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Abstract

The effect of nonaxisymmetry on Alfvén modes in toroidal geometry is investigated
numerically. A model equation is used which simplifies the analysis on the resonant
surfaces. Alfvén modes, characterized by their poloidal and toroidal node numbers
(m,n), are found to exist in moderate nonaxisymmetry as well. For fixed (m,n),
however, the mode collapses from a global feature on the resonant surface into an
infinitely thin Alfvén ballooning mode along a field line if the nonaxisymmetry exceeds
a critical threshold or, with given nonaxisymmetry, if the poloidal variation does so.

Alfvén balloonings are polarized within the magnetic surfaces and are stable.




1. Introduction

The aim of this study is to demonstrate numerically the collapse of global Alfvén
modes on resonant surfaces of a nonaxisymmetric plasma torus into localized (Alfvén)
ballooning-type modes if the nonaxisymmetry is increased above a critical threshold
or, with fixed nonaxisymmetry, if the variation of the plasma equilibrium on a poloidal

cross-section becomes too large.

In order to put the result into perspective, a short review of the MHD continuum

in simple geometry may be useful.

A homogeneous plasma in a constant magnetic field B according to ideal MHD
theory supports three types of waves: Alfvén waves, slow waves and fast waves; see,
for example, [1]. Assuming the waves to be space and time dependent as ~ exp [2(k -

r + wt)], the dispersion relation of Alfvén waves is
(k-B)? —uw?p =0, (1.1)

where p is the plasma mass density. Since (shear) Alfvén waves, in contrast to slow and
fast waves, do not involve plasma compression, their dispersion relation, equ. (1.1), is

particularly simple, and we shall be concerned with the other two types only in passing.

In an inhomogeneous plasma the value w given by equ. (1.1) splits into a continuum
of resonances. An example is a straight plasma cylinder with smooth radial profiles.
In cylindrical coordinates r, 6, z, with the ansatz £ = a(r) exp [i(m0 + k.z + wt) ] for
the plasma displacement &, etc., one obtains an ODE (2], 3],

d d
E: [ f(w,r) 5; (T a") ] - g(w,r) ar(w:r) = § 3 (12)

for the radial component a, of a. The quantities f, g and a, all depend parametrically

on m and k,. Equation(1.2) becomes singular where f(w,r) = 0. f is of the form
flw,r) = [(k-B)? —w?p] [7P (k-B)? = o p (7P + B*)] filw,r), (1.3)

with f, finite where the prefactors vanish. Here k- B = m By + k. B, 7 is the ratio
of specific heats and P is the plasma pressure. Singularity therefore occurs where the
dispersion relation (1.1) is satisfied, i.e. for Alfvén waves, or where the second square

brackets vanish, i.e. for slow waves. Since B = B(r), there are two corresponding




continua of frequencies w = w(r). For fixed w, a, has a logarithmic singularity at the

resonant surfaces r,, while ay and a. diverge as (r —r,)~L.

A knowledge of continua in the spectrum, apart from its intrinsic interest, is impor-
tant for practical purposes. If instead of a Fourier ansatz ~ exp(iwt) an initial value
problem is considered, a continuum gives rise to a collective plasma motion, called
quasimode, which is damped by phase mixing [4]. This damping increases the absorp-
tion of externally launched waves and is the basis of, for example, Alfvén wave heating
of fusion plasmas [5]. The present investigation contributes to the understanding of

the continuum in general toroidal geometry.

The term k - B in equs. (1.1), (1.3) is equivalent to the operator B - V. This
operator governs the continuous spectrum in toroidal geometry as well; see [3], [6] for
the axisymmetric case, and [7], [8], [9] and [10] for the general case. In contrast to the
algebraic equations for w = w(r) above, those values of w = w(%) for which a system of
differential equations H(B -V, w, )X =0, equs. (2.3) or (2.5), has bounded single-
valued solutions on the magnetic surfaces 1) = const are in the continuous spectrum (or
in a dense point spectrum; see below). The equations act purely within the surfaces,
with ¢ being a parameter only. In addition, it must be shown that the full system of
mode equations has a singularity in the radial direction, i.e. in the v-direction, at the

resonant surfaces.

The operator B - V has two different aspects. Let 6 and ¢ be poloidal and toroidal
coordinates, respectively. With B = B - V0, B® = B - V¢, the operator B -V =
B? /86 + B? 8/04, on the one hand, is a partial differential operator on the surfaces
spanned by 0 < 0, ¢ < 27. On the other hand, B -V = Bd/ds can be viewed as
an ordinary derivative with respect to the arc length s along B. This implies that
the behaviour in cases with closed field lines may differ from ergodic cases. Here, we

consider only surfaces with ergodic field lines.

In the context of the first aspect the natural boundary conditions are periodicity of
the solution X (0, @) of equ. (2.5) in # and ¢. In axisymmetric geometry such solutions
exist, namely the modes from the Alfvén continuum [3], [6]. At fixed v, they may
be uniquely labelled by two discrete parameters m and n. The continuous spectrum
therefore consists of the union of all w = wy, » (). With respect to the radial variable v,
at fixed w, there is a singularity at the resonant surface ¥ = ¥(w). In the following it is
shown numerically, this being supported by theory, that these doubly periodic solutions
X (8, ¢) continue to exist also in weakly nonazisymmetric toroidal geometry. They may

still be labelled by two parameters m and n. The full analogy to the axisymmetric case




indicates that the necessary ingredient for the Alfvén continuum, a singularity in ¢, is
also present. We do not investigate the singularity behaviour further, however. Instead,
we concentrate on the properties of the differential equation HB-V, w, ¢)-X=0

itself, which refers solely to the behaviour within the magnetic surfaces.

It turns out, however, that if the nonaxisymmetry becomes too strong, or, with
fixed nonaxisymmetry, if the poloidal variations become too large, any particular mode
(m,n) ceases to exist. Instead of global modes, equ. (2.5) develops solutions X = X(s)
which are defined only locally, along single field lines. Thus, the second aspect of
B . V mentioned above becomes dominant. It is found that along the field line the
amplitude falls off exponentially on both sides of a maximum, with finite localization
length. Across the field line, however, the localization is infinitely strong. The modes
are therefore singular also within the magnetic surfaces and are of a ballooning-type

character.

The paper is organized as follows: in Sec. 2 the differential equations for the MHD
spectrum in general toroidal geometry are reviewed as far as is relevant for the present
purposes. Owing to the combined poloidal and toroidal modulation of the MHD equilib-
rium they have coefficients with quasiperiodic dependence along the field lines. Instead
of the exact equation for X(0, ) or X(s) a simplified model equation is introduced in
Sec. 3. In addition, the smooth dependence of the equilibrium quantities is replaced
by a discrete model.

In Sec. 4 pertinent results from the theory of quasiperiodic differential equations
are discussed and numerical results showing the catastrophic transition from global to

local character of the modes are presented. A discussion and conclusions are given in
Sec. 5.




2. MHD spectrum and quasiperiodicity

As is usual in this context, we assume the existence of nonaxisymmetric toroidal
MHD equilibria with nested magnetic surfaces ¥» = const. (A comment on this is given
below in Sec. 5.) The linearized MHD equations [1], with the ansatz ~ exp (iwt), may
then be put into the instructive form (7]

g—z =A-S+C-R,
(2.1)
H:R = K= 8,

where S and R are vectors defined by

1 3
S = (”) , B = :2 (2.2)
P

and A, C, H, K are matrix operators whose elements contain derivatives within the
magnetic surfaces only. In equs. (2.2) v' = v-Vri, i =1, 2, 3, are the contravariant
components of v = iwf with respect to the coordinates (r',r?,7%) = (¢,0, ¢), etc.
Furthermore, p* = p+ B - b, where p and b are the perturbations of the pressure and

magnetic field respectively, and £ is the plasma displacement.

If the operator H has an inverse, for given w = wp and ¥ = 1), then equs. (2.1) may
be integrated across ¥ = 1. However, if the inverse does not exist, i.e. if for some
w = wp and ¥ = ¥ there is a nontrivial vector function X, defined on the surface 1o,
such that

H-X(0.4) = 0, (2.3)

then solutions singular for ¥» — 1o may exist. The proof of their existence is done by,

for example, Taylor expansion of the operators A etc. around i = 1, and an ansatz
like
R = (¥ —%0)7" [Xo(0,8) + -] + In( — o) [ Uo(6,9) + -],

i (2.4)
S = 1n(¢_¢0) [Y0(91¢) + ] + v0(91¢) R

where the higher-order terms - - - contain positive powers of ¥ — ¢ multiplied by func-
tions of 6 and ¢. Alternatively, an ansatz with leading powers (1 —1)" and (¢ — )" *!
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for R and S, respectively, is possible. In this case v < 0 or ¥ complex indicates singu-
larity. To lowest order in ¥ — %o the relation Hg - Xo = 0 is recovered. Higher-order
equations are solved recursively. This approach to the continuum works well in the
axisymmetric case [3], [6]. In nonaxisymmetry this kind of proof of a radial singularity,
in spite of attempts, has not been worked out so far: see [7], [8], [11]. Nevertheless,

equ. (2.3) is a prerequisite for the Alfvén (and slow-mode) continuum and will be

investigated in the following.

A coordinate-independent form of equ. (2.3), valid if J = curl B is not parallel to
B, is obtained by elimination of %, b° [8]:

[B-VMB-V 4+ w?pN].X =0, (2.5)
where
PB-B/B. PB-J/ B.
M= | / 7 / (2.6)
~vPB-J/B. J-3J - (B-J)?/B.

B-B B-J
N = , (2.7)
B-J J-J

and B. = vP + B-B. X = (u, v)T contains the coefficients u, v of the tangential

components ¢ = uB' +vJ', i = 2, 3, of the displacement vector.

In the spectral theory of linear operators consideration of the continuous spectrum
is often extended to the essential spectrum. In addition to the continuum, it also
comprises, for example, dense sets of eigenvalues and eigenvalues of infinite multiplicity;
see, for example, [12]. A necessary and sufficient condition for w to be in the essential
spectrum of a selfadjoint linear operator L is the existence of a normed singular sequence
of approximate eigenfunctions {Z.}, || Z|| = 1, such that ||[(L —w) Z|| — 0 for € = 0,

and such that the sequence contains no convergent subsequence.

In the MHD case Z corresponds to the union of R and S. The sequence of Z, can,
for example, be a sequence of functions localized more and more in normal direction
around a fixed ¥ = 9. This type of approach has been used in, for example, [3] and
[10] for the axisymmetric case. Hameiri [10] extended it to the general toroidal case
but for ballooning-type modes only. They correspond to a singular sequence which for
¢ — 0 contracts onto a single field line. Two types of ballooning are considered in [10]:
1. Ballooning modes proper, with displacement £ and field perturbation b having a

normal component out of the magnetic surfaces. They are the analoga of the classical
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ballooning modes on closed field lines, as considered in, for example, [13], [14] and [15].
Localization with € — 0 is stronger within the surfaces than in the normal direction.
2. Modes for which £ and b lie within the surfaces, for ¢ — 0. The localization is
stronger in the normal than in the tangential direction. They are described [10] by the
same equations as the global Alfvén modes, e.g. equs. (2.5), except that M and N are
considered functions of the arc-length s along a field line, instead of the angles ¢ and
¢. One might call them Alfvén balloonings. (Since £ and b are within the surfaces,
some other name, such as “stretching” modes, might be more apt than “ballooning”
modes.) For ballooning-type modes we consider it a reasonable boundary condition
that their amplitudes decrease to zero with a finite decay length L along the field line,
for s — too. (Hameiri [10] admits the weaker condition L(¢) — oo for € — 0, with the
consequence that the whole magnetic surface may be covered more or less evenly by
singularities. This incoherent structure is possibly of less physical significance than a
ballooning-type mode with finite decay length.) In the following we investigate Alfvén

and Alfvén ballooning modes together and do not consider type 1 balloonings.

In azisymmetric toroidal geometry the ansatz ~ exp(in¢) for global modes is possi-
ble. Equations (2.5) become ODEs in 6, with periodic coefficients, since the equilibrium
is periodic in the poloidal angle (irrespective of whether the field lines are ergodic or
not). From the Floquet theory of differential equations with periodic coefficients it fol-
lows that a one-parameter family of solutions with the period of the coefficients exists,
distinguished by the node number, so that together with the parameter n there exists
a two-parameter family of continuum modes on the surfaces ¥ = const, as mentioned

in the Introduction.

Alfvén ballooning (A. ballooning) modes do not exist in axisymmetry since linear
equations with periodic coefficients, according to the Floquet theory, do not possess

solutions which decay on both sides s — Fo0.

We return to the general nonazisymmetric toroidal case. A transform of variables
is useful. First we transform to such angles 8, ¢ that the field lines are straight and
B? and B¢ are constant on the magnetic surfaces [16]. Next we define coordinates =

and y by setting
= 2, ¢ =qz + 1y, (2.8)

where ¢ = q, = B®/B? is the safety factor. Since we consider only ergodic field lines,

q is an irrational number. One obtains



9| _ g d

B-V:B"-é-x- 5= (2.9)
y

Thus, z, like s, is a coordinate along B, while y parametrizes the field lines. M(0, ¢) =
M(z, gz + y), and analogously N, which are 27-periodic in § and ¢, are therefore pe-
riodic with the same period in both z and gz. This property, for irrational g, is called
quasiperiodicity. Equation (2.5) can therefore be viewed as a system of ordinary differ-
ential equations in & with quasiperiodic coefficients. In the next section we introduce

a simplified model equation as a substitute for it.




3. Model equation

In the limit of small § = yP/(yP + B - B) < 1 equ. (2.5) transforms to a scalar
equation. With [J x B] = VP = (dP/dy)V, in agreement with [17], one easily

obtains

0 d  pdl 2 _
B d:caB d$a+pw ey = @, (3.1)
where
2
a(z) = (]:d;); (3.2)

and U = v/a. The transition from two coupled equations to one scalar equation for U

corresponds to the decoupling of the Alfvén continuum from the slow-mode continuum.

For the sake of simplicity and in order to have access to analytical results, we
neglect the first-order derivative of U in equ. (3.1). The following model equation for

the essential spectrum is obtained:

d? .
E—f(wz——V)] Uiz) = 0, (3.3)
where
2
- pw
wz = (BB)‘Z 3 (34)
and
1 d , d 1

Equation (3.3) is the Schrédinger equation with quasiperiodic potential V(z) =
V(z,qz 4+ y) and energy E = &?. For a review of analytical results which will be useful

in the following, see, for example, [18].

Before continuing with the general analysis we specify the explicit form of the
function V(z,qz +y) = V (kyz, kyz) which will be used in the numerical computations

below, namely

~

V(kli,kgﬂ’.‘) = f/i(kl.’.ﬂ) + fé(kgm)

+co +o0
— - F z 6( I — TL1 ) - G Z 6( r — 3L2 + y/kg ) s
T ) (3.6)



where L; = 2r/k;, i = 1, 2, and k; = 1 and k; = ¢ are introduced for symmetry
of notation. The §-functions in the first and second sums contribute to V at 8, =
0 mod 27, ¢, = 2xqr +y and ¢, = 0 mod 27, 0, = 27s/q — y/q, respectively, with
r, s=0, +1, -+, i.e. in two infinitely thin rings, the one toroidal with amplitude —F',
and the other poloidal with amplitude —G.

Thus, F is a measure of how much modulation of the equilibrium there is in going
around the poloidal way, and by analogy, G is a measure around the toroidal way.
Therefore, large | F| implies either large deviation from a circular cross-section (at large
aspect ratio) and/or large poloidal variations (“inside - outside”) induced by toroidicity
(at small aspect ratio). Large |G| implies strong deviation from axisymmetry of the

torus.

This interpretation of F and G uses the declaration of 6 and ¢ as poloidal and
toroidal angles, respectively. There is nothing to prevent us, however, from reversing
their roles. In this case F, instead of G, is a measure of deviation from axisymmetry,
etc. The safety factor g, becomes B?/B¢ = ¢~'. Thus, the roles of F and G may
be interchanged if g, is replaced by ¢;. Indeed, since we varied F" at constant G, we

prefer this second possible nomenclature.

A §-function model for V instead of a smooth function is chosen because it changes
equ. (3.3) into a recursion, equ. (3.7) below. This permits much faster computation of
solutions and spectra. Theory [18] shows that the general character of the spectrum of
equ. (3.3) is the same for smooth V and a simple quasiperiodic §-function series. For
the particular potential (3.6) the same was made plausible in [19]. Methods (see below)

of obtaining different components of the spectrum work for both types of potentials
[19].

The differential equation (3.3) transforms to the recursion [19], [20], [21]

UA-’Un _ Can-1 Sn,n—-1 A ) . (‘;’Un-l ) (37)
U’n —Spn-1 — Cn,'n—l-F'n/‘-“‘J Can—-1— San-1 Fn/w Uln—l

from one pulse at = = z,_; to the next at = Zn. Here U, = U(z, +0), U'y =
dU(z, + 0)/dz, and spm = sin[d(zn — Zm)], Cam = cos[@(Tn — Tm)]. Fn is either F
or G, depending on what pulse is active. With equ. (3.6) the recursion for the pulses

themselves is
. Tn-1 Tn-1
. == 1L,([ ] 1)1,}, 3.8
T mm{([Ll]+ ) 1 I S 2 (3.8)

10




where [z] means the integer part of . The field line parameter y has been made to zero
for simplicity. This implies that a field line passing through 6 = ¢ = 0 is investigated.
Since all field lines come arbitrarily close to any point, this should not be a restriction;
see [22].

After these preparations, both results from theory and numerical illustrations sup-
porting the transition from global modes to ballooning-type modes are presented in

the next section.
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4. Global modes and ballooning-type modes

In the present context the following result proved in [23], [24] is relevant: equation

(3.3) with quasiperiodic analytic potential V (kyz, ko) has solutions of the form
U(z) = €°° P(kaz, kz) + cc., (4.1)

where P is quasiperiodic in both arguments with period 2, just as V' is. This holds,
provided ¢ = ky/k; is sufficiently irrational (diophantine condition) and E = &? is
sufficiently large (E > Eo = c(ki, k2) max(V?), c bounded) and provided E is not in
an infinite set of gaps which may be labelled by two integers m, n. The coefficient « in
the exponent and P are functions of E. At the edges of the gaps o assumes the values
(mk; + nk2)/2. (This is analogous to the periodic case; see, for example, the Mathieu
equation where k, = 0, in [25].) This implies the existence of global (Alfvén) solutions
if m and n are even: U becomes U = Up n(z) = expli(mk; + nks)/2] P(krz, k2z) and
this has the right double periodicity to fit onto the torus. Thus, although the solution
is constructed along an ergodic field line, it fits together smoothly across the windings

on the whole surface.

The fact that there is a lower bound Ej is an indication that different phenomena
may be at work if, at fixed E, the amplitudes F, G in V are sufficiently increased.
This will be discussed below. For later purposes we also note that in spite of the
infinitely many gaps present those values of £ for which a is real constitute a continuous
spectrum o, of equ. (3.3) [23], [24].

In order to find the global solutions, it is necessary to locate the gaps first. There
are several possibilities. One can simply run equ. (3.3), i.e. the recursion (3.7), forward
from some arbitrary initial condition. In the gaps U goes to infinity exponentially fast
[18] (or to zero; but this is numerically unstable and ends up in a growing branch, too
[19]). Outside the gaps, according to equ. (4.1), U stays bounded. A working definition
of runaway is, for example, an amplitude A = &2U? + U'? larger than Ag = 10° after
at most N = 10% iterations. As an example, the upper trace of Fig. 1 is obtained. It
shows the region E = 0.145 — 0.180. At intervals §E = 4.375-107%, bounded solutions
are marked with a dot and exploding ones are left blank. Several gaps are evident
at this resolution. Higher resolution would reveal finer and finer gaps. Figure 1 is
made with amplitudes F = 0.4 and G = 0.8. As in all figures shown, k&; = 1 and
k; = ¢ = (v/5 —1)/2 are assumed.

Another possibility to locate the gaps which avoids dealing with large numbers and
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their potentially negative effects on numerical accuracy is the following: let an angle
® and a winding number w be defined by tan ® = QU/U’ and w = lim,_,, ®(z)/z.
According to [18], [26], the winding number is a nondecreasing continuous function of
E of the devil’s staircase type. It has plateaus on which w is constant and assumes
the values w = (mk; + nk;)/2, with m, n = 0, £1, £2, ---. The gaps for £ > E
mentioned before coincide with plateaus of w. @ satisfies the equation ' = & —
(V/&)sin? @ or the corresponding recursion in the case of é-function potentials [19].
By running it long enough, say for N = 10* iterations, one obtains w. The middle
trace in Fig. 1 shows w(FE) thus obtained at the same points as in the trace above.
Some of the plateau indices (m,n) are indicated. In the region shown the gaps and the

plateaus agree. We shall return to the complement of the plateaus of w(E) below.

At the edges of the gaps there exists a second linearly independent and secular
solution U, in addition to the desired quasiperiodic one. It can be avoided by selecting
the initial value ®¢ of ® = arctan(wU/U’) properly. (For this purpose and the exact

localization of an edge quite a bit of fine tuning is required.)

As a result one obtains the global Alivén modes as shown in Figs. 2 to 5. In
the figures U(0,¢) is given as a function of ¢ or # alone, with the complementary
variable kept constant. All figures correspond to the left boundary of the same gap,
(m,n) = (6,—8). In Fig. 1 this gap is just barely visible. From the two amplitudes
F and G, which determine the “geometry”, G is kept fixed arbitrarily at G = 0.8, as
in all subsequent figures too, while F increases from zero to 0.57. For brevity, we call
this parameter F' “nonaxisymmetry”; see Sec. 3. The scale of the figures is always the
same. U(0 = 0,¢ = 0) has been chosen as (sin ®¢)/w, which does not vary much from

figure to figure.

Figure 2 shows the axisymmetric case F' = 0. From comparison with Fig. 3 it is
evident that a small amount of nonaxisymmetry (F = 0.3) does not change the Alfvén
mode much. Elevated levels of nonaxisymmetry (F' = 0.5, Fig. 4) add higher Fourier
harmonics. Also, the number of local maxima and minima increases, with a few of
them dominating the others. This tendency continues with increasing F'. At F' = 0.57,
finally (see Fig. 5), the dependence on # and ¢ has become quite rough. There are
extrema with very steep gradients. Shortly above this value of F', at F somewhere in

the range 0.57 < Fy < 0.6, Alfvén modes with (m,n) = (6, —8) cease to exist.

In agreement with the definition of the winding number it can be observed in Figs. 2
to 5 that the number of nodes in the variables # and ¢, namely 6 and 8, remains constant

and agrees with |m| and |n|, respectively. Alfvén modes in nonaxisymmetric toroidal
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geometry can therefore be uniquely labelled by their poloidal and toroidal node num-
bers. (More precisely, as with sin and cos there is a pair of modes (m,n), corresponding
to the two ends of each gap.) A global Alfvén mode has already been found for a re-
lated é-function potential in [22], but its evolution as a function of nonaxisymmetry

has not been considered.

The figures just described correspond to behaviour on toroidal and poloidal cuts
6 = 0 and ¢ = 0, respectively. It is straightforward to obtain the solution analytically
at other positions along the field line if it is known on the cuts, since V = 0 in equ. (3.3)
between the pulses. If one wants to obtain U(@, ¢) on a regular 6, ¢ grid, however, as
is required by most 3-d graphics packages, some interpolation is necessary. We run the
iteration (3.7) a few thousand times in order to have a dense set of values on the cuts,
and then follow the solution from a desired grid point back to the closest available point
on the cuts. In this way the 3-d visualizations of U(0, ¢), Figs. 6 to 9, are obtained.
They belong to the same parameters as Figs. 2 to 5, respectively. The ¢-domain was

shifted from (0, 27) to (—m, ) in order to bring out the structure more clearly.

A smooth transition from axisymmetry to weak nonaxisymmetry is again evident.
With increasing nonaxisymmetry an “inflation-type” structure develops in the middle
of the figure. (It should be remembered, however, that the figures do not show a radial
displacement but a component of £ within a resonant surface.) With the approach to
the breakdown of the mode this structure becomes dominant. It separates into parallel
ridges of shrinking lateral extent. Analysis shows that the direction of the crests and
valleys in the figures is always along the field line.

What happens for nonaxisymmetry F' > Fy can be found out by resorting again
to the theory of the quasiperiodic Schrédinger equation [18], [26]. It has been proved
that equ. (3.3), for almost all potentials, has not only a continuous spectrum o, but
also a dense spectrum of point eigenvalues, o,. The corresponding eigenfunctions U(x)
fall off asymptotically for ¢ — oo along the field line as exp(—|z|/L), i.e. with a
finite decay length L(E). Owing to this property an eigenmode from o, does not fit
together any more into a global (Alfvén ) mode with double periodicity condition on
the ergodic surface. Instead, the mode is infinitely thin across the field line and its
amplitude is negligibly small almost everywhere: only along a finite section of order 2L
along the field line is U(z) appreciably different from zero. In other words, eigenmodes
of equ. (3.3) are of the (Alfvén ) ballooning type, as introduced in Sec. 2. The dense
set of eigenvalues corresponds to a dense set of positions of the maxima along the field

line and to a dense set of decay lengths L.
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Before methods to obtain the point spectrum and the eigenfunctions are discussed,
it is useful to give an example. Figures 10 and 11 show a typical eigenmode. In Fig. 10
the amplitude A;(n) = 1/&2U? + U"? is plotted logarithmically along the field line at
cuts § = 0 as a function of the number n of cut crossings. An exponential decay, on
the average, on both sides of a peak, interrupted at low level by a submaximum, is
evident. The parameters are F' = 0.7 and £ = 0.12128.

Figure 11 gives an impression of the eigenmode as a function of 6 and ¢ on the
surface, albeit, owing to the peculiarity of the plot program, a somewhat poor one.
Indeed, as theory predicts, there are “infinitely” thin ridges (and troughs) going around
the torus a few times along the field line and then becoming negligibly small. (The
needles are just an artefact: the ridges have an exceedingly small chance of being
intercepted by the discrete assembly of N, grid points. Even with N, = 200 x 200 in
Fig. 11, compared with N, = 100 x 100 in the previous figures, there are always grid
points which miss the ridges. This cuts the continuous structure into pieces, visible
as needles. Their finite thickness is also an artefact: In order to increase the chance
of “detection” on the grid, the interpolation of the solution on the boundaries has
deliberately been made coarse.) Eigenmodes with other values of E are qualitatively
similar to Figs. 10 and 11. Details, such as the positions of the ridges in the 8, ¢ plane,

etc. are of course different from case to case.

The value of E in Figs. 10 and 11 is peculiar, however, since, at the amplitude
F = 0.7, it represents the “successor” case to the global modes in Figs. 2 to 9. It was
selected from a set of available eigenvalues (see below) because its winding number is

again close to the left boundary of the (6,-8) plateau.

The comparison of the Alfvén mode from Fig. 9 and the Alfvén ballooning mode
from Fig. 11 shows how the transition between the two types of modes takes places
when the nonaxisymmetry exceeds the critical value Fp: ridges already present in the
Alfvén mode become infinitely steep. At the same time the global smooth coherence

of the solution is lost.

Eigenmodes of equ. (3.3) or its discrete version, equ. (3.7), as just described in an
example, cannot be found by running the equations forward in time. It has been shown
in [19] that this method is numerically unstable for modes from the point spectrum.
A boundary method, however, works well [19]. For the recursion (3.7), for example,
one can set Up—¢g = Up=n4+1 = 0 for some large number N and apply the normalization
v~ | U? = 1. This gives N + 1 equations for the N + 1 unknowns Us,--- Uy, E. A

nonlinear-equation solver with some trial function converges in the majority of cases
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to an eigenvalue E and an eigenfunction with exponential decay on both sides of a
maximum. This is how the mode in Figs. 10 and 11 was obtained, with N = 400.

Although one can easily obtain a handful of eigenvalues and eigenfunctions in this
way, by using different trial functions, the method is unsuited to a systematic study of
the point spectrum. For this purpose several other methods are available. The simplest
way, in principle, is to look for zeros of the determinant d of the homogeneous recursion
equations (3.7). With the boundary conditions mentioned above the corresponding

matrix is tridiagonal. Special care is required, however, owing to the presence of poles

in the function d(E) [19].

Another method is furnished again by the theory of the quasiperiodic Schrodinger
equation [18], [26]. It states that the total spectrum (continuous, o., and point spec-
trum, o,,) consists of those values of E for which the winding number w(FE) is not a
constant. For an E thus obtained, membership in o. or o, can be discriminated by
evaluation of the Lyapunov exponent Ag = lim,—,(In |6®/6Po|)/z. Here 6@ is a small
perturbation of the angle ®. A recursion for 6@, is easily derived from the recursion
for @, itself [19]. It can be shown [19], [27] that A¢ = 0 for modes in the continuous
spectrum, while Ag # 0 for the point spectrum.

The function Ag(E) is shown in Figs. 1 and 12. In Fig. 1, at amplitude F' = 0.4,
Ag is zero wherever w(E) # const. In contrast, in Fig. 12, with very large amplitude
F = 0.7, Ag differs from zero also at w(E) # const. This indicates the presence of
a pure point spectrum o, in the parameter region E = 0.115 — 0.150 shown (apart
from gaps). Figures 10 and 11 are an example taken from this region. As expected,

the continuous spectrum (upper trace) is empty in Fig. 12.

Figure 13, finally, gives an overview of the spectral behaviour of equs. (3.3), (3.6)
for nonaxisymmetry F' ranging from —1.0 to +1.0, at fixed G = 0.8, in the region
E = &% = 0. - 1.0. The continuous spectrum is again marked by dots (merging into
lines), while point eigenvalues are marked by vertical bars. The numerical criterion used
for E=r-6E (r=20, 1, --- 1000, §E = 1073) to be in o, was |Ag| > a; = 21073
and |6w| > a; = 1073, where éw is the biggest difference in w(E) of a point E to its
nearest neighbours £ £+ § E. The choices of a;, a; and 6 E contain some arbitrariness
leading to a few possibly wrong allocations. Of course, only the most prominent gaps
remain visible on this scale. Nevertheless, from Fig. 13 and from extending |F| to
even higher values one obtains the result: at fixed eigenvalue parameter E or at fixed
winding number w any mode from the continuum of equs. (3.3), (3.6) transforms to a

localized eigenmode if the nonaxisymmetry |F| is raised above a critical threshold.
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The lower left corner of Fig. 13 is particularly densely covered by point eigenvalues.
The reason for this effect is discussed in the Appendix.

5. Discussion and conclusions

Axisymmetric toroidal plasmas exhibit Alfvén modes, which are singular across
the resonant % surfaces [3], [6], and ballooning modes (proper), which are singular
across field lines, and have the displacement vector £ and magnetic field perturbation
b pointing out of the ¢ surface; see [10] for ergodic field lines, as considered here. From
a mathematical point of view the former belong to a continuous spectrum, while the

latter belong to a dense point spectrum.

A plasma model was devised which allows simple numerical analysis of the spectrum
and modes in the nonazisymmetric case, too. Analytical results from the theory of the
quasiperiodic Schrodinger equation [18] were used as guidelines. Additional evidence

exists that more general quasiperiodic equations have similar properties [27].

The following results were obtained: Alfvén modes continue to exist in nonaxisym-
metry. They come in pairs which may be uniquely labelled by their node numbers
(m,n) on poloidal and toroidal cuts. At fixed (m,n) there is a critical amount of non-
axisymmetry, or, at given nonaxisymmetry, a critical amount of poloidal modulation
above which the Alfvén mode contracts within the surface and becomes an infinitely
thin Alfvén ballooning mode. These modes have the displacement vector & and field
perturbation b within the resonant i surface. Alfvén ballooning modes also have a
dense point spectrum. In contrast to ballooning modes proper, they do not exist in
the axisymmmetric case. The reason for this difference is the following: ballooning
modes proper having a normal component of & and b feel the effect of shear, which
moves two initially close field lines on neighbouring v surfaces apart. This deteriorates
the resonance and gives a natural cut-off length along the field line on both sides of
a resonant region. Alfvén balloonings, on the other hand, owing to their polarization,
do not feel shear. In axisymmetry perturbations experience a periodical modulation
of the background along the field line. According to Floquet theory, in this situation
modes can fall off to one side or the other only, but not on both sides simultaneously.

Hence no Alfvén ballooning eigenmodes can form in axisymmetry.

Alfvén ballooning modes are stable. This follows from a straightforward modifica-
tion of the stability proof for global Alfvén modes as given in, for example, [7], [8].

The integration over a resonant surface there has to be replaced by integration along
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a field line and periodicity conditions have to be replaced by the condition that the

mode amplitude vanish asymptotically at s — $o0.

The assumption used above that a nonaxisymmetric toroidal MHD equilibrium
exists does not seem to be fundamental to our conclusions. With appropriate modifi-
cations, they should still be valid for a nonideal equilibrium provided constant-pressure

surfaces with field lines going around the torus many times still exist.
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Appendix

The average value (V) of the potential V, according to equ. (3.6), is (V) = (V1) +
(V3) = —F/Ly; — G/L,. With a potential V = V — (V) defined such that its average

value is zero, equ. (3.3) can be written as

d? .
— 4+ (Ea - V)| Ulx) =0, (Asl)
dz2
where
Eg =E+ F/L + G|/ L, (A.2)

i1s now the effective eigenvalue parameter. In a simplified picture disregarding the
presence of multiple potential troughs and hills, one would expect to see a “bound state”
(U?*(z) decreasing exponentially on both sides outside a potential trough) provided
Eeg < 0. Troughs exist for G > 0 and/or F > 0, while E.g < 0 (at £ > 0) requires
F < 0 and/or G < 0. At G = 0.8 this is compatible on the left of the dashed line
E.s = 0 in Fig. 13. Indeed, this region is filled with point eigenfunctions. Such a
simple interpretation of eigenfunctions is not possible in the rest of the parameter
space. Interference over distances covering many potential troughs and hills together

plays a decisive role there.

For more realistic functions V(z) defined by equs. (3.2), (3.5) it remains to be seen

under what conditions E.g < 0 is possible.
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Figure 1: Upper trace: continuous spectrum of equs. (3.3), (3.6) as a function of
the eigenvalue parameter E = &?. Middle trace: winding number w(E). Pairs
of numbers (m,n) specify w = (mky + nkz)/2 in some prominent plateaus.

Lower trace: Lyapunov number Ag(E). (F = 0.4, G = 0.8).




Figure 2: Alfvén solution U(0,¢). Upper part: at fixed 6; lower
part: at fixed ¢. G = 0.8. Axisymmetric case: F = 0.
(F =0.19034, ®, = —-0.267).



Figure 3: Same as Fig. 2. Case with small nonaxisymmetry: F' = 0.3.
(E = 0.160099, &, = —0.2035 ).




~~ 7 7

Figure 4: Same as Fig. 2. Case with medium nonaxisymmetry: F = 0.5.
(E =0.14291363, o = —0.16784 7).




Figure 5: Same as Fig. 2. Case with large nonaxisymmetry: F' = 0.57.

(E = 0.13571937, ®o = —0.15718 7).




U(0, ¢). Parameters as in Fig. 2.

solution

Figure 6: Alfvén



Parameters as in Fig. 3.

).

Figure 7: Alfvén solution U(0, ¢
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igure 9: Alfvén solution U(8,¢). Parameters as 1 Fi
in Fig. 5.
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Figure 10: Amplitude A;(n) = 1/&?U? + U’? of ballooning solution along
the field line at successive poloidal cuts. F' = 0.7. (E = 0.12128).
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Figure 12: Same as Fig. 1. Case with very large nonaxisymmetry: F = 0.7.

The continuous spectrum is empty.
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Figure 13: Overview of the spectrum of equ. (3.3) for different non-
axisymmetries F. Continuous spectrum: dots. Point spectrum: bars.

Dashed line: E.q = 0. To its left: E.g < 0 in the presence of potential
troughs.



