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ABSTRACT

We present a Galerkin finite element code for time dependent transport modeling of
a pure 2-fluid magnetized plasma in an axisymmetric domain. The code is intended to be
used as a basis for finite element modeling of the tokamak scrape-off layer. The collisional
dynamics along magnetic field lines is taken into account, a simple diffusive Ansatz is
used for the transport across magnetic surfaces, and diamagnetic flows are neglected. In
principle any magnetic field and first wall geometry is allowed, this flexibility being the
main rationale for the use of finite elements. Results for an extensive set of test cases in

simple geometry are discussed.




Introduction

Finite elements should provide a more natural and flexible method than finite dif-
ferences (see, e.g., [1]) for two-dimensional fluid modeling of the tokamak scrape-off layer
(SOL). Among others they could present the advantage of:

1) an adequate treatment of the region near the targets, when the poloidal magnetic
field lines are very inclined to them; this will be the case for the divertor plates in a fusion
reactor (in order to spread the power on a larger surface) and anyway for a limiter (where
at least at one point the field is tangent to the solid surface). For SOL modeling one natural
coordinate is always tangent to the poloidal magnetic field line, due to transport anisotropy
and toroidal symmetry, whereas the solution is expected to develop large gradients only
within a short distance from the target, where sources can be large: then problems arise
with finite differences in an orthogonal mesh when the target does not lay orthogonal
to the poloidal field, and this requires either many useless points, or possibly inaccurate
approximation of the target in a stair-like fashion, or else recurring to a cumbersome
non-orthogonal coordjnaté system;

2) a treatment of the typically non simply connected domain which does not require,
as is the case with finite differences, cuts and artificial boundary conditions;

3) a capability to adapt to different geometries of the edge region, particularly in the
design phase of a machine.

In this paper, the fourth of a series [2-4], we present a finite element code based on
the Galerkin method, for time-dependent two-dimensional two-fluid description of a pure
magnetized plasma. The model contains detailed collisional physics [5] in the direction
along field lines, and the simplest diffusive Ansatz for the transport of particles momentum
and energy in the direction perpendicular to the magnetic surfaces.

Although the code is written in such a way as to be appliable to any given combination
of magnetic and target geometry, only the simplest rectangular geometry will be dealt
with in the examples presented here, and the coupling to a Grad-Shafranov solver for the

equilibrium will be considered in a forthcoming work.
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The paper is organized as follows: in Section 1 the model equations are presented;
in Section 2 they are rewritten in weighted residual form and boundary conditions are
discussed; in Section 3 we briefly review linearization of the equations, Galerkin formulation
and time marching procedure; in Section 4 results are presented for an extensive set of test
cases in simple geometry, for which the exact steady state solution can be easily constructed
analytically; in Section 5, finally, we summarize our conclusions and discuss some of the

questions to be addressed in future work.

1. Model equations

We consider a pure (electrons and singly charged ions) magnetized plasma, sufficiently
collisional to make a fluid description meaningful, but still allowing for possibly different
ion and electron temperatures, T, # T;.

The plasma is assumed to be quasineutral, i.e., for the particle densities one has
n.=n =n (1)
and we assume to have no electric currents flowing in the plasma
Ve=V; =V (2)

(see [6] for a 1-D analysis of the case with currents).

Rewriting the classical Braginskii equations [5] in form of conservation laws (at least
partly), and adding sources one has (the ”t” subscript indicates a partial derivative with
respect to time):

the continuity equation (mass balance)

py ==V -(pV) + S™; (3)

!




the total momentum balance
T, = -V [pVV + (pe + pi)I + IT;] + S¥; (4)
the electron energy balance
3 5 P E
E(Pe)t = “v‘(gnTeV+Qe)+v'(Vpe _Se)+Qe+Se; (5)
the total energy balance
5 5 i g E
€t=—V-(—2—nTeV+§nTiV+§pVV+Hi-V+qe+qi)+S : (6)

Mass density, mass flow, electron pressure and total energy density define the vector of

unknowns as

u=[p, T, pe, €]
3 3 1 _.,
=[min, pV, nT,, (EnTe+§nTi+§pV )] (7

where m; is the ion mass; the right-hand sides in (3)-(6) will obviously have to be expressed
as functions of u.

Due to interactions with (e.g., recycling) neutral particles, sources and sinks act on
the plasma: a mass source S™, an electron and a total momentum source SP” and S, an
electron and a total energy source SZ and SE.

In (4) I is the identity matrix, II; is the ion viscous stress tensor; the electron mass
and the electron viscous stress tensor have been neglected.

In (5) q. is the electron heat flux. The second term on the right-hand side represents
the work done by the electric field; notice that due to this term, i.e., due to the electric
coupling between the electron and the ion fluids, it is generally impossible to write the
whole system in conservation form; electron viscosity would also enter here. The third
term on the right-hand side represents the energy interchange between ions and electrons
due to their different temperatures [5]

Q. =3=Z(T;-T.) (5a)

m; Te
. 3/2 . o . i a
where m. is the electron mass and 7, Te/ /n is the classical electron-ion collision time.
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In (6), finally, also the ion heat flux contribution q; is taken into account.

Constitutive relations will be needed for the heat fluxes and the viscous stress tensor.

In this paper we shall consider the solution of the previous system, in a three-
dimensional axisymmetric domain D as shown in Fig.1. Let us define {2 as the intersection
of D with a poloidal plane (i.e., a plane passing through the axis of symmetry); at each x
€ Q we assume given a unit vector b tangent to the magnetic field line at x, and we define
bg the projection of b on £, e the unit vector along by, and ey the unit vector obtained
rotating eg by 90 degrees clockwise on £; finally, es = ey X eg, and ey - Va = 0 for any
scalar a, expressing axisymmetry.

Clearly, in the most general case the flow fields will have three independent com-
ponents; in the case of the mass flow, e.g., their evolution would be described by the
corresponding component of (4). However, in the present paper we adopt a customary [1]
simplified picture:

1) We assume the b x ey, component of the flow (tangent to the magnetic surface but
orthogonal to the field) to vanish, i.e., we neglect diamagnetic flows. Qualitatively this can
be justified observing that for a description of the SOL one needs in first approximation
only two mechanisms: one for (fast) transport to the target, and one for (slow) transport
through magnetic surfaces.

2) Since, as is well known, there is no rigorous theoretical model for transport across
magnetic surfaces, we make for all radial (= along ey) fluxes a simple diffusive Ansatz,

assuming known enomalous transport coefficients.

Constitutive relations

For the mass flow field we assume

I =Tyb+Tyey (8)
and
Ty = —Dang—i (9)
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where 8/0y = ey, - V. The evolution of I’ will be given by the b component of the weak
form of (4), see next Section.
For the stress tensor (viscous momentum flux) we neglect the contributions from

gyroviscosity and classical perpendicular viscosity, and assume

. gV av
I = —nh— L bj(esey + eges) — pran—t (eyes + egey) (10)
o6 oy
where 7} o Tf/ ? is the classical ion parallel viscosity [5], /06 = eg - V. Notice that
[7], assuming (8) and b2 < 1: 1) the full contribution of 79 to the parallel momentum
balance would come from HLI = —bgnoAo where Ay = -g—bg(Q%‘—’;L + %%—‘EW), whereas we
use Ay = bg%—‘;"-; 2) the full contribution of 1y to the total energy balance would include
V¢H¢,¢%’%, see (16), with IIyy = 1noAo, which we neglect (where the particle source is
negligible this contribution would be of the same order of that from II44). Therefore, (10)
contains the correct order of magnitude of the 7y contribution.

For the heat fluxes (j=i,e) we neglect the contributions from gyro- and classical per-

pendicular heat conductivity, and assume
@ = =rj(b- VT)b — nxby(ey - VTy)ey (11)

where n‘l’i o Tjsl ? is the classical parallel heat conductivity [5]; in the following we will

neglect nfl < K-

2. Weighted residuals formulation and boundary conditions

One of the reasons to write the equations in our system in conservative form is that
application of Green’s lemma (multidimensional integration by parts) to the weighted
residual formulation leads to: 1) much easier evaluation of several terms (e.g., inertial,
viscous, etc.); 2) natural boundary conditions.

To obtain the weighted residual formulation of (3)-(6),(9) we multiply each scalar equation

by a respective test function, then integrate over D, and use Green’s lemma in the usual way
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to lower by one order the highest (second) derivatives appearing in the system. Indicating

by n the outward normal to the boundary 9§ of ) we are led to the system:
< ptAf >= —j (T'-n)A’R dﬂ—/ (T-n)MRdl+ <T:-VI>+< SR 5 (19)
a5l,in aq,out
expressing mass conservation in weak form;

T
< (T >=—f (b-TP - n)AIR de+ < "r v,\">+<( 5— )b val > —

ol Al
< bgbjo aB(F"/p) =g >~ < bspnanz ¢(ri, /p)—— > 42 b8 AL >: 5.4(13)
expressing parallel momentum conservation in weak form;

dp

qb
wgght > (14)

<TyA¥ >=-<D

expressing the diffusive Ansatz on the radial mass flow in weak form (notice that we keep
(14) as a separate equation, notwithstanding its trivial form, in view of future developments

when a more complex treatment of radial transport will be included);

iy
< (Pe) A >= ——f (TE . n))\°R d£ + S cPep.vaes
3 Joa 3 »p
2 0)® 2 0 oX¢
1 b e — s e
3m < ﬂn“ae(p /P) 89 3 <anna¢(p /P) ad) e
2 1 4m, 1 1% 5 1 o 2 &
S AP (VD)X > === g —(€ - ----—,\e £« ~T»8FA® > 4= < SEX
3<p (Vpe) >+3mi<*re(£ 3pe ) 3<p o >+3<e >
(15)
expressing the electron energy balance in weak form;
I |
< ENE >= — (PE.n)AERde+§< Er.waEs_1c —T- VAP > —
a0 3 p 3 p
a E
< b¢b97]o (Pn/P)  (preing bl 57 (Pn 1P 55 >~
E BAE
m; < bgrj 39(Pe/P) 25 >~ < PXan a¢(pe/‘°)_— > m
2 . 0 3 1I‘2 1 6AE E\E
= I _IfE < A 16
3<pxan6¢[(5 5P )] >+ <S°AT > (16)
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expressing the total energy balance in weak form. In (12)-(16) < f >= [, fR dQ, R is
the distance (major radius) of d from the symmetry axis, d¢ is the length element on 9%,
and by = /1 — b2 . The obvious definitions, coming from (4)-(6), were used:

(tensor) momentum flux

I'P = pVV + (pe + pi)I + IT;; (17)
electron energy flux
[P = 2TV +q (18)
total energy flux
L= gnTeV + gnTiV + %p\ﬁv + 1L - V 4+ qe + q;. (19)

Two types of boundary conditions are foreseen in the code:
1) Dirichlet (essential) boundary conditions, requiring assignement of some compo-

nents of u as given space functions on portions of 9:

5
3 op(X)uk(x,t) = §(x)  j=1,2,4,56 xedYp; (20)
k=1

2) Robin (natural) boundary conditions, requiring assignment of some components of
G=[ln,b-I'".n,0,If n, ¥ .n]

as a linear combination of the components of u, on other portions of 9§2:
5
Gi(x,t) = Y Bu(x)uk(x,t) +%(x) §i=1,2,4,5 xeYr. (21)
k=1

Since the continuity equation is hyperbolic (at least "along e”) only the inflow (”in”
boundary fluxes can be assigned, whereas at the outflow ("out”) boundary the correspond-
ing line integral needs be discretized as all the other terms. Notice, however, that when
I'yey-n > 0 at some point on the boundary, there a boundary condition is needed because

due to the diffusive Ansatz (9) the continuity equation is in effect parabolic "along ey”.
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Since (3)-(6) are parabolic, boundary conditions for (13),(15),(16) are needed every-
where on 0f2.

3. Linearization, Galerkin formulation, and time marching procedure

The system (12)-(16) can be formally rewritten as
Mu, = a(u). (22)

Time marching of (22) towards steady state is accomplished by the theta-method (below,
p indicates the parameter, to avoid confusion with the poloidal coordinate): the time
derivatives are approximated as finite differences, and the right-hand side is evaluated as
a convex combination of its values at time "k” and time "k+1":

k+1

u = )
S = (1 palu®) + pa(u**) (23)

M

where u¥ = u(t¥); therefore, both explicit (4 = 0) and fully implicit (» = 1) schemes are
included, as well as a combination of the two (0<p<l). -

Equations (23) are linearized by a single step of Newton's iteration, leading to:

(s — ) = (e — #ut o+ () (24)
where J = 0a/0u at u = u* is the Jacobian matrix. Generally, also the actual boundary
conditions need be similarly linearized, in order to put them in the form (20)-(21); in that
case ajk,%j, Pk, at each time step can also depend on the value of u at the previous
time step. (Of the nonlinearities in the transport coefficients only j has been linearized,
whereas 1§ and 7. are treated explicitely in time).

To discretize (24) in space we first introduce a triangulation of §; we then take AP =
A\l = A¥ = X¢ = AF = )\, and express each of the u components as a function of the

X's (Galerkin method): for the present time we have implemented in the code the case A
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equal to the linear hat function of value 1 at node (= vertex) ”i”, and vanishing at all
neighbouring nodes. If there are "N” nodes in the mesh we obtain therefore from (20),
(21) and (24) a linear system of 5N equations for the value of u at the nodes, wilich is
solved at each time step by the GMRES iterative method (see [4]).

The time step (At)r+1 = t¥+1 —tF is adapted in a way strictly similar to that discussed
in [4]. In cases when one is interested in the steady state only, a local time step can be used
to speedup the computation. Additionally, the timestep can also be different in different
equations. When the time step is both local and equation dependent, (At)x+2 for the
evolution of, say, p at node ¢, will depend on the value of |p*+(x;) — p*(x;)|/p* 1 (x:);
the time step used in the computation of the elemental matrix is the minimum among the

respective time steps at the vertexes of the triangle.

4. Results for test cases in simple geometry

We have performed several tests of the code, all concerned with the relaxation to
different exactly computable steady states. We assume the steady state to be reached
when the absolute value of the maximum relative variation of p, p., £ during the last
time step is below a given tolerance { (typically 1072), and At = Atpmez ~ Lz\/rr/T ,
where Lz is the connection length (see below) and T = 10eV. The same At was used in
all equations and uniform in , with the fully implicit scheme.

Due to limitations (see [4]) of the present version of the unstructured mesh generator
available to us, we restricted ourselves to a simple domain and magnetic field geometry.
We considered as domain {2 the rectangle R < R< Ry + Lg and 0 < Z < Lz, as shown
in Fig.2. The poloidal magnetic field is directed vertically (i.e., along ez) and we took for
simplicity g = 0.1 everywhere. Notice that the mesh shown in the following Figures, for
the purpose of easy representation, results from a contraction by a factor 10 along ez, of

the mesh actually used in the computation.
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Anomalous transport coefficients are taken all equal and of the order of 1m2s~1.

Parallel transport coefficients are classical except for an enhancement by a factor 10 of 7}

(see below).

In a first series of tests no sources act on the system.

As boundary conditions we assume: R = Ry, Z = 0 and Z = Lz as ideally adiabatic,
i.e., the normal components of all the flows are set to zero in the boundary integrals;
the parallel particle flow is set to zero as a Dirichlet condition at Z = 0 and Z = Lz,
and it is free at R = Ry; at R = Ry + Lg we impose the Dirichlet boundary conditions
p=ﬁ,I‘"=0,pe=ﬁe,€=€—. _

We begin by considering the equalization of initially different ion and electron tem-
peratures.

In the simplest case we start with flat density, zero particle flows, linearly decreasing
T. in R and flat T}, and set all transport coefficients (or analogously only anomalous
transport coefficients) to zero. The time evolution of At (normalized to Atmgaz) is shown
in Fig.3, as an indicator of the convergence to steady state. The exact steady state is
characterized by equal temperatures, both linearly decreasing with R, no particle flow and
flat density everywhere; this result is reproduced with fairly good accuracy by the code,
as reported in Tab.1 (here, as in all plots, R is rescaled to Ry and normalized to Lg, Z
is rescaled to Zo and normalized to Lz, p, T. and T; are normalized to their Dirichlet
boundary values, and the particle fluxes are normalized to ﬁ\/ﬂE)

We now consider the same set of initial conditions but now with finite transport
coefficients; clearly, perpendicular diffusion will lead to an exact steady state solution
which is stationary, and density, electron pressure, total energy density have everywhere
in Q the value imposed at R = Ry + Lr. The time variation of At for this case is shown
in Fig.4 and the steady state obtained is summarized in Tab.2. Notice that the evolution
is slower.

In all previous tests the velocity field is essentially zero everywhere at any time. We
now consider as initial condition flat density, equal and flat electron and ion temper-
ature, but an initial profile of parallel flow as given in Fig.5. The evolution of At in
this case is given in Fig.6. In Fig.7 we give the time evolution of the parallel flow at
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(R = Ro,Z = Lz/2): as can be expected the plasma, initially directed towards Z = Lz,
bounces back and forth between the two adiabatic boundaries, but in the meanwhile par-
allel and perpendicular viscosity dissipate momentum leading to the same exact steady

state as in the previous case. The numerical steady state is summarized in Tab.3.

In a second more demanding set of tests we assumed certain spatial profiles u = (x)
and computed analytically the sources and the boundary conditions which would make @
a steady state solution of our model. The code can then be tested by using those sources
as input together with the respective boundary conditions, and checking how far from #
the computed steady state results are, when one starts with an initial condition far from
a.

In Fig.8 we summarize the tests performed, indicating the different boundary condi-
tions used in each of them. In test A the inboard upper and lower boundaries are adiabatic.
In test B Neumann boundary conditions are tested by imposing given particle parallel mo-
mentum and energy normal influxes at the inboard boundary. In test C (nonlinear) Robin
conditions are tested by imposing energy outfluxes at the upper boundary. In test D,
finally, the outflow contribution in the continuity equation is tested by imposing a Mach
number condition on the parallel particle outflux at the upper boundary (for consistency
also the energy fluxes need be nonzero); here also some limitations of the Galerkin method
in the presence of strong convection and large gradients will be investigated.

In the following we will concentrate on cases A and D. In cases B and C the numerical
solution converges well to the expected steady state.

The exact steady state in case A is given in Figs.9a-d and the sources required to
produce it are given in Figs.10a-d. The time evolution of At is given in Fig.11 and the time
evolution of the parallel particle flow profile is shown in Figs.12a-f. Notice, by comparing
Figs.9b and 12f, that the computed steady state is fairly accurate except at the inboard
boundary where the weak Robin boundary condition still allows some relaxation. The
convergence of the computed solution to the exact steady state can be more quantitatively
Judged from Fig.13 where the time evolution of m §p = maz{|p(x) — 5(x)|/5(x)} is given.

In case D we used sources corresponding to a steady state characterized by: isothermal

Mé.ch number M = \[ m.-V"2 /(Te + T;) equal to 1 at the upper boundary, parallel particle
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flux uniform in R but increasing from 0 at Z=0 with different powers of Z, and uniform
density, electron pressure and total energy density. Notice that with 10 equispaced elements

inZ, p=p =102 m~3, and T. = T; = T, near the outflow boundary the mesh (electron)

Peclet number Pe ~ %L AK,Z ~ 10, and even with the enhanced viscosity the mesh Reynolds

[
number Re ~ %- %,—Z- > Pe. Notice also that a reduction by a factor of 4 in the temperatures
o

would lead to an increase of Pe and Re by a factor of 32.

When T increases linearly at steady state between the lower and the upper bound-
ary, convergence is good as expected (since the trial functions A exactly interpolate the
solution), as one can see from the time dependence of the error given in Fig.14.

When I'|| increases at steady state with the sixth power of Z, as shown in Fig.15, the
large unresolved gradient in the solution impedes convergence as indicated in the error
plot (Fig.16) and in the computed density profile at steady state (Fig.17). Since the origin
of the difficulty is clearly localized in space one can improve convergence by using a mesh
accumulated near the upper boundary (Figs.18-19) and further improve it by doubling the
number of elements in the Z direction (Figs.20-21).

In the last test, Figs.22-23, we use the classical ns (without enhancement), therefore
Re ~ \/WPe > Pe and one expects difficulties with the Galerkin method even with
an accumulated mesh with 20 elements in Z. In order for the GMRES iterations to converge
to the prescribed (1071?) tolerance we needed to increase from 5 to, e.g., 20 the dimension
of the Krylov space where the minimization of the residual is performed; furthermore,
whenever the GMRES iteration does not converge the step is rejected and Atp,, is set
equal to the At at the previous step.

More complex tests relevant to a typical SOL (see, e.g., [4]) will be reported in the

future.
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5. Conclusions

We have developed a finite element code which can be used as a basis for fluid modeling
of the scrape-off layer. From the point of view of the fluid plasma several of the essential
physics ingredients are included in the model: classical transport is assumed along magnetic
field lines, anomalous transport perpendicular to magnetic surfaces, and different ion and
electron temperatures are allowed. In a rather extensive set of test cases in simple geometry
the code has been shown to work.

More realistic SOL sources, describing the interaction with recycling neutrals, and
boundary conditions, related, e.g., to the Debye sheath at the target, are being imple-
mented. This should also indicate if Galerkin with a suitably chosen mesh is enough - in
SOL modeling problems the stea.djr state location of ”difficult” regions is essentially known
a priori -, or if some additional numerical dissipation is required in the region of strong
convection and large gradients expected near the target. Also a general target and mag-
netic geometry should be tested, but this is for the moment impossible with the present
version of the unstructured mesh generator (see [4]).

Diamagnetic flows, electric currents, impurities, which have been neglected for the

time being, will be the subject of subsequent work.
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Figure captions

Fig.1
Computational domain.

Fig.2
Simplified computational domain.

Fig.3a

Adaptive At evolution for T.(R,Z,t =0) =2 - (R — Ry)/Lr, Ti(R,Z2,t =0) =
p(R,Z,t =0)=1,T(R,Z,t =0) =Ty(R,Z,t = 0) = 0. No diffusive transport.

Fig.4
As Fig.3 but with diffusive transport.
Figs.5
I'(R,Z,t=0).
Fig.6
At evolution with initial condition as in Fig.5.
Fig.7
Time evolution of I'\(Ro, Lz/2).
Fig.8
Summary of boundary conditions for tests with sources.
Fig.9
Exact steady state for test A: (a) p, (b) Ty, (¢) pe, (d) &.
Fig.10
Sources for test A: (a) S™, (b) b-SP, (c) SZ, (d) SE.
Fig.11
At evolution for test A.
Fig.12

Evolution of ' (R, Z) for test A:
after (a) 20, (b) 40, (c) 60, (d) 80, (e) 100 steps; (f) steady state.
Fig.13

Evolution of the maximum relative error in p for test A.
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Fig.14
Evolution of the maximum relative error in p for test D.
T'((R,Z) = Z/Lz at steady state.
Fig.15
Iy(R,Z) = (Z/Lz)"
Fig.16
Evolution of the maximum relative error in p for test D with I' at steady state
as in Fig.15. Equidistant mesh with 10 elements in Z.
Fig.17

(R, Z) at steady state corresponding to Fig.16.
Fig.18
As Fig.16 but with accumulated mesh.
Fig.19 .
p(R, Z) at steady state corresponding to Fig.18. '
) Fig.20
As Fig.18 but with 20 elements in Z.
| Fig.21

p(R,Z) at steady state corresponding to Fig.20.

Fig.22
At evolution for test D with I' at steady state as in Fig.15.
ns not artificially enhanced.

Fig.23

Evolution of the maximum relative error in p corresponding to Fig.22.
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0.00000D0+00 0.00000D+00
0.49998D+00 0.00000D+00
0.10000D+01 0.00000D+00
0.00000D+00 0.50002D+00
0.49998D+00 0.50002D+00
0.10000D+01 0.50002D+00
0.00000D+00 0.10000D+01
0.49998D+00 0.10000D+01
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0.00000D+00
0.49998D+00
0.10000D+01
0.00000D+00
0.49998D+00
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0.00000D+00
0.49998D+00
0.10000D+01
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0.00000D+00
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0.10000D+01
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0.10000D+01 0.00000D+00 0.00000D+00 0.15000D+01
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0.10000D+01 0.00000D+00 0.00000D+00 0.12500D+01

0.10000D+01 0.00000D+00 0.00000D+00 0.10000D+01
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0.10004D+01 0.00000D+00 0.52885D-07 0.10048D+01
0.10003D+01 0.00000D+00 0.43527D-06 0.10037D+01
0.10000D+01 0.00000D+00 0.46741D-06 0.10000D+01
0.99988D+00-0.14849D-04-0.13654D-06 0.10047D+01
0.99991D+00 0.55724D-06-0.11942D-07 0.10033D+01
0.10000D+01 0.000C0D+00-0.32261D-06 0.10000D+01
0.999870+00 0.000000+00-0.14319D-06 0.10051D+01
0.99996D+00 0.00000D+00-0.15998D-06 0.10C35D+01
0.10000D+01 0.00000D+00 0.66961D-07 0.10000D+01
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0.10003D+01 0.00000D+00 0.40754D=-07
0.10002D+01 0.00000D+00 0.31240D-06
0.10000D+01 0.00000D+00 0.25723D-06
0.99984D+00-0,16918D-04-0.15863D-06
0.99988D+00-0.66241D-05-0.68824D-07
0.10000D+01 0.00000D+00-0.34138D-06
0.10000D+01 0.00000D+00-0.10640D-07
0.10000D+01 0.00000D+00-0.51030D-07
0.10000D+01 0.00000D+00 0.25943D-06
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0.10047D+01
0.10036D+01
0.10000D+01
0.10046D+01
0.10032D+01
0.10000D+01
0.10050D+01
0.10034D+01
0.10000D+01

E

0.45000D+01
0.37500D+01
0.30000D+01
0.45000D+01
0.37500D+01
0.30000D+01
0.45000D+01
0.37500D+01
0.30000D+01
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0.30145D+01
0.30110D+01
0.30000D+01
0.30142D+01
0.30100D+01
0.30000D+01
0.30155D+01
0.30104D+01
0.30000D+01

e

0.30141D+01
0.30107D+01
0.30000D+01
0.30138D+01
0.30097D+01
0.30000D+01
0.30151D+01
0.30100D+01
0.30000D+01
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