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Abstract

A general sufficient condition for nonlinear stability of steady and
unsteady flows in Hydrodynamics and Magnetohydrodynamics is de-
rived. It leads to strong limitations in the Reynolds and magnetic
Reynolds numbers. It is applied to the stability of generalized time-
dependent planar Couette flows in Magnetohydrodynamics. Reynolds
and magnetic Reynolds numbers have to be typically less than 272 for
stability.
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For incompressible fluids and in particular in Hydrodynamics (HD) and
Magnetohydrodynamics (MHD) the nonlinear terms in the equation of mo-
tion are of the quasilinear type and dissipation is present in the form of
material viscosity or resistivity. More precisely if u is a many components
vector field in an L? function space representing the frame of the fluid
motion, u will obey an equation of the form

1 = A(u)u + Du, (1)

where A(u) is a nonlinear operator depending linearly upon u and D is
a linear negative definite operator if u = 0 at the boundary. A simple
example is

A(ulu=u-Vu, Du=V2 (2)

We assume further that
(u, A(u)u) =0, (3)
where the scalar product is given by

(ab)= [a b, (4)

the integration being done over the volume occupied by the fluid.
To study the nonlinear stability we split u in

u=uyg+u, (5)
where u, is a finite perturbation zero at the boundary and u, satisfies
Uy = A(ug)ug + Du,. (6)
The equation for u, is then
u; = A(y,)y, + Ly, (7)
with
Lu, = A(ue)u; + A(uy)uo + Du,. (8)

L is a linear operator on u, which in cases like (2) will remain negative
definite if A(u,) and u, are small enough. Taking the scalar product of u,
with equation (7) we obtain

3 () = (L) ©)
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by virtue of (3). Since all considered quantities are real we have
(a1, Lyy) = (uy, Lyyy), (10)

where L, is the symmetric part of L. Nonlinear stability is then warranted
by Lyapunov methods if
(glyLs‘.-.l]) < 03 (11)

for all u, satisfying (uy,u,) = finite and u; = 0 at the boundary. Expression
(11) is a sufficient condition for nonlinear stability. The stability problem
is now reduced to the minimization of the hermetian form (uy, Lsu,). This
can always be done for any flow ultimately numerically using standards
hermiteans eigenvalues techniques.
This procedure is known (see [1, 2, 3]) for steady HD and MHD flows
satisfying
A(ug)up + Dy, =0, (12)

which is equivalent to (6) for time-dependent flows. Though we did not
find it in this general form in the literature, it is likely that it has been
used (see [4]) for unsteady HD flows also. We are not aware however, of
the derivation and application of (11) for MHD unsteady flows. The MHD
equations are

% = —v:Vv+(VxB)xB-Vp+vViv, (13)
V.v = 0, (14)
%3 = Vx(vxB)+13V’B, (15)
V-B = 0. (16)

If u is defined as

s=(3), a7)

then A(u) and D are the matrix operators

aw = (59 TxB ). (18)
D = (”372 ngg), (19)
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with A(u) verifying condition (3), for normal component of u zero at the
boundary, and D being negative definite if u is zero at the boundary.

Let us illustrate the procedure by studying the nonlinear stability of a
time-dependent MHD flow generalising the time-dependent planar Couette
flow. It consists of a fluid bounded by two horizontal plates, the first plate
at z = 0 and the second at z = h, with velocity parallel to the magnetic
field and both depending only on one coordinate (z) and the time (t):

v = v(zt)é, (20)

B = B(zt)8,, (21)
satisfying the equations

gt—v—vg-; = 0, (22)

X2 (23)

g’:+BaB = 0. (24)

For simplicity special solutions of these equations can be taken as

v = ‘sin\/gzé s 25
sm\/- v v ( )

a
B = N —2 €y, 26
Sln J_h ﬂz ¥y ( )
B2

p = -2 +f) (27)

with the following boundary conditions:
v(0,t) = B(0,t) =0, (28)
v(h,t) = wvoe ™, (29)
B(h,t) = Bge ™. (30)

and f(t) fixed by the boundary conditions on p. In the limit & — 0 this
system reduces to a stationary MHD flow. For By — 0 we have the time
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dependent Couette flow and when both a and By — 0, we obtain the
stationary Couette flow. After calculating L (see equation (8)) for this
case, we obtain its symmetric part L,

[ 20V 0 0 0 -BZ 0 )
0 22vV2 0 0 -BE 0
.- L o 0 2Vv* 0 -BZ-2 "
2 0 0 0 27V2 0 0
By, BZ BZ 0 2nV? 0
\ 0 0 0 0 0 2nV? )
[0 0 0 0 0 0 )
dv B
0 0,, -2 0 %B &
1o -%& o o0 -2 o . (31)
20 0 0 0 0 0
\0 5% 0 0 0

In order to examine stability, we calculate I given by
I = (4,L,y)=
/ dr (V (vlrvzvlz + v1yV2U1y S vlzvzvlz) +
n (Blzv'zBl: + Blyszly + Blzszlz) +

ov 0B
(E (—v1yv1; + B1yB1.) + B (viyBi: — "UlzBly))) . (32)
We suppose for convenience that v,Bp > 0,0 < h < /v/a n/2

and 0 < h < /n/a 7/2, which guarantees that ( dv/8z) > 0 and
( 0B/0z) > 0. To satisfy condition (11) for all u, we make a first estimate
of I using

7] Ov)\ 1 0 1
== (a—tz)) V1yV1z < (6_:) 5 (‘Ufy + 'U‘fz) < (a—:) 5 ('Ufy + Ufz) . (33)

where (0v/0z),, is the maximum of (Ov/0z) with respect to z and ¢, which
occurs at t = 0, 2 = 0. Similar estimates can be done for the other cross




terms, so that

I = Im = -[ dr (V (levzvlz + vlyVQUly + vlzvzvlz) +
1 (leszlr S BlyV2Bly + Blzszlz) +
Crm (v, + i, + B}, + BL.)), (34)

v 0B
@ w
ov Vo \/CT
skl - -, 36
(az)m sin\/gh v (36)
aB _ Bo (84
(62),,, = SnEh \/; (37)

Now we look for the extremum of I, subject to the condition (u;,u,) =
finite.

with

I = 6 (Im — A(1y,1)) =0, (38)

where A is the Lagrange multiplier. This leads to the following system of
equations

V2'Ulz- o '3-'01_-; = 0, ' (39)
1 A
V2‘01y + (Ecm = ;) Uly = 0! (40)
1 A
V2v1z + (5; m ;) Viz =V, (41)
szlz - %Blz = 0, (42)
Pk i ot | B0 (43)
ly 21? m n ] ]
. 1 A
V2B, + | =—Cn—2) By, =0. (44)
2n 1



Fourier analysing in z and y

U =) Ap(z) *, (45)
k
where
k = ké+ké, (46)
r = zé;:+yé, (47)

and calling each component of the vector A4y (2) as

(Ax (Z))J' = 4; (48)
the system of equations (38)-(43) can be reduced to
d*A, A
2 o7 kz) A =0, (49)
d’A, 1 A,
7.7 +($Cm—-;—k)442=0, (50)
d*A; £ »
1.2 +(50m—;——k)¢43-0, (51)
d*A4 A .a
1 —(;+k)A4—0, (52)
d*As 1 A,
d22+(§5cm—;—k)145— ) (53)
d*As 1 A,
722 +(%Cm—;—k)A€.—0. (54)
Since the boundary conditions for the perturbations are
vi1(z,y,0,t) = Bi(z,y,0,t) =0, (55)
Vi (xaya h:t) — Bl ("B’y’h)t) = 01 (56)

the non-trivial solutions of this system, which satisfy the boundary condi-
tions (54) are sine solutions. To satisfy also the other boundary conditions
(55) we obtain some restrictions on A. When the maximum value of ) is
negative, the system is stable, this can occur in two ways.
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e For v < 7 the system is stable if

VER VEh
Re— N +5 N % %4, (57)

where
h
Re = ==, (58)
Boh
S = - (59)

e For n < v the system is stable if

o p, ap,
Re,, .\/ja = + Sm .\/\;/a = % 277, (60)
sin, /2 sin, /%
B n
where
Uoh
Re, = —, 61
. (61)
Boh
Sm = S 62
- (62)
In the limit o — 0 (steady MHD flow) we obtain
Re+S<2r® for v<y (63)
and
Ren + Sy < 27 for n<u. (64)

For the time-dependent Couette flow (By — 0), we have

Ve (65)

2h
Re—"— < 27?,
sin /2 h
and for the stationary Couette flow (a, By — 0)

Re < 27°. (66)
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It should be mentioned that for the stationary Couette flow the last condi-
tion is also obtained without introducing the estimate I < I,,.

The sufficient condition (11) is general and robust, but also too strin-
gent. It is fulfilled in HD and MHD only if the Reynolds and magnetic
Reynolds numbers are small enough. Since viscosity and resistivity espe-
cially for hot plasmas are small, condition (11) would allow only a very
low level of electrical currents and flows. Linear stability analysis and ex-
perimental evidence, however, seem to show that in some cases, values for
currents and flows far beyond those allowed by condition (11) occur wit-
hout any sign of gross instabilities. It will be, however, much more difficult
to do the nonlinear stability theory for such situations and in contrast with
the present method, it is likely that it may have to be done differently for
each case.
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