model we are analysing

here.

Equations (52)—(53), together with the condition for uniqueness we are going to
derive and the above study of the Braginskii viscosity operator, are the main results of

this analysis.




5. UNIQUENESS OF WEAK SOLUTIONS
We conclude this study dealing with uniqueness of the solution. Suppose that con-
dition (52) is satisfied, and that ® = (u,B) and @' = (u’, B’) are two solutions; let us
define A = & — &' (€ V). Thus, equation (37) is satisfied (for all ¥ € V') by both @ and
®'; therefore, choosing ¥ = A and remembering that U is linear, the following equality
holds:
(UA,A) = B(®',A) — B(®,A). (54)

A proper calculation of the r.h.s. of equality (54) is not straightforward at all; the result

of this nonbanal step is the following (see Appendix 2):
B(3',A) — B(®,A) = p/ P i(Aa xve) {¥ x-As) 4 pb(AnyAs,w)
Q

+/ d*z (vs x Ag)-(V x Ap) +] d®z (Apx A,) - (VxB')+bAp,u,Ap)
Q Q (55)

where we have defined A, = u—u' and Ag = B — B'. Now, we use equations (45) and

(54)—(55), and estimate the r.h.s. of equality (55); we obtain

3VapM y_)

AllZ < IAl2 ||V
IA]* < JIA]l [[I sIILd(m( P 7

(56)
le M1M2

+ Eri+ (T + 25 e ||].

For both & and @' the estimate (53) holds; using it in the estimate (56), we obtain

IAlI? < ||A||*x, with x depending neither on @ nor on @'. Thus, if x < 1, then ||A]| =0,
viz. A =0, viz. ® = ®': there exists only one solution. This condition is explicitly:

3v3pMy @)

Hx n

Ivs|lLaa) (

M2 MM, M2\ Vsl lBollLaay + | Fsll
+ pivly n + 2 N
B2 En  Een ) 1 IvsllLec) (M + _z)

(57)
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The requirement for uniqueness expressed by the above formula is of the same kind
as that for existence. It is important to remark, however, that condition (87) is more

stringent than condition (52).

6. CONCLUSIONS

Based on the assumption that some difficulties of the ideal MHD model for toroidal
equilibria may be surmounted by taking dissipative processes into account, we have
analysed a rather general dissipative MHD model in which the non-linearities are ac-
counted for in a self-consistent way. The dissipative processes that we have considered
are resistivity and viscosity as described by the Braginskii operator, concerning which
we have shown that it has the expected (but, up to now, not proved) property of
dissipating energy for any flow velocity field which does not vanish almost everywhere.
Having established a problem for weak solutions, we have rigorously proved an existence
and uniqueness theorem, and obtained an estimate of the solution(s). There exists at
least one weak solution provided the dissipative processes are sufficiently strong, or the
plasma source sustaining the pressure gradient is sufficiently small; uniqueness holds

under a condition of the same kind, but more stringent.

Several questions seem to deserve further consideration and analysis. Although the
existence and uniqueness conditions that we have obtained may turn out, because of the
techniques which have had to be ﬁdopted to derive them, to be by far too stringent, a
numerical evaluation of them with parameters of interest for controlled fusion research
would yield valuable insight. Two generalizations of the model analysed here would be

significant: (i) the account of more general boundary conditions than those relative to

23




a perfectly conducting wall; (ii) to relinquish the assumption of uniform density which -
would become another unknown. We point out that the latter generalization is not
straightforward at all; in fact, one should clearly generalize existence and uniqueness
theorems which hold for viscous compressible flows, the mathematical theory of which
is of very great complexity and still rather incomplete. Finally, a (theoretical and
computational) thorough analysis of bifurcation phenomena for this model would prove
very significant and, we believe, even relevant to the interpretation of some aspects of

the experimental results obtained in research on controlled thermonuclear fusion.

APPENDIX 1. THE HYDRODYNAMIC LIMIT

The Navier-Stokes problem can manifestly be studied as a particular case of problem
(15)-(19). One must:

(A) Consider equation (15) in which: (i) vs, Bo, B are set equal to zero; (ii) V is
replaced by u.A; (iii) the field fs is replaced by a given, sufficiently regular, force field
f;

(B) Consider the former condition of equation (17);

(C) Consider equation (18).

The different viscosity operator gives rise to no significant consequence on the anal-
ysis. In fact, assuming that u and w are smooth (cf. equation (28) and what follows it),
we have that (—p.Au, w) = p,(8;u,8;w); thus, instead of definition (28), we ought to
set Ens(a,b) = p.((a,b));. Since Ens is obviously bilinear and bounded, and satisfies
equation (44), the above assertion is manifestly true.

Therefore, equation (52) tells us immediately that for the Navier-Stokes problem at
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least one weak solution does always exist. Note that it is the presence of the source
which seems to prevent problem (15)—(19) from being solvable for small viscosity or
resistivity (see (LADYZHENSKAYA, 1963) on page xi).

As regards uniqueness, condition (57) clearly becomes pMZ||F||/ ,ui/ > < 1. Writing
F = (F.,0) we have that ||F|| = ,/i||Fu|l1; moreover, note that (f,w) = (F,¥)) =
px(Fu,w): = (f,w)); where f = u,F,. Thus, the condition for uniqueness becomes
pMZ||Ell1/u? < 1.

These important existence and uniqueness results for the Navier—Stokes problem are

well known (LADYZHENSKAYA, 1963).

APPENDIX 2. ELUCIDATION OF SOME NONTRIVIAL CALCULATIONS
The derivation of equalities (49) and (55) is not straightforward. Main properties
which must be used are the following;:
(i) The form b is trilinear;
(ii) For all £ € V; (i = 1,2), and for all ¢, £" € H!(Q) we have b(£, &', £") = —b(€,£",¢')
and, in particular, b(¢,¢',¢') = 0;
(iii) For all €, €', £" € H'(R) we have b(¢, £/, €")— b(¢",€,€) = [, &z (6 x €")-(V x €');
(iv) V x B = 0 in Q.
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