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Abstract

A review is given of the theory of magnetic reconnection in the framework of
resistive magnetohydrodynamics (MHD). While most of the material refers to two-
dimensional systems, the final sections give a brief outlook of problems arising in

fully three-dimensional configurations.
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1 Introduction

There is hardly a term in plasma physics exhibiting more scents, facets and
also ambiguities than that of magnetic reconnection or, simply, reconnection.
It is even sometimes used with a touch of magic. The basic picture underly-
ing the idea of reconnection is that of two field lines (thin flux tubes, properly
speaking) being carried along with the fluid owing to the property of flux con-
servation until coming close together at some point, where by the effect of fi-
nite resistivity they are cut and reconnected in a different way. Though this is
a localized process, it may fundamentally change the global field line connec-
tion as indicated in Fig. 1, permitting fluid motions which would be inhibited
in the absence of such local decoupling of fluid and magnetic field. It has be-
come clear that almost all nonlinear processes in magnetized conducting flu-
ids involve reconnection which may be called the essence of nonlinear MHD.

Figure 1: Change of field line topology due to reconnection.




Because of the omni-presence of finite resistivity in real systems there is al-
ways a certain usually slow rate of resistive diffusion. Reconnection theory
is therefore concerned with the problem of fast reconnection in order to ex-
plain how in certain dynamic processes very small values of the resistivity
allow the rapid release of a large amount of free magnetic energy as ob-
served for instance in tokamak disruptions or solar flares. By “fast” we mean
faster than the resistive time 7, associated with the average gradient scale L,
7,/7a = S = 1!, Hence a fast process is defined to occur with a time rate
~ O(n¥) 0 < v < 1. (In the literature this attribute is sometimes reserved
to the special case v = 0.)

In section 2 the 2-D resistive MHD equations are introduced which form
the usual framework of reconnection theory. Fast reconnection is basically a
localized process. The fundamental local reconnecting structure appears to
be a current sheet, the basic dynamics of which is introduced in section 3.
Conventional reconnection theory is mainly associated with either one of two
different lines of thought, Petschek’s slow shock model (“X-point”models)
and Syrovatskii’s current sheet model, which are discussed in section 4. Since
these theories deal effectively only with the ideal outer region ignoring the
so-called diffusion region, the narrow region where resistivity is important,
we call them quasi-ideal models. While Petschek’s theory is now known to be
incorrect in the limit of small 5, providing at most a phenomenological recon-
nection model in the presence of anomalous, i.e. locally enhanced, resistivity,
current sheets by contrast represent a fundamental feature of weakly resistive
MHD and Syrovatskii’s theory accounts for many properties observed in fully
dynamic resistive MIID systems.

In section 5 we summarize the scaling properties of stationary current
sheet configurations as observed in numerical simulations.

Section 6 gives a refined theory of dynamical current sheets. We first
investigate the properties in the central part, the vicinity of the “X-point”,
and then discuss the rather complex behavior in the edge region.

The question of tearing instability is a central issue. As numerical sim-
ulations indicate, dynamic current sheets are considerably more stable than
static sheets, allowing much larger aspect ratio A = sheet width/thickness.
A qualitative theory of the stability threshold is given in section 7.

Section 8 presents examples of two-dimensional reconnecting systems, the
coalescence of magnetic islands, the nonlinear evolution of the resistive kink




mode, and the process of plasmoid formation.

In section 9 we discuss generalizations of the reconnection concept arising
in fully three-dimensional systems.

Finally in section 10 the asymptotic behavior in the large Reynolds num-
ber limit is considered, where time dependent, presumably turbulent recon-
nection processes prevail.

2 The 2-D resistive MHD equations

Theoretical modelling of fast reconnection is mostly confined to 2-D incom-
pressible MHD. In this case the MHD equations

0B=Vx(vxB)-R, (1)
p(OV+v-Vv)=-Vp+jxB+R, (2)
dp+V-vp=0 (3)

energy equation for p (4)

can conveniently be written in the form of two scalar equations for a magnetic
flux function % and a kinetic stream function ¢ eliminating the pressure p
and choosing a homogeneous density distribution p = 1,

Opp +v - Vip = 1j0j — n2V?j (5)
dw+ v -YVw=B-Vj+uViw (6)

B_L = EZXV'Qb , V; = eszLb
i= Vo, e = V.

Here the subscript L refers to the components perpendicular to the ignorable
coordinate z, also called the poloidal components. Note that the parallel or
axial components B., v, need not be constant, but their equations decouple
from egs. (5), (6) owing to the incompressibility, hence these quantities could
be computed a posteriori. In order to justify the assumption of incompress-
ibility one often invokes the presence of a large axial B, = By > B, , such
that the poloidal motion becomes essentially an incompressible E x B flow.
In this case only the small poloidal field B, is affected by reconnection, which
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is true for most laboratory and many astrophysical plasma configurations. It
should be noted that the 2-D incompressible egs. (5), (6) are identical with
the 2-D reduced MHD equations (Strauss, 1976).

The 3-D reduced equations are almost identical with the 2-D form,

Op+vy -V = By0.¢ = nj (7)
Ow+vy-Vw = By -Vj+ By08.j +pViw (8)

the only coupling terms in the z-direction being provided by the linear terms
X BO.

The dissipative terms as written in eq. (5) contain a scalar resistivity 71,
usually denoted simply by 5, and a hyperresistivity, representing an anoma-
lous electron viscosity. While most of the discussion will be confined to the
case of a homogeneously distributed scalar resistivity, we also consider the
effect of hyperresistivity which may become the dominating magnetic dis-
sipation process in certain weakly collisional plasmas. Viscous dissipation
is confined to a simple scalar viscosity g, which is not a very restricting as-
sumption, since the reconnection process is primarily determined by magnetic
dissipation, except for very large viscosity.

Equations (5), (6) are written in nondimensional form normalizing B
to some typical poloidal field Bjo, vy to the corresponding Alfvén speed
v4s = Bjo since p = 1, and spatial coordinates to some typical scale L.
Hence the dimensionless parameter 7 is n/Lv4 = S™!, the inverse Lundquist
number and correspondingly for 7, and pu.

3 Current sheets : Basic properties

3.1 Sweet-Parker current sheet model

If fluid volumes carrying oppositely directed magnetic fields are pushed to-
ward each other, the fluid is squeezed sidewise along the field and the fields
approach each other, until resistive diffusion becomes important. The result
is a quasi-stationary dynamic current sheet, called Sweet-Parker current sheet
(Sweet, 1958; Parker, 1963), which is the simplest reconnection configuration
illustrated in Fig. 2. As usual we assume incompressible motions with ho-
mogeneous mass density, p = 1. The quasi-one-dimensional configuration is
characterized by six parameters, three dynamic quantities : the magnetic field
By immediately outside the sheet called the upstream field (the downstream
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field at the sheet edges is small in this quasi-one-dimensional configuration),
the upstream flow uy perpendicular to the field and the downstream flow v,
along the field; two geometric quantities : the width A (implying that the
sheet length is measured in the third direction z) and the thickness §, and fi-
nally the resistivity 7.

.

/
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Figure 2: Dynamic (Sweet-Parker) current sheet.

These quantities are connected by three relations derived from the continu-
ity equation, Ohm’s law, and the equation of motion assuming stationarity.
Integrating the continuity equation V - pv = 0 over the inflow and outflow
surfaces gives

ugA = o6 . (9)

Consider Ohm’s law along the z-axis. Stationarity requires E, = const. In
the upstream region outside the sheet, where the current density is small, the
resistive term in Ohm’s law is negligible, while in the current sheet center




where j = jn is large and the velocity vanishes and thus the resistive term
dominates, which gives the relation

. B
g Be = Nim = 77?0 . (10)

Since usually ug < By as will be seen a posteriori, the inertia term 1s negli-
gible in the force balance across the sheet. Hence d: (p + B?*/2) = 0, which
gives

B2/2 = pm —po- (11)

Here po is the upstream fluid pressure and p, the maximum pressure in the
sheet center, where the magnetic field vanishes. Now consider the force bal-
ance along the sheet-midplane. Since B, is negligible, the magnetic force
vanishes, such that only the pressure force is present leading to fluid accel-
eration along the sheet v,d,v, = —3d,p. Integration between center and edge
yields
vg/2 = Pm — Po - (12)
Here the current sheet edge y = A is defined by the vanishing of the pressure
difference across the sheet. In reality the edge region has a complicated
structure, as will be shown in section 5, where a more quantitative description
of a current sheet is presented. Substituting p, — po by BZ/2 we obtain
the important result that the downstream flow velocity equals the upstream
Alfvén speed
Vo = Bo = VA (13)

because of the density normalization. Relations (9) and (10) can now be
used to express two of the remaining variables by the three other. Choosing
the latter as By, A,  one obtains

Ug g e -1/2

— =My = =5

VA ¢ (BoA) 9 (14)
) _ .
T=AT =5 (15)

Here we have introduced the Mach-number My, which is conventionally used
as a dimensionless measure of the reconnection rate implying steady state
conditions at least locally in the sheet such that Mg nim™). A is called the

*)Calling M = u/B the reconnection rate has led to some confusion, since properly
speaking the reconnection rate is the rate of flux change at the X-point, 8¢ = njz,
which equals the product uB for stationary conditions.
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aspect ratio and Sg 1s the Lundquist number of the current sheet. The Sweet-

Parker reconnection rate My = Sy /% is a characteristic quantity for a current
sheet. If By and A are of the order of the global field intensity and spatial
scale of the magnetic configuration, Sy is the global Lundquist number, which
in most cases of practical interest is very large, typically 10'° in the solar
corona, such that the Sweet-Parker rate would lead to reconnection times
in a solar flare many orders of magnitude larger than observed. Obviously
a single quasi-stationary current sheet of an aspect ratio A ~ 10% is a very
implausible configuration.

It was in fact in flare theory where the need for a faster reconnection pro-
cess became first evident. Here Petschek’s slow shock mechanism (Petschek,
1964) seemed to provide a simple and elegant solution. This configuration,
too, contains a current sheet, where reconnection occurs, but its width A
is not determined by the overall system size but forced by the configura-
tion to be very small A ~ O (n). Hence the reconnection rate becomes
essentially independent of the resistivity which is what observations seem to
demand. Unfortunately, however, Petschek’s model incorporates a funda-
mental inconsistency invalidating the theory in the most interesting regime
of small resistivity as discussed in section 4.2. Instead it is found that in
an intermediate resistivity regime reconnection occurs in fact in macroscopic
current sheets, in the original sense of the Sweet-Parker reconnection model,
while for smaller resistivities the reconnection process becomes instationary,
leading to fully developed turbulence in the limit of n — 0.

Current sheets are formed under quite general conditions. In particular
the field must not be strictly anti-parallel, vanishing at the neutral line, but
only a particular component, called the poloidal field, has to change sign.
Hence there is in general a finite axial field B, in the sheet region. Where
in a sheared magnetic configuration a current forms, depends on the flows
as excited for instance by an MHD instability. Several examples will be
presented in section 8.

A strong axial field B, > B, ~ By provides also a solid justification of the
incompressibility assumption, which might otherwise appear doubtful within
the sheet, where the fluid velocity becomes large. The criterion for incom-
pressible motion is v < ¢, for parallel flow and v, < v, for perpendicular
flow. In the absence of an axial field incompressibility is valid only for the
case of high 3, where py > BZ/2, such that p,, — po < po. High-3 plasmas,
which can only be confined by gravitation, are however not very interesting,




since the typical plasma properties result from the interaction with magnetic
fields. By contrast a strong axial component corresponding to the case of
magnetically confined plasma with relatively low /3, automatically guaran-
tees incompressibility. Even if the flow reaches the Alfvén speed, meaning
the poloidal Alfvén speed, eq. (13), it is still slow compared with the axial
one, and hence constitutes essentially an incompressible E x B convection.

3.2 Effect of hyperresistivity and viscosity

Besides resistivity further dissipation processes may be important, chang-
ing the current sheet scaling laws. Let us first consider hyperresistivity 72,
introduced in eq. (5). Equation (10) is replaced by

) B
woBo = 12 ojm = 712‘530 (16)

while the force balance and hence the relation vy = By remain unchanged.
Insertion into the mass conservation relation (9) gives the Mach number

1/4
M= (Bfls) ' (17)

Hence the 7;-dependence of M is weaker than that on 7 = 71, eq. (14),
making the reconnection time scale less sensitive to the actual value of the
transport coefficient.

Also fluid viscosity , corresponding to ion viscosity in a plasma, could be
an important effect, modelling for instance dissipation due to gyro-resonance
in an nearly collisionless plasma. The case of finite viscosity has been con-
sidered by Park et al. (1984). The parallel force balance along the sheet now
becomes v,0,vy — pdzv, = —0yp , since Vv, ~ 0%v,. Integrating between
center and edge of the sheet, using & Pvydy ~ —voA /267 and eq. (11), one
obtains

ve + (}LA/(S?) vo = B2
or, with vo = nA/§? from egs. (9), (10),

N\ "2
vo = Bo (1 ¥ %) (18)




and hence

) -1/
M = s\ (1+%) (19)
A = 51/2 1 H S
= 0 +;]— ) (20)

generalizing eqgs. (14) and (15). Thus the modifications introduced by viscos-
ity are relatively mild. While for x4 < 7 its effect is negligible, u > 7 results
in a broader sheet with reduced inflow and outflow velocities.

4 Quasi-ideal models of stationary reconnec-
tion

4.1 Driven reconnection

The concept of driven reconnection plays an important role in conventional
reconnection theory. Originally the term refers to externally forced systems
in contrast to closed systems where internal reconnection processes occur
spontaneously for instance as a result of some instability. The concept can,
however, be applied much more generally. If we assume that the process of
reconnection is localized in space, we may restrict consideration to a small re-
gion of linear dimensions L around this location instead of the entire system,
open or closed, of scale size A, L < A. On the other hand L should be large
compared to the scales of the dissipative structures, L > A in the case of
a single current sheet, so that these are not affected by the artificial bound-
aries of the subsystem. The main advantages of restricting attention to the
subsystem L are that it allows to simplify the geometry and also to assume
stationarity even for a nonstationary global system. Since the coupling to
the latter occurs by the boundary conditions imposed on the subsystem, and
these boundary conditions change on the global time scale ~ A/v4, while the
subsystem adjusts to these changes on the much faster time scale ~ L/v 4,
we may consider the latter in steady state (if such state exists).

In this sense the subsystem constitutes a stationary reconnection config-
uration. As for instance shown in Figs. 3 and 5, fluid and magnetic field
are injected from above and below, while the fluid leaves the system laterally
carrying along the reconnected field. The small region, where dissipation pro-
cesses, in particular resistivity, are important, is called the diffusion region,
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which is surrounded by the ideal external region, where dissipation effects are
negligible. The interpretation of such a model system has, however, given
rise to some confusion. Since the fundamental issue in reconnection theory
is to account for rapid processes, a particular figure of merit of a theoretical
configuration is a weak or possibly no dependence of the reconnection rate
on the resistivity. In stationary driven reconnection this point needs fur-
ther specification, since the reconnection rate is determined by the boundary
conditions for the inflow velocity and magnetic field intensity and thus in-
dependent of 5 per definition. Instead for the reconnection process to be
independent of 7 one has to require that at fixed boundary conditions the
configuration remains unchanged if 7 is varied, at least for sufficiently small
values of 7. A consequence of such behavior would be that the ratio of out-
flow energy flux to input energy flux should be independent of n (essentially
unity) and so should be the ratio of the energy dissipation rate and the input
energy flux (essentially zero).

4.2 Petschek’s slow shock model

The model proposed by Petschek 1964 at a symposium on solar flares was
almost immediately accepted as a major breakthrough in the theory of re-
connection, serving as the basic concept for the following two decades. In
fact most papers (at least in the western hemisphere) on the subject of re-
connection deal with one or the other variant of Petschek’s model, notably
the review article by Vasyliunas (1975), or a subsequent review by Forbes
and Priest (1987). Only in recent years the basic inconsistency in the theory
has become apparent. Because of its historical importance Petschek’s model
shall be briefly described, before we point out where the theory is in error,
both conceptionally and formally.

The configuration is illustrated in Fig. 3. It is characterized by two pairs of
slow mode shocks standing back to back against the upstream flow, deviating
it by roughly 90° into the downstream cone, where the magnetic field is weak.
The current and vorticity are concentrated in the shock fronts and the central
diffusion layer, while in the external region velocity and magnetic field are
irrotational, V x v = V x B = 0, which together with V-v =V -B =0
results in V21 = V2¢ = 0. The shocks derive their properties from the slow
magnetosonic mode. This is primarily a longitudinal compressible mode,
which at finite amplitude steepens to form a shock. Its pecularity is to survive
with finite phase velocity in the incompressible limit, w? = kﬁvﬁ =
where B, is the component normal to the wave front. Hence for a given flow
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speed a plasma flow can always become supersonic with respect to this mode
if the angle between wave front and magnetic field is made sufficiently small.

Figure 3: Schematic drawing of Petschek’s reconnection configuration.

The jump conditions across a slow mode shock in the incompressible limit
can easily be derived. Equations V-v =V . B = 0 give

[vn] = [Ba] = 0, (21)

where [f] indicates the change across the shock. From the normal component
of the equation of motion follows the continuity of the total pressure

[p+B%/2] =0, (22)
while from the tangential component follows

[ve] = [Be] - (23)
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Using this result in Ohm’s law for steady state v x B = const yields
i = B (24)

If we require that for a given upstream magnetic field B the velocity and
the magnetic field in the downstream cone are homogeneous as indicated
in Fig. 4, v(® = Bs(f) = 0, the angles a, # are determined as well as the

tangential component vt(l) of the upstream velocity. For small Mach number
v /B <« 1 the downstream cone is narrow o < 1, f = «a, and v® = B,
the upstream Alfvén speed.

A

Figure 4: [llustration of B and v at the Petschek slow shock (heavy line)
and definition of angles o (downstream cone) and 3, B, = Bsin 3.

The crucial (and basically wrong, as we shall see) assumption in Petschek’s
model is, that the diffusion region is small, a tiny current sheet of dimensions
A ~ § ~ 1, adjusting smoothly to the external configuration, where the latter
is completely determined by the outer boundary conditions. (If this were
true, then by the definition given in section 4.1 the reconnection rate would
in fact be independent of .) To determine the ideal external configuration
the equations V%) = 0, VZ¢ = 0 are solved in the limit A — 0 using the
jump conditions at the shock. Petschek gives an analytical solution in the
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limit M < 1. Since the downstream flow equals the upstream Alfvén speed,
it follows from mass conservation that M ~ a, the angle of the downstream
cone. Petschek obtains the maximum reconnection rate achievable in his
model

Ly _i
M. (ln —) ~ (In §)~! . (25)
A
This weak S- or n-dependence is simply due to the fact that the magnetic
field is weaker in front of the diffusion layer than the asymptotic field, as-

sumed to be homogeneous, which is used in the definition of M in eq. (25).

Figure 5: Petschek-type reconnection configurations:
magnetic field lines (full), stream lines(dashed), slow mode shocks (heavy).
(a) Petschek’s original configuration (“fast mode expansion”).
(b) Sonnerup-type configuration (“slow mode expansion”).
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More general solutions are obtained by relaxing the condition of irro-
tational v and B, which allows for instance configurations with constant
upstream magnetic field as shown in Fig. 5b with M., = O (1) indepen-
dent of 7. Special similarity solutions of this type have been given by Son-
nerup (1970) and Yeh and Axford (1970) consisting of three regions (per
quadrant) of homogeneous velocity and magnetic field, separated by two sin-
gular lines, the Petschek shock and a second line in the upstream region, in
which the current and vorticity of the upstream region are concentrated. A
wider class of analytical solutions containing Petschek’s and Sonnerup’s as
special case has been given by Priest and Forbes (1986).

By calling all these configurations, which are usually strictly distinguished
in the literature, Petschek-like, it is indicated that their differences are mi-
nor compared with the common basic assumption concerning the effect of
the diffusion region. In fact all are solutions of the ideal external region
which essentially ignore the dynamics in the diffusion region, whence the
term quasi-ideal reconnection models. It is true that Petschek includes a
treatment of the diffusion layer, which, however, can only be regarded as an
interpolation between the origin and the external solution, assuming, for in-
stance, a linear increase of the perpendicular field component B, oy, while
a rigorous treatment shows B, oc y® as will be discussed in section 5.1.

Petschek’s model is based on the analog of a system of two supersonic
gas streams hitting head-on and being deflected sidewise by shocks with the
same geometry as the Petschek shocks. The physics of the central stagnation
point, where the shocks join, is however quite different in both cases. While
it is an ordinary flow stagnation point in the case of a nonmagnetic neutral
fluid, it is the location of intense dissipation and magnetic diffusion, owing
to high current density in the case of a magnetized conducting fluid. In the
latter case the flow is only supersonic with respect to the slow mode, while
it is subsonic with respect to the magneto-sonic mode, the phase velocity
of which is in fact infinite in the incompressible approximation. If resistive
diffusion is reduced by decreasing 7, the field is locally compressed in front
of the diffusion layer, which effect is communicated upstream modifying the
entire upstream configuration, in contrast to a supersonic gas stream, where
no signal can propagate upstream.

In fact from a plasma physics point of view Petschek’s concept contra-
dicts intuition, which tells us that pushing two volumes of highly conducting
plasma with opposite magnetic fields toward each other produces a flat config-
uration with a current sheet and that pushing faster makes the configuration

14




more flattish instead of further opening-up the cone for sidewise ejection,
M = a, as predicted in a Petschek-like model. Intuition is corroborated by
numerous numerical simulations, all exhibiting formation of current sheets
for sufficiently small », becoming longer, if 7 is reduced instead of shorter.
Scaling laws of current sheet configurations are discussed in section 5.

The crucial deficiency of reconnection models of the Petschek-type is the
ignorance or inappropriate treatment of the diffusion region. A correct the-
ory requires the solution of the boundary layer problem, matching the inner
resistive solution computed in simplified geometry to the external ideal so-
lution. Petschek’s external solution is correct and even stable, but it does
not match to the diffusion layer for small 5. Eliminating the problem of
the diffusion layer by using a resistivity profile which is locally strong en-
hanced in the vicinity of the X-point, nx = O(1) (“anomalous resistivity”),
a Petschek-like configuration is in fact set up as seen in the simulations by
Sato and Hayashi (1979). Hence Petschek’s model is not a selfconsistent re-
connection model in the limit of small 5. Because of the complexity of the
diffusion layer, which will be discussed in section 6, it appears quite hopeless
to solve the matching problem analytically. Quasi-exact stationary solutions
for relevantly small values of  have, however, been obtained by numerical
simulation (e.g. Biskamp, 1986), which are presented in sections 5 and 6. All
these configurations are strongly dependent on 7 and become nonstationary,
if  falls below some threshold.

The fact that numerical simulations of driven reconnection do not repro-
duce a Petschek-like configuration for small 5, has sometimes been attributed
to an inappropriate choice of the boundary conditions. While the discussion
of boundary conditions, in particular the actual freedom in their choice, is
deferred to section 5, we here only point out that the simulations themselves
effectively invalidate this argument.

a) Various kinds boundary conditions have been used in driven reconnection
simulations, none of which lead to a Petschek-type configuration for small
n. However, allowing anomalous resistivity to eliminate the diffusion layer
problem, Petschek-type configurations are set up for the same boundary con-
ditions.

b) Various simulations of self-consistent reconnecting systems have been per-
formed, such as the process of island coalescence (section 8.1) or the nonlinear
resistive kink mode (section 8.2), where no internal boundary conditions that
could possibly infer with the reconnection process have to be imposed. All
develop extended current sheets for small 7.
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4.3 Syrovatskii’s current sheet solution

An alternative school of thought, with adherents mainly in the eastern hemi-
sphere, originated from Syrovatskii’s theory of current sheet formation (Sy-
rovatskii, 1971). Similarly to Petschek’s model this is also a quasi-ideal,
quasi-stationary approach, dealing only with the ideal solution, which may,
however, exhibit sheet-like singularities. Though Syrovatskii’s theory does
not describe real configurations with high reconnection rates in the limit of
small 7, it provides a qualitatively correct picture for not too strong external
driving.

The basic equations are somewhat different from those of two-dimensional
incompressible MHD, to which the major part of this chapter is confined,
using vanishing plasma pressure p = 0 instead. The main assumption is that
all currents in the system are localized in isolated current sheets. Hence ¥
satisfies Laplace’s equation

V) =0, (26)

such that v is a harmonic function and one can use complex analysis. The
solution is determined by the boundary conditions. If these change in time,
1 obtains a parametric time dependence % (z,y,t), which then determines
the perpendicular component v, of the velocity from the frozen-in condition,

%Eat'(!)‘i‘V'V’l,b:O

(27)
Vi = _at¢v¢/lv¢|2 ] B=e,x V’l,[),
while the parallel component vy is calculated from the equation
dv _

VHIV—VJ_,

which follows from the equation of motion using p = 0. (The latter equation,
however, implies that the current density and hence the Lorentz force does
not vanish identically. Hence eq. (26) has to be regarded as an approximation
in the sense that the effect of the distributed currents is small compared to
that of the sheet current.) The flow is in general not incompressible. We
should, however, note that v is determined a posteriori, which seems to
reduce the theory to eq. (26), i.e. an equilibrium boundary value problem.
The important point is, that smooth solutions do in general not exist, in the
sense that any change of the boundary conditions leading to a change of 1,
/0t # 0, at a neutral point Vi) = 0 gives rise to a singular current.
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To discuss this singularity in more detail it is convenient to introduce the
complex potential F'(z) in the complex plane z = z + iy,

F(z,t) = ¢(z,y,t) + ix(z,y,1), (29)

which is analytic in the region considered except for isolated singular points
and branch cuts. The conjugate harmonic function y can be determined by
using the Cauchy-Riemann relations

Oox = =0y, Oyx = 09 (30)
From eq. (29) we obtain the magnetic field in the form
dFfdz = B, +1B,, (31)

which can be seen by choosing a special direction of the derivative, e.g. dF'/dz,
since owing to eqs. (30) the complex derivative is independent of this choice.

Let z = 0 be the position of a neutral point of the magnetic configuration
at time t = 0, dF/dz|,=o = 0. In the vicinity of this point the complex
potential is

aft)

F(z,t) = Tzz + B(t), (32)

restricting consideration to the only practically relevant case of second order
neutral points. Note that owing to eq. (26) there are only X-type nonsingular
neutral points. If the change of the boundary conditions for 9 is such that
df/dt # 0, this implies a nonvanishing electric field E, = 0 /dt at the
neutral point indicating that the potential F'(z,t) cannot remain analytic in
the vicinity of the neutral point.

The most natural assumption, namely the induction of a line current at
the neutral point,

24 s+ W, (33)

Flz,8)= o

is not allowed, since this would give rise to the appearance of an O-type singu-
lar neutral point, Fig. 6, implying a change of magnetic topology in a finite re-
gion, which is prohibited by condition (27). Here I(¢) is the total current gen-
erated in the plasma, which is determined by the boundary conditions with
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the initial condition /(0) = 0.

Figure 6: Generation of a singular current at an X -point. (a) Initial non-
singular configuration; (b) effect of an induced singular line current in
the original X -point, leading to a fictitious O-point and two adjacent
X-points. The heavy line indicates the actually arising sheet current.

The only admissible alternative is a solution with a branch cut corresponding
to a current sheet. The location of a branch cut is determined by that of
the fictitious neutral points arising by the addition of a line current in the
original X-point. As indicated in Fig. 6b, the cut passes through this point
and the two adjacent X-points drifting away from each other as the current
I(t) increases.

We can now discuss the structure of the field in the vicinity of a current
sheet. At large distances from the region of the cut the potential F'(z,t) has
approximately the form (33). The conditions at the cut are, that B does not
intersect the cut, since field lines remain continuous if they are so initially.
Hence the cut is a line 1) = const. Assume a straight cut extending along the
y-axis between the points y = £b. The solution for the complex potential
with the asymptotic form (33) for [z|/b>> 1 and ¥ = 0 at the cut is given by

I VTR
P() = SeVa+ B+ In ”—Zi_ (34)
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with the derivative

I b? 2
dr : or Ty taz
== p = 21
=B, +iB T (35)

While the magnetic potential ¥(z,y) = Re{F(z)} is continuous, the mag-
netic field B, has a jump across the cut, the line density of the current carried
by the sheet

2

J(y) = By(04,y) — B,(0-,y) =2 (% + a% - ay?) /\/b2 —-y*  (36)

with :
-[- \ J(y)dy=1.

The current distribution (36) shows an interesting feature. It is positive,
Le. in the direction of the total current 7, in the center part |y| < yo and
negative, i.e. in the opposite direction, in the outer parts |y| > yo, where
ys = (I/2ma) + b*/2. The points z4 = (0,=£y,) are neutral points of the
magnetic field, dF'/dz = 0, where the separatrix branches off the y-axis,
while the current sheet continues along the y-axis, Fig. 7a. At the end points
ly| = b the current density J(y) becomes singular giving rise to infinitely
large magnetic fields. Only in the special case I = mab?, where the neutral
points coincide with the current sheet endpoints the singularity vanishes,
Fig. 7b. This value is in fact an upper limit of the current I (or a lower
limit of the sheet width b), since for larger values the points z4 would form
isolated neutral points — the separatrix would be similar to the dashed line
drawn in Fig. 6b — which because of the frozen-in property is topologically
not possible. The general features of the Syrovatskii current sheet, eq. (36),
agree well with those of dynamic current sheets in a fully resistive theory
(section 6).

The velocity field v corresponding to the magnetic configuration (35),
which is determined by eqgs. (27), (28), cannot be given, as it seems, in simple
analytical form, but must be computed numerically, even in the stationary
case 9;1 = const. The qualitative behavior close to the current sheet can,
however, easily be understood. It follows from eq. (27) that there is a net
plasma flux into the sheet v,(04,y) = —v,(0-,y) # 0. Mass conservation
then requires the plasma to flow along the sheet, which leaves the sheet at
high speed close to the neutral points z4, while the plasma flow vanishes at
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Figure 7: Contours of the magnetic potential ¥ = Re{F}, where F 1is
given by eq.(34); heavy line = current sheet, dashed line = separatriz.
(a) general case yo < b exhibiting singularities at the current sheet
endpoints; (b) limiting regular case yo = b (from Syrovatskii, 1971).
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the singular sheet ends. The downstream velocity in the cone formed by the
two branches of the separatrix is of the order of the upstream flow, the cone
angle is not related to the downstream flow speed. Evidently Syrovatskii’s
configuration is basically different from Petschek’s.

Syrovatskii’s approach is a quasi-static model and does not provide a
selfconsistent dynamic model. The configuration is independent of the re-
connection rate 0y, which is an independent parameter in the theory, while
a fully resistive theory predicts a strong coupling between the current sheet
width b, the reconnection rate and the value of the resistivity. But the qual-
itative features of the configuration are in surprisingly good agreement with
typical current sheet configurations obtained from resistive theory. The es-
sential merit of Syrovatskii’s theory is to give a simple and elegant model
accounting for the generation of current sheets, a process, which seems to be

the most fundamental dynamical feature in highly conducting magnetized
fluids.

5 Scaling laws in stationary current sheet re-
connection

In order to determine the 7-dependence of a stationary driven reconnec-
tion configuration the stationary resistive MHD equations must be solved
for given inflow and outflow boundary conditions. Unfortunately it appears
that the problem is too complicated to permit analytical solutions without
severe approximations. In particular the matching of the solution in the dif-
fusion layer to that in the ideal external region is virtually impossible, since
the complicated shape of the diffusion region (section 6) seems to make the
problem nonseparable, i.e. truly two-dimensional.

Hence we have to resort to numerical methods. In this case there is no
particular advantage to restrict consideration to the stationary problem. In
fact the simplest and most reliable way is to follow the system numerically
from an initial state for fixed boundary conditions, until a stationary state is
reached, which automatically eliminates unstable solutions. In the past the
objections against a purely numerical way of solution have been, that the
limited spatial resolution would not allow to obtain solutions in the interest-
ing range of small 77, where small scale structures are expected, and even if we
had such solution it would correspond only to one point in parameter space
and one would not know how it changes if parameters are varied. For the
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problem of two-dimensional stationary driven reconnection these objections
are no longer valid. Accurate numerical solutions in the relevant parameter
regime can now be obtained and since there are only two essential parameters
their scaling laws can be obtained from a rather small number of computer
runs.

Since primary interest is in understanding the qualitative behavior one
can choose the simplest possible geometry having up-down and right-left
symmetry, such that only a quadrant must actually be computed. The com-
putational system is indicated in Fig. 8. The basic equations to be solved are
the 2-D incompressible MHD equations (5), (6). Boundary conditions have
to be assigned to ¥, ¢, j, w. While at the internal boundaries, the z-axis
and the y-axis, boundary conditions follow from the imposed symmetry, 1,
j being symmetric, ¢, w antimetric, conditions at the upper (z = L.) and
the left-hand (y = L,) boundaries correspond to the inflow and outflow con-
ditions, respectively. These should be chosen in a way conforming with the
concept of an open system, such that boundaries, in particular the outflow
boundary, do not obstruct the flow. Open boundaries are well defined for
linear waves requiring that waves are not reflected at the boundary, or, in
mathematical terms, that for a hyperbolic system of differential equations
all characteristics should be outgoing at the boundary, which guarantees
that perturbations arising due to presence of the boundary do not propagate
into the system. However, equations (5), (6) of incompressible dissipative
MHD are of mixed hyperbolic-parabolic type. In addition the equations are
nonlinear and two-dimensional, and to date there is no rigorous method to
determine, whether for such system a particular set of boundary conditions
is admissible. (A detailed discussion of the boundary conditions for different
MHD systems has been given by Forbes and Priest, 1987.)

Let us therefore apply a more practical procedure. While it seems to
be sufficient to require continuity of w and j at the boundaries in eq. (6),
d,w = 0,7 = 0, the system is more sensitive to the boundary conditions for
the potentials 1 in eq. (5) and ¢ in the Poisson equation V%¢ = w, since an
inappropriate choice may lead to singularities in w, j, which would show up
in the form of slow shocks in the vicinity of the boundaries. Any choice of
the boundary conditions that does not give rise to such singularities should
be regarded as acceptable and numerical experience indicates that there is
considerable freedom in this choice (Biskamp, 1986). One may, for instance,
specify ¢(y) and 9,9, i.e. vi(y) and B,(y) at the ingoing boundary = = L,
and ¢(z), i.e. v,(z), at the outgoing boundary y = L, and iterate d,, i.e.
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B.(z), at the latter, until the outflow configuration becomes smooth.

In order to describe the dependence of the configuration on the inflow
conditions it is convenient to parametrize the inflow boundary functions writ-
ing vz(y) = uswf(y), By(y) = Bsg(y). Then a stationary configuration is
characterized by the inflow parameters o, By, or simply u,, = M using
the normalization B,, = 1, and the parameters ug, Bo, A, é describing the
internal reconnecting current sheet, as illustrated in Fig. 8. While M is
prescribed, the current sheet parameters depend on the internal dynamics
and are functions of 7, in particular. A homogeneous resistivity distribution
is chosen to avoid additional complications arising from resistivity gradient
effects. Reconnection is said to be independent of 75, if for fixed boundary
conditions the configuration, in particular the width A of the current sheet,
does not depend on 7 (for sufficiently small 7).

First consider the case of very weak driving, M = E' <7 < 1. We obtain
an approximate stationary solution, d;%p = M, by expanding egs. (5), (6) in
M, which to lowest order gives

B-Vj = 0 (37)
v-V = —M+nj. (38)
If 7 vanishes asymptotically for |x| > 1, eq. (37) implies j = 0 everywhere in

an X-point configuration with open field lines. In this case there is a simple
similarity solution

b = 3(*-v) (39)
_ Mg [T
$ = 21n$_y\. (40)

The solution is, however, not valid on the separatrix @ = +y, where w =
4May/ (z? — y?)* becomes singular invalidating the approximation in eq. (37).
Hence the current j cannot vanish on the separatrix, in particular not in the
X-point, which also makes the resistive term j in eq. (38) finite. In this case
the magnetic configuration in the vicinity of the neutral point is fundamen-
tally changed as discussed in more detail in section 6.1. However, for M <7,
ie. M/n = MS = Rm £ 1, using normalizations By = v4 =1, L = 1 in
the definitions of S and Rm, the region affected is small, § = O (nlfz), such
that the global configuration is still essentially described by egs. (39), (40)
(Biskamp, 1986).
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Figure 8: Computational system and notation as used in numerical simu-
lations of stationary driven reconnection.

Increasing M at constant 7 or decreasing 7 at constant M, i.e. increasing
M/[n « MS = Rm, the magnetic Reynolds number®), to larger values, Rm >
O(1), the vicinity of the X-point is modified by the formation of a current
sheet of certain width A.

A series of numerical simulations has been performed (Biskamp, 1986) for
identical boundary profile functions, but different values of M and 5. The

*)Note that the Reynolds number is defined by the fluid velocity R,, = vL/#, in contrast
to the Lundquist number S = v4L/7.
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most conspicuous feature is the n-dependence of the width A of the internal
current sheet. Figure 9 gives the flow pattern ¢(z,y) and the magnetic
configuration v (z, y) for three cases differing only in the value of 5. Obviously
A increases rapidly with decreasing n until reaching the system size A ~ L,
in contrast to a Petschek-like behavior A = O(n). The current has the
properties of a Sweet-Parker sheet, satisfying in particular relations (14)
and (15). Quantitatively one finds the following M, 7 scaling laws for the
variables By, ug, A, § of the internal current sheet

By« M*/n = MRm (41)
up = M/Bp x Rm™! (42)
A x M*/p? = (MRm)* (43)
6o M. (44)

Hence increasing the Reynolds number Rm leads to an increase of the field
B, in front of the sheet (flux pile-up) and a corresponding decrease of the up-
stream velocity ug because of the stationarity condition uB = M. The sheet
width A increases with decreasing n and the thickness 6 is independent of 7
contrary to expectation, and even increases with M because of the decrease
of g, the deceleration of the upstream flow being apparent in Fig. 9c.

If the scaling laws (41) — (44) are universal and not just accidentally
valid for the particular set of numerical simulations, they should reflect the
physics of the Sweet-Parker current sheet, an important feature of which is
the acceleration along the current sheet. Consider the average force along
the sheet. Since v, increases linearly v, ~ Boy, we have

v,0,v, ~ B3 [2A ~ M[26 (45)

using mass conservation uoA = Bod and Ohm’s law uoBo = M. The scaling
law (44) implies that the force along the sheet is invariant under changes of
M and 7, in particular remaining finite for n — 0.

Finally we discuss the scaling of the energy dissipation rate W,, compared
with the input power W;,. Using egs. (41) — (44) we obtain the following

estimate
W - .2 / 2
W = j?’]_j‘ dF fuB dl

B3 2
~ nﬁAé/umBmLy
x Mﬁ/na, (46)
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since Ohmic dissipation is concentrated in the current sheet. W, equals the
magnetic field energy flux into the sheet W, ~ uoBjA. Relation (46) indi-
cates in particular that the fraction of the input power, which is dissipated,
increases with decreasing 7 becoming of order unity for a macroscopic current
sheet width.

When the current sheet width reaches the size of the global configuration
A ~ L as in Fig. 9¢c, the width A cannot increase further and the scaling
laws (41) — (44) are no longer valid. In this case the scaling behavior is
directly determined by the properties of the Sweet-Parker current sheet of
width A = L. From
'UQBU =M ~ T]BD/(S

one obtains

w=n/6 , Bo= Mé/n.

Inserting these results into the mass conservation equation ugL = Byé yields
the scaling relations

By «x (J’MFZJ_C/W)U3 (47)
§ o (nr/M)"” (48)
Ao (ML ?)"? (49)

Examples of such current sheet reconnection processes are the coalescence of
two magnetic islands and the nonlinear evolution of the resistive kink mode
(section 8).
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tionary configurations of current sheet reconnection.
(@) n.=no; (b) n =10/2; (c) n=10/4 (from Biskamp, 1986).



6 Current sheets : refined theory

We have seen in the preceding section 5 that the diffusion region in stationary
reconnection has the form of a current sheet, which may reach macroscopic
size and which has the characteristic properties of a Sweet-Parker sheet. In
this section we present a more detailed theory of the diffusion layer consid-
ering separately the central part and the edge region.

6.1 Stationary solution in the vicinity of the neutral
point

The simplest way to investigate the solution of the resistive MHD equations
in the vicinity of the neutral point (z,y) = (0,0) is to use a Taylor series
expansion in z and y (Cowley, 1975; Shivamoggi, 1985). Assume a symmetric
configuration indicated in Fig. 10a, where the stagnation point of the flow
coincides with the neutral point of the magnetic field:

2m . 2n

= £ ¥
d’ - 2¢2m2n(2 )'(2?1)

2m+1 2n+41

— )
¢ - mzlnqs2m+1,2ﬂ+1 (Qm 5 1).' (Qn + 1)'

fmn = a?a;lfh,yzﬂ 3 f = 'lps‘yé
For stationary conditions egs. (5), (6) read

0: Oytp — Dy 0t = (02 + O2)) — E (50)

0o Oy — By Dot — Butp B3 + Oy Bj = p (2w + O2w) ,  (51)

where E = 9,) = const. Since at the origin B = v = 0 and hence 55 = E,
eq. (50) gives
1 (Y20 + Yo2) = E. (52)

Differentiating eq. (50) twice with respect to both x and y at the orgin one
obtains

201120 + 1 (Yao +¥22) = 0 (53)
2¢11%02 — 1 (Y22 + o)

I
o
—_~
o
S
p —
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Differentiating eq. (51) once with respect to « and y at the origin gives

— 20 (Y22 + Y04) + oz (Yo + Ya2) = p(ds1 + 2033 + ¢15) (55)
which becomes by use of egs. (53), (54)

= %fﬁuif)szﬁoz = p(Ps1 + 2633 + ¢15) . (56)

Figure 10: Behavior of ¥(x,y) (full lines) and ¢(z,y) (dashed lines) in the
vicinity of the neutral point. In the resistive case the separatriz branches

cannot intersect at a finite angle (Fig. (a)), but osculate (Fig. (b)).
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First consider the inviscid case g = 0. Assuming ¢;; # 0, i.e. stream lines
forming hyperbolae, either 129 or 1g2 (not both because of eq. (52)) must
vanish. This implies that field lines are not hyperbolae, in particular the
separatrices do not intersect at a finite angle, but osculate as indicated in
Fig. 10b, where we chose ¢35 # 0, 192 = 0. While in an X-point configuration
B, in the downstream cones increases linearly, B, = 1y, it is cubic in the
osculating configuration, B, o y3, whereas the velocity is in general linear,
v, = ¢n1y. This behavior indicates the inherent tendency to formation of
current sheets in a resistive magnetized fluid.

In the case of finite viscosity these conclusions can no longer be drawn
from eq. (56). In general g, will be finite, its magnitude depending on
the higher order terms in the Taylor expansion of the streamfunction, in
particular ¢s;, the dominating term in an elongated configuration with d, >
d,. Numerical simulations, however, show that even for y ~ 7 the inviscid
behavior B,  y? is still nearly valid, implying ¢s; to be small, ¢s5; < ¢11/6%,
where § is the sheet thickness, i.e. the current gradient scale defined by

¢40 o ¢20/52-

Since the configuration around a neutral point tends to be stretched out,
one can make use of the quasi-one-dimensional character d, > 0, by per-
forming a power expansion only in y,

P(z,y) = tolz) +y"ha(e)/2! + -+ (57)
8(z,y) = yoi(x) +y’da(a)/3l+--- . (58)
If the zeroth order current distribution jo(z) = #{(z) is given, the other
functions ¥y(z),...,¢1(z),... can be determined successively in terms of

jo(z). Let us assume the following profile

Jm
cosh® (z/6)’
which is found in the simulations to fit the current density in the diffusion

region surprisingly well, and calculate the first terms in the series (57), (58)
explicitly. Integration of (59) gives

Jo(z) = (59)

Yo(z) = jm6®In[cosh (z /)] . (60)
Inserted into eq. (50) one obtains
¢1(z) = (n/é) tanh (2/6) (61)
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and hence the lowest order velocity components in the sheet

o) = —ugtanh (z/6)
vg,l) = wug(y/8) cosh™(z/8) .

Here ug = n/é is the upstream velocity and vg = By = 7,6 is the down-
stream velocity, which defines the width A of the sheet using the mass con-
servation relation vgd = ugA. In fact the inverse aspect ratio of the sheet
/A = ug/By = 1/ (jmb?) = Mo < 1 is the smallness parameter in the
expansions (57), (58). The next order terms can be obtained by straightfor-
ward but somewhat tedious calculation using both equations (50), (51). For
1 = 0 one finds

1
'(,bz(;l‘) = —21"102‘],-” (W — 14+ %tanh (.’E/(S))

pa(z) = M j—gl [ta.nh (z/6) — —(;;sh%“.ﬁﬁ_) (% — 2tanh (:v/&))] .

Since ¥o(xz = 0) = 0, we see that B,(z = 0,y) does not increase linearly in y
but at most cubically. The same is true for the second order current density
contribution ¥5(z = 0) = 0.

In order to obtain the variation of the current density along the y-axis
one has to go to the fourth order, which yields

j(@=0,y) =jm [1 - % (Mo%)4] ; (62)

This does, however, not contradict Syrovatskii’s result eq. (36), where the
line current density J(y) = [ j(z,y)dy varies parabolically J(y) ~ 1 — ay?
for y < b. In fact eq. (62) is only valid along the center line of the sheet, the

y-axis, where jp vanishes. The z-integrated second order contribution does
not vanish. Instead one obtains

T} ="Z5ub [1 o (M;y)gl . (63)

Since B, o y3, the Lorentz force along the sheet is small, B,j o 23,
such that the plasma acceleration is mainly due to the pressure force —d,p ~
Uy Oy vy X Y.
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6.2 Current sheet edge region

Let us now discuss the behavior in the edge region of the current sheet y ~ A,
where the Taylor series expansions (57), (58) break down, since Myy/é be-
comes of order unity. Thus the only reliable information is obtained from
direct numerical simulations. Earlier analytical treatments of the diffusion
region (see e.g. Vasyliunas, 1975) assumed a smooth transition to the ideal
exterior region of the downstream cone with the fluid continuing to flow at
the upstream Alfvén velocity. However, such a highly super-Alfvénic flow
(the local Alfvén velocity in the downstream cone is much smaller than in
the upstream region) should be sensitive to shock formation, which would in-
crease the field intensity and slow down the flow to sub-Alfvénic velocities. In
fact simulations show, that the ideal downstream flow is clearly sub-Alfvénic
and not related to the high speed reached within the diffusion region.

Closer inspection of the edge of the diffusion region reveals a complicated
structure, as is illustrated in Figs. 11 and 12. Figure 11 gives stereographic
plots of the current distribution viewed from the upstream side a) and the
downstream side b), which reveal the main features of the configuration, the
diffusion layer represented by the central current sheet along the y-axis, the
weaker sheet current along the separatrix, reminiscent of a Petschek slow
shock, both joining in a region of rather complex behavior, the edge region
of the diffusion layer. As is seen in Fig. 11b the current density in the diffu-
sion layer changes sign, i.e. the positive central part is followed by a negative
part, terminated by a quasi-singular spike (numerically well resolved, how-
ever). Figure 12 gives contour plots of j, ¢, ¢ in the edge region of three
stationary simulation states (the symmetric lower quadrant is added for clar-
ity) with a) 7 = 50, b) 7 = 70/V/2, ¢) n = 10/2, showing the rapid increase
of complexity as 5 is reduced. The point, where the current density of the
diffusion layer changes sign (marked by the arrows in the j-plots) coincides
with the location, where the separatrix (dashed line in the ¥-plots) branches
off, as in Syrovatskii’s current sheet configuration, Fig. 7a. The dynamics can
most readily be interpreted when considering the ¢-contours, high streamline
density indicating high velocity. The flow, which is accelerated in the central
current sheet up to the upstream Alfvén speed, is decelerated in the following
part of reversed current density and finally completely blocked and turned
backwards at the current sheet end point singularity, the spike in Fig. 11b.
The flow is subsequently again accelerated forming two secondary current
sheets parallel to the primary one, with the same characteristics, j > 0
part, 7 < 0 part and flow-blocking shock-like structure. In the limit  — 0
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Figure 11: Stereographic plots of the current distribution of a stationary
reconnection configuration, (a) viewed from upstream side, (b) from
the downstream side (from Biskamp, 1986).
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Figure 12: Contours of j, ¢, ¥ in the edge region of the diffusion layer,
(a) 1 =10; (b) 1 =10/V2; (c) 1 =n0/2 (from Biskamp, 1986).

Figure 13: Schematic drawing of the selfsimilar hierarchy of current sheets
in the edge region of the diffusion layer: = positive j, ——— =
negative j, ® = endpoint singularity.
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a hierarchy of higher order current sheets seems to be generated with a
selfsimilar scaling behavior as drawn schematically in Fig. 13.

The properties of the diffusion layer as revealed by numerical simula-
tion and outlined in this section are consistent with Syrovatskii’s current
sheet model, the multi-current sheet edge behavior representing the dynam-
ically resolved singularity predicted in Syrovatskii’s quasi-static theory. The
picture indicated in Fig. 13, however, rests on a twofold idealization. One
is the assumption of perfect symmetry, the other that of stationarity. As
will be discussed in section 8, a dynamic current sheet though much more
stable than a static one becomes unstable, if the aspect ratio A = A/ is
sufficiently large, giving rise to a nonstationary behavior. In a less symmet-
ric configuration such nonstationary behavior would be very complex. In
fact the most probable dynamic state is that of fully developed turbulence
consisting of a statistical distribution of micro-current sheets (Biskamp and
Welter, 1989). The stationary multiple current sheet configuration presented
here gives a first indication about the complicated behavior to be expected
at high Reynolds numbers.

7 Tearing instability of a Sweet-Parker cur-
rent sheet

In a static sheet pinch, for which the tearing mode is usually considered
(Furth et al., 1963), the instability condition ka < 1 implies that the con-
figuration becomes unstable for aspect ratio A = Afa 2 2 27/ka ~ 10.
The existence of apparently stable current sheets of considerably larger A,
as observed in numerical simulations, indicates that the dynamics involved
in a Sweet-Parker sheet has a considerable stabilizing effect. The stability
properties of such configuration with respect to the tearing mode were stud-
ied by Bulanov et al. (1979). Strictly speaking a Sweet-Parker sheet is a
weakly two-dimensional system, where the inhomogeneity along the sheet
arises because of the acceleration of the parallel flow as well as the increase
of the normal magnetic field component. Since the latter is weak, B, « 32,
as we have seen in section 6.1, the inhomogeneity of the parallel flow is the
dominant effect,

vy(y) =Ty, (64)

where

I'=vs/A >~ u/é~n/6,
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using the properties of a Sweet-Parker sheet. Hence I'"! is just the resistive
time 7g of the current sheet and the aspect ratio equals the Lundquist number
of the sheet,

A/éZUA5/q=TR/TA555, (65)

where the subscript é should remind the reader that S5 is to be distinguished
from the Lundquist number S = v4L/n of the global configuration, S5 < S
usually. The normal component of the flow u only has the effect of balancing
resistive broadening of the sheet. Being zero at the sheet centerline z = 0,
the resonant surface of the tearing mode, it does not affect tearing mode
stability, nor does the shear of the parallel flow v,(z), since it, too, vanishes
on the centerline 0;vy|z=0 = 0.

Bulanov et al. apply a WKB analysis which results in a relatively com-
plicated formalism, the strict evaluation of which does not appear to be very
rewarding. Syrovatskii (1981) has summarized the results giving a simple
stability condition

rznq, (66)

where 7y is the tearing mode growth rate for a one-dimensional static sheet.
The result (66) can easily be understood. The tearing mode corresponds
to a local current condensation, which is counteracted by the wavelength
stretching caused by the inhomogeneous parallel flow. More quantitatively,
one may assume that the mode is effectively stabilized, if the relative change
of the wavelength during one e-folding time exceeds, say, 1/4:

(vy (¥ +A) —vy (¥)) /YA =T/7y > 1/4. (67)

Hence the sheet is tearing mode stable, if I' > 7,../4. In the asymptotic
limit of large S one has Y4, =~ 0.6 (TATR)_UZ (Furth et al., 1963), valid for
k& ~ S;** ) which by use of eq. (65) gives the stability condition

' 2 0.15 (tr74)™/?

or

§/A 2 2x1072. (68)

Since for relatively low S-values, S5 = A/§ < 102, Ymar is somewhat smaller
than predicted by the asymptotic formula, and because of the semi-quan-
titative nature of the criterion (67) we may say, that the tearing mode is
unstable for current sheet aspect ratio A/§ 2, 10%.

36




In addition stability is expected to depend on the magnitude of the per-
turbation. Since the equilibrium flow, which constitutes the stabilizing effect,
is affected by a finite perturbation amplitude, the current sheet may actually
tear for smaller aspect ratios than predicted by linear theory. In numerical
simulations a current sheet configuration appears to be more prone to tearing
when a poorer spatial resolution is used, since discreteness effects generate
a higher noise level. Finally also the lack of stationarity, which is to be ex-
pected for general reconnection systems, leads to a higher sensitivity with
respect to the tearing mode.

From the scaling laws for driven reconnection eqgs. (43), (44) A/§ ~ 72,
or (49), A/§ ~ %3, we see that the tearing mode will be unstable in
a Sweet-Parker sheet for sufficiently small 7. Let us therefore consider its
nonlinear behavior. Though there are cases, where a chain of several mag-
netic islands of comparable size is generated similar to the tearing mode
in a one-dimensional static sheet pinch, more typically only one isolated is-
land is generated in the most unstable center part of a dynamic current
sheet. While growing in width and thickness in a rather selfsimilar way it
is convected along the sheet and expelled into the downstream region. Such
isolated island is now generally called a plasmoid. Figure 14 illustrates the
repetitive generation and evolution of plasmoids. Shown is a configuration of
driven reconnection as given in Fig. 10 (for clarity the lower symmetric part
is added in the plot). Changing the boundary conditions at y = 0 slighty
from d,¥ = 0 to ¢(z,t) = ¥(z)+ Mt, where M is the externally imposed av-
erage reconnection rate and (z) is the stationary 1 distribution on the axis
y = 0 observed in the case c) of Fig. 10, is sufficient to generate a periodic
sequence of plasmoids. The properties of plasmoids and their acceleration,
which plays an important role in the earth’s magnetotail, will be considered
more closely in section 8.3.

8 Examples of 2-D reconnecting system

In this section we consider in more detail some typical dynamic systems,
which develop fast reconnection, either as a result of an instability of the
initial configuration in the cases of the coalescence instability and the resistive
kink instability, or by a lack of equilibrium of the configuration in the case
of plasmoid acceleration.
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Figure 15: A circular pinch forced into an elongated shape tends to re-
store its original shape by tearing and subsequent coalescence (schematic
drawing).
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8.1 Coalescence of magnetic islands

There are essentially two types of dynamic processes, which may occur in an
evolving two-dimensional magnetic configuration, tearing and coalescence.
The natural plasma shape is that of circular cross section, the cylindrical
pinch. If such a system is forced into an elongated shape, it will tear, i.e. break
up into two or more fractions of about circular cross section, which will
subsequently coalesce to restore the original configuration as illustrated in
Fig. 15. Both processes are basically driven by the same physical effect, the
attractive force between parallel currents. Tearing is usually a slow process.
It corresponds to a local condensation or nucleation of the current density
in a conducting medium, which from the beginning has to overcome the
ideal flux conservation constraint by reconnection and hence cannot build
up momentum to drive reconnection at a rate substantially faster than that
of global resistive diffusion. By contrast, coalescence is a fast process. The
currents flowing in the two flux tubes exert a finite attractive force on each
other, which drives reconnection at a faster rate.

The coalescence process has been studied starting from a periodically cor-
rugated sheet pinch equilibrium consisting of a sequence of magnetic islands
as shown in Fig. 3.7 (Pritchett and Wu, 1979; Biskamp and Welter, 1980).
It belongs to the class of equilibria (Fadeev et al., 1965),

Y(z,y) = Beoaln (cosh (z/a) + ecos (y/a)) , (69)

where B, is the asymptotic field for |z| — oo, and ¢ is a measure of the
equilibrium island size wo, given by the equation cosh (wo/2a) = 1 + 2,
wo/a ~ 4,/€ for wy < a. It is interesting to note that the equilibrium
eq. (69) corresponds to a finite amplitude tearing mode with wave number
ka = 1, the marginally stable mode in an uncorrugated (¢ = 0) sheet pinch.

It has been shown that the equilibrium (69) is ideally unstable with re-
spect to pairwise island coalescence (Finn and Kaw, 1977) for any equilibrium
island size wo > 0 (Pritchett and Wu, 1979). The nonlinear dynamic process
has been investigated numerically, by solving the incompressible 2-D MHD
equations (5), (6). It can be divided into an ideal MHD phase, where the
plasma within the islands are freely accelerated toward each other leading to
field compression and the formation of a sheet current between the islands,
and a quasi-stationary reconnection phase. For intermediate values of the
normalized resistivity 5 = S~1, typically 1072 — 107, a selfsimilar behavior
is observed, with the following 7-scaling laws for the upstream quantities uo,
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By taken just in front of the diffusion layer:

up o« /3

BO o 77_1/3 (70)
and the width A and thickness 6 of the layer

A ~ wy x 5°

§ o 9?3, (71)

As a consequence the reconnection rate computed at the X-point, 1y =
nix = uoBy, is independent of . This does, however, not mean, that the
reconnection process can be associated with a Petschek-like behavior. In fact
there is no relationship, since reconnection occurs in a macroscopic current
sheet, A >~ wq. Relations (70), (71) agree with the scaling laws for driven
reconnection (47) — (48), since the equivalent driving M produced by the
coalescence instability is large enough for < 1072 to generate a current
sheet of the global system size, i.e. the equilibrium island width wy. A typical
state is illustrated in Figs. 16 and 17.

Obviously the egs. (70) are only valid for a certain 5-range, since the
value of the field By cannot exceed the maximum value B,,, which would
be obtained in the ideal case 5 = 0 for ug = 0, when the inward motion
is reversed because of the repelling force produced by the compressed field.
Hence the scaling law eq. (70) breaks down, if By approaches B,,. For smaller
values of 7, typically n < 107*, one finds a Sweet-Parker scaling law

T o nif?

By ~ B, x 7°,

Uy, By indicating a time average, since in this regime the motion of the island
plasma toward the diffusion layer is increasingly modulated by an internal
oscillation or sloshing owing to the finite kinetic energy obtained in the first
phase of the instability. The behavior is illustrated in Fig. 18, showing the
change Az(t) of the position of the O-point during coalescence, Az = 0
corresponding to the initial two-island equilibrium state, Az = —7 to the
final one-island state for three values of the resistivity. While in the first
phase ¢ < 90, the ideal process of island acceleration, Az is independent
of 1, in the subsequent phase dominated by current sheet reconnection one
finds in fact dAx/dt ~ const. x nl/2.
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Figure 16: Contours of 1, j, ¢ during island coalescence.
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Figure 17: Blow-up of the center region of the configuration shown in Fig. 16.
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Figure 18: Change of O-point position Az(t) during island coalescence for
o 105, i 32 05, 105,

8.2 Nonlinear evolution of the resistive kink mode

It is well known that the linear theory of the m =1 resistive kink mode in a
cylindrical plasma column differs significantly from the m > 2 tearing mode
(e.g. Ara et al., 1978). The physical reason is, that the latter corresponds to
an ideally strongly stable mode, while the ideal m = 1 mode is usually close
to marginal stability or even unstable. Hence it is driven by the free energy
of the ideal mode and a more rapid nonlinear evolution than the diffusive
growth of the tearing mode can be expected.

First consider the properties of the magnetic island produced by a finite
amplitude m = 1 eigenmode. For simplicity we restrict ourselves to the case
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of marginal ideal stability vz = 0. Let us first modify egs. (5), (6) to describe
the helical structure of the kink mode. Instead of the poloidal flux 1 one
introduces the helical flux function 1., which in the limit of a strong axial
field By reads (Kadomtsev and Pogutse, 1974)

VY. =1 — aBor?/2 (72)

where « is the helical parameter, all quantities depending only on r and
0" = 0 — az. In a large aspect ratio tokamak with major radius R we have
a = R™'. The equations replacing eqgs. (5), (6) read

Ope +v - Vb = nj —nV7j (73)
dw+v-Vw = (e, x Vi) - VV4, 4+ uVi . (74)

Note that these equations, in contrast to egs. (5), (6) are not the general
incompressible MHD equations in helical geometry, but require in addition
the condition By > B,. Equations (73), (74) can easily be derived from the
3-D reduced equations (7), (8).

In the vicinity of the rational surface r = ry, x = r — r; < rq, the helical
flux function . following the equation

(0 +v - V) =7 (V¥ +20By)

has the form

1
P, ~ 5 oz + 11(z) cos b . (75)

If the displacement ¢ is larger than the resistive layer width §;, the island
size exceeds &;. (The subscript [ is introduced to distinguish the linear layer
width & oc 7'/? from the sheet thickness in the nonlinear regime § « 5'/2.)
Assuming that the form of the magnetic perturbation #,(z) is not broadened
nonlinearly as in the case of the tearing mode, which will be seen below, the
shape of the island can be calculated using the asymptotic form (8; — 0) of
the eigenfunction ¥ (z) :

o ={ 5 230 (76)

where £ is the uniform displacement of the plasma inside the ¢ = 1 surface.
The magnetic configuration is illustrated in Fig. 19. The condition Vi, = 0
gives the O-point of the island at @ = —¢, @ = 0. The two branches of the
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Figure 19: Schematic drawing of the island shape caused by a central dis-
placement £ in the nonlinear resistive kink mode.

separatrix are obtained by considering the flux surfaces passing through the
“X-point” at = 0, @ = w. They have the value 9. =0, i.e.

%2-—}-6:1:(:059:0 At |
%3 =0 x>0.
Hence the outer separatrix is given by the concentric circle
a={)
while the inner separatrix is given by

x = —2€cosd 0] < 7 /2
#=0 0] > /2,

i.e. consists of a shifted half-circle of the same radius as the outer separatrix

for || < 7/2 and coincides with the latter for |6 > 7 /2. This part represents
a current sheet, the §-function singularity in 1{(z) implied in eq. (76). While
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the current sheet is sustained for |#| > 7/2 owing to the impinging plasma
flow, it is smeared out over the island for |§| < 7/2, since here the plasma
flow is receding. Hence eq. (76) is strictly speaking only valid for |8 > 7/2,
while for |#| < 7/2 the perturbation is smoothed across the island, the size
of which is

w=2¢. (77)

The current sheet, the magnetic configuration, and the flow pattern ob-
tained from an exact simulation are given in Fig. 20. Hence the nonlinear
reconnection process occurs in a quasi-stationary current sheet of half-width

A~y [2.

In order to compute the nonlinear evolution w(t), we adjust the simple
plane Sweet-Parker reconnection model outlined in section 3.1 to the geome-
try of the kink mode. In the laboratory frame the flow into the current sheet
is not symmetric, but enters only from the interior region, as seen in Fig. 20c.
Since the reconnection of the helical field is necessarily symmetric involving
equal positive and negative amounts of field, the current sheet itself is mov-
ing outward with the velocity u/2, where u = £ is the plasma velocity in the
laboratory frame, such that in the frame of the sheet the inflow velocity is

up = u/2. The continuity equation yields the relation

‘rrf2
/ 'Ltgn?"]_dgf = UgTr1 = 'UU(S N (78)
0
where vy = vy is the outflow speed and 6 the sheet half-thickness and we

have inserted the normal component wg, = ugcosf’ ,0' == — 6.

The outflow speed vy equals the upstream Alfvén velocity computed with
the field component to be reconnected (see eq. (13))

Vg = B* 5 (79)

where B, is the helical field in front of the sheet. B, can most easily be
obtained from the behavior of the helical flux ¥.(r,8 = 7) shifted rigidly
toward the sheet as illustrated in Fig. 21,

B, = [0:.] = ] £/2 = |¥5| w/4 . (80)

The total change of the helical field across the sheet [B.] = 2B. agrees with
the expression obtained from egs. (75) and (76).

In contrast to a plane current sheet the inflow velocity wug, is not homo-
geneous and hence the thickness ¢ is not constant but varies along the sheet,
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Figure 20: Contour plots of (a) current density, (b) helical fluz 1.,
(¢) stream function ¢, for a simulation of the nonlinear resistive kink

mode with S = 107 (from Biskamp, 1991).
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Figure 21: Helical fluz ¢.(r,0 = ) (heavy line) resulting from a rigid shift
of the interior branch which leads to a jump in the helical field B.. The
reconnected fluz is indicated by the shaded area.

§ = &(0). This is determined by Ohm’s law for stationary conditions across
the sheet, generalizing eq. (10),

uon(0) B«(0) =n j(0) =~

(81)

and hence

6(0) = n/ugcost’ . (82)

Evidently the current sheet cannot extend up to 0' = 7 /2, but only to some
value 8 < 7/2. Simulations give a value fp =~ 0.87/2, as seen in Fig. 20a.
Because of the broadening of the sheet the behavior in the edge region is
rather smooth compared with the quasi-singular structure encountered in a
plane current sheet (Figs. 11, 12), the negative current density part being
only weakly pronounced in Fig. 20a.
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Inserting eqs. (79), (80) and (82) with ' = 6, into eq. (78) and using
uy = u/2 = w/4, one obtains the equation for the time evolution of the
island

W = 2(n 4] w/ri cos )/ (83)
which yields the algebraic growth law for small but finite island size (Wael-
broeck, 1989; Biskamp, 1991)

w = 7 |1bf [r1 cos Og| (84)
or
u =7ty /r1cosbp|t . (85)

The nonlinear time scale obtained by setting w ~ ry is 7 = O(n'/?). Though
the flow velocity into the sheet is small, u < O('/?) as seen from eq. (85),
inertia is not negligible, since the velocity along the sheet vg is independent
of .

Equation (85) is in quantitative agreement with results obtained from
numerical simulations, performed with an initial j-profile

r\?\ 2
j= (1 + (—) )

To
with ro = 0.7, ¢ = 1 surface at 7; = 0.5, and 5(r) = 70/j(r). Figure 22 shows
the velocity of the plasma center u(t) (center curve) for o = 1077. For
reference the upper (dashed) curve represents continued exponential growth,
while the lower curve represents the quasi-linear approximation, where u
saturates, ug ~ 76 = O(n?/?), in contrast to the exact behavior, where u(t)
grows linearly reaching tmq, = O(n/?). From Fig. 22 one finds u/a =t — o
with @ ~ 4 x 1077, while eq. (85) with 0, = 0.87/2 yields a = 3.3 x 107".
Since the exact value depends on details such as the profiles of the sheet
current and the flow, a simple exact theory as Rutherford’s for the tearing
mode cannot be obtained. It should be mentioned that naive application of
Sweet-Parker reconnection theory without taking into account the geometric
particularities of the kink mode gives the same scaling as eq. (84) but the
numerical coefficient is smaller by roughly a factor of 10.

The resistive kink mode does not saturate at a finite island size but is-
land growth proceeds until the entire helical flux originally inside the resonant
surface r = ry is reconnected and the system effectively returned to a sym-
metric state. This is the basic model of the sawtooth relaxation oscillation
in tokamaks.
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Figure 22: Time evolution of the velocity w in the resistive kink mode (from
Biskamp, 1991).

8.3 Plasmoids

As indicated in section 7 the nonlinear evolution of the tearing mode in an
open, weakly two-dimensional current sheet differs significantly from that in
periodic systems. In the latter there is a chain of islands, for instance a
(m,n) = (mo, 1) mode in a cylindrical configuration (no island coelescence is
possible because of n = 1 corresponding to the largest possible wavelength),
which grow slowly on the global resistive time scale (Rutherford, 1973). Since
inertia effects are negligible, the process constitutes a sequence of smooth
equilibrium states. By contrast in an open sheet configuration usually a
single major plasmoid is generated, which is rapidly moving along the sheet
while growing in size; an example was given in Fig. 14. Inertia effects are
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important, since the system is not in MHD equilibrium, which allows much
faster reconnection . Let us consider this process in more detail.

Plasmoids seem to be an important feature of various kinds of eruptive
processes in astrophysical plasmas, notably magnetospheric substorms and
solar flares. In fact in the dynamic numerical modelling of the earth’s magne-
totail plasmoid formation, which is believed to be the origin of the substorm
phenomemon, has been investigated most intensely (Birn and Hones, 1981;
Lee et al., 1985; Hautz and Scholer, 1987; Ugai, 1989; Otto et al., 1990;
Kageyama et al., 1990).

The basic process is illustrated in Fig. 23. A weakly two-dimensional
static equilibrium is assumed as initial state, modelling a typical magneto-
tail configuration. Equilibrium pressure variations along the tail midplane are
usually chosen in such a way, that the configuration has a distant (from the
earth, the left-hand boundary at y = 0) X-point. This X-point is useful in
order to unambiguously define the volume, mass and momentum of the plas-
moid (Otto et al., 1990), but seems to have little effect on the global plasmoid
dynamics.

Figure 23: Schematic drawing of the plasmoid evolution in a weakly two-
dimensional magnetic configuration.
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Figure 24 gives a sequence of plasmoid states from a two-dimensional com-
pressible MHD simulation by Hautz and Scholer (1987). (Because of finite
plasma compressibility the flow pattern cannot be visualized by contour plots
of a streamfunction ¢, but requires a vector representation.) For finite re-
sistivity the initial configuration is unstable to tearing. By applying a field
perturbation or by locally increasing 7 one initiates reconnection at a partic-
ular position yo (yo = 25 in Fig. 24a), creating an X-point, thus starting the
plasmoid formation. The plasmoid is accelerated along the sheet in the direc-
tion of decreasing pressure and field intensity. Since this motion leads plasma
away from the X-point, it has to be replenished by motions from above and
below into the X-point region, giving rise to a quasi-forced reconnection pro-
cess, which continues on the fast Sweet-Parker time scale instead of slowing
down to the global resistive time scale as in the case of a periodic tearing
mode. In fact a long current sheet is created extending up to the receding
plasmoid (Fig. 24b). Though the original distant X-point is hardly visible
any more, the plasmoid volume is rather well defined by the flow pattern,
the velocity being large and nearly uniform over the plasmoid cross-section.
Interaction with the downstream plasma still at rest leads to shock forma-
tion (not well visible in Fig. 24) and a blunt leading plasmoid edge, which
gives the plasmoid a drop-like shape and decreases the plasmoid acceleration.
When the trailing current sheet is long enough, it becomes tearing unstable
itself, producing secondary plasmoids, which are strongly accelerated toward
the primary one and eventually coalesces with the latter (Figs. c¢,d). Three-
dimensional effects do not change the general picture qualitatively as shown
for instance by Kageyama et al. (1990), who present a global simulation of
the interaction of the solar wind magnetic field with the magnetosphere. A
long tail is formed giving rise to the continuous generation of plasmoids.

The question, concerning the dominant force in the plasmoid acceleration
has been investigated by Otto et al. (1990). It turns out that the pressure
force is significantly larger than the magnetic tension, which is similar to the
plasma acceleration along a simple Sweet-Parker current sheet (section 6.1).

While the plasmoid acceleration is essentially an ideal MHD process, the
reconnection time scale 7 and hence the plasmoid growth depend on the
value of 7, roughly 7 ~ S'/2. This implies that plasmoid size decreases
with 7. In most magnetotail simulation studies this fact is concealed by
the use of an anomalous resistivity model with o« j. It should also be
mentioned, that the basic problem in the theory of magnetospheric substorms
is indeed the identification of the relevant dissipation process in Ohm'’s law.
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Figure 24: Simulation of plasmoid generation in the geomagnetic tail. The
arrows indicated above the charts of the flow pattern correspond to unit

velocity (from Hautz and Scholer, 1987).
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Since the magnetotail plasma is collisionless, this has to be a collective pro-
cess. Because of T; > T, however, collisionless modes are in general strongly
damped and cannot easily be excited which is consistent with the fact that
the magnetotail is quiescent most of the time and substorms are rare events.

9 Magnetic reconnection in general three-di-
mensional systems

Up to this point consideration has been restricted to two dimensions, i.e. to
systems with spatial symmetry, where the definition of magnetic reconnection
in terms of a change of magnetic topology is unambiguous and the effect of
reconnection is obvious by a simple inspection of the field configuration.
Iield line topology is determined by the flux function 3 with regions of
different topology separated by separatrix surfaces 1, connecting to X-type
neutral points (or the generalizations thereof, such as osculating separatrices
or current sheets with Y-points.

These concepts are, however, no longer valid in non-symmetric three-
dimensional systems, which has led to certain misunderstandings. Following
Schindler et al. (1988) we consider the process of plasmoid formation in a
system of finite size in the z-direction with a superimposed weak B, field,
modelling the geomagnetic tail as illustrated in Fig. 25a. Obviously a sepa-
ratrix, defined as a surface enclosing a region of field lines localized in z, does
not exist, as all field lines finally connect to the left-hand tail edge. Neverthe-
less field line reconnection does occur in the sense of a localized break-down
of the frozen-in field condition and a resulting change of the field line con-
nection (this definition of reconnection has been given by Axford, 1984), as
is illustrated in Fig. 25b. Hence in three-dimensional systems one has to
resort to the original physical meaning of the term reconnection as localized
magnetic diffusion, which implies the presence of a finite parallel electric field
E) = nj) (or some other dissipation effect in Ohm’s law).

Since the simple two-dimensional criteria based on flux surface topology
cannot be applied, it is interesting to obtain a more general criterion to decide
whether in a given plasma volume V' magnetic reconnection takes place. To
this purpose one may use the magnetic helicity

H:fA-BdT.
Vv
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Figure 25: (a) Schematic drawing of field lines in the geomagnetic tail with
a finite component B,, carrying a plasmoid.
(b) Reconnection of two field lines in the process of plasmoid growth.
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However, H is a useful quantity only if gauge invariant, which requires cer-
tain conditions on the surface S of the volume V to be satisfied. The time
derivative of H is

af 2]15: Bd f(¢B+ExA) dF (6)

_ = = . T — .

dt v S
using B = -V xEand E = -V¢—-0,A. If B, = E; = 0 on the boundary,
which corresponds to a conducting wall, the gauge-dependent surface term
vanishes. In this case dfl/dt # 0 indicates Ej; # 0 somewhere in the system,
hence reconnection occurs. In astrophysical applications, however, the case
of an unbounded system is of more interest, where dynamical processes are
limited to a finite region, while outside there is a static magnetic field and
no electric field. Here one can define a more general helicity expression

f_:]V(A-}-Ao)-(B—BO) dr, (87)

where By, Ag are field and vector potential at some reference time ¢y3. Anal-
ogously to eq. (86) one obtains

dH

== —Q/VE-BdT+fS[¢(B—B0)+Ex (A —Ap)]-dF.  (88)

For a static asymptotic field B = Bg and vanishing asymptotic electric field
E = 0 the surface integral vanishes. Hence dH /dt # 0 implies Ej # 0 and
thus guarantees the presence of reconnection.

A different more explicit approach to the 3-D reconnection problem has
been developed by Lau and Finn (1990). Given a regular magnetic field
B(x,t), how can one decide whether reconnection is involved and where the
reconnection layers are located in space. Here reconnection is defined in the
following way. The ideal form of Ohm’s law E+4v x B = 0 called the frozen-in
condition implies a perpendicular plasma flow

VJ_:EXB/BZ, (89)

called the field line velocity. The electric field satisfies the condition E-B = 0,
from which follows the equation for the electrostatic potential

B-Vé=-B-9A. (90)

Only if a smooth solution ¢ exists in the volume considered, can the plasma
flow be regular and ideal MHD valid throughout the volume. If ¢ exhibits
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singularities, this implies a violation of the frozen-in condition. In this case
magnetic reconnection is said to occur. Flow regularity requires, that in the
vicinity of such ideal singularities the ideal Ohm’s law is replaced by

E4+vxB=R,

where R = 7j or some equivalent process, hence Ej # 0.

In two-dimensional systems singularities of ¢(x,y) are located on the
separatrix and in particular in the X-point. As an example consider the
vector potential

A(‘Tﬂyvt) = _('yb(-l‘ay)'*‘EOt)ez (91)
with ;
Y(z,y) = 5(* = y") (92)

discussed in section 5, corresponding to the stationary magnetic field B =
(Be, By, B:) = (y, @, By). Equation (90) becomes

B-V¢= ByFEy, (93)
which has the solution
i z+y
= =ByFpl 4
¢ 200na:—y" (94)

essentially identical with eq. (40). Since in the present context ¢ is the
electric potential, not the streamfunction of an incompressible flow (note
that the field line velocity (89) is not assumed to be incompressible), the
axial field By appears in eq. (92). ¢ is singular on the separatrix z = 4y,
and hence reconnection occurs for any Fo # 0. It is interesting to compute
the field line velocity eq. (89)

(HVd:—I— E()ez) X (ez X V‘l/) + B()ez)
B2
Boe, x V¢ — E;VY  e,Vo- Vi
B2 - Bz

Vi =

(95)

In this expression the first term is in the poloidal plane, the second in the
axial direction. v, can be expressed by two components v;, v,

vi=vVY/|[VY[+ v (B x V) /[B x Vi,
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where

Vg = Vi- Vd1/|V1,b| = —Eg/\f.’cz + y2 (96)
) vy (BxVy)/|IB x Vi
Vé-Vi/|B x V|

= _QBOan:y/ [(mz—y2) \/rc2+y2\/B§+:c2+y2 ] : (97)

The component v; describes the flow in the poloidal plane toward or away
from the X-point. It represents the convection of the flux surfaces 1, which
is singular only at the X-point. The component v, describes the field line
flow in the flux surface ¥ = const and has singularities along the separatrix
surfaces & = y. Only in the limit By = 0 one has v, = 0. (Note that the
field line velocity gives only the plasma motion v, perpendicular to the field
line. The parallel component has to be obtained from an additional equation
determined by the plasma dynamics, for instance V - v = 0 together with
appropriate boundary conditions.)

Generalizing these concepts to three dimensions, a new feature arises, the
existence of isolated nulls of the magnetic field, i.e. points, where B = 0. Field
nulls are structurally stable, meaning that they persist, when the system is
weakly perturbed, their position being only slighty shifted, in contrast to the
separatrix in a two-dimensional system, which vanishes, when the system
becomes weakly three-dimensional. In the vicinity of a null (assumed to be
located at x = 0) the Taylor expansions of B and j are

Bi = Bijz; (98)
Ji = EijkBik - (99)

Because of V - B = 0 the trace of the real matrix f3;; vanishes. The matrix
has three eigenvalues, the properties of which are used for a classification of
nulls (Fukao et al., 1975; Greene, 1988). If all eigenvalues are real, either one
is positive and two negative (A-type) or two are positive and one negative
(B-type), since their sum must vanish. The eigenvectors of the two eigen-
values of the same sign locally form a plane, which can be continued into a
global surface ¥ by following the field lines located in this plane. Following
the field lines along the third eigenvector defines a curve 4 in space. The
field lines near an A-type null are shown in Fig. 26, the surface ¥4 dividing
space into two regions not connected by field lines, and all field lines in one
region converging to form a bundle around v4. A B-type null has the same
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Figure 26: Field lines near an A-type magnetic null.

Figure 27: Topology of a magnetic configuration including one A-type null
(A) and one B-type null (B) (from Lau and Finn, 1990).
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topology with the field line directions reversed. A- or B-type nulls are the
generalization of a two-dimensional X-point, into which they degenerate if
one of the two eigenvalues of equal sign becomes zero. The correspondence
to X-points can also be seen from the fact, that at A- or B-type nulls the
current density (99) may vanish, since f3;; can be symmetric. These nulls
are therefore expected to be important in the context of three-dimensional
reconnection.

Nulls with one real and two conjugate complex eigenvalues (S-type) are
generalizations of a two-dimensional O-point, to which they degenerate, if the
real eigenvalue vanishes (in this case the remaining two are purely imaginary).
As in the case of an O-point in the two-dimensional limit the current density
cannot vanish at an S-type null, since f3;; is necessarily nonsymmetric.

A magnetic configuration with two nulls, one A-type and one B-type, is of
special interest. The relative positions of the surfaces ¥4, ¥ g and the curves
~v4, vB are illustrated in Fig. 27. Since in X g all field lines are directed away
from B and are collected in the bundle around 4, v4 bounds ¥, and since
all field lines in ¥4 must originate in the bundle around vz, v bounds X 4.
Hence ¥ 4, ¥p are semi-infinite half-sheets intersecting in a line connecting
A and B, called a null-null line. A topologically equivalent configuration
arises, when superimposing a constant field on a dipole field (e.g. the earth’s
magnetic field in the presence of an interplanetary field). Since the surfaces
Y4, X¥p are not pierced by field lines, they serve as separators, the three-
dimensional generalization of the two-dimensional separatrix.

Lau and Finn calculated the field line velocity eq. (89) for a three-di-
mensional field configuration, consisting of the 2-D configuration eq. (92)
periodically modulated in the z-direction. If the modulation is weak, such
that B, does not change sign, the behavior of v, is qualitatively the same as
in the unmodulated case. For sufficiently strong modulation B, becomes zero
at certain values of z and field nulls appear forming an alternating sequence
of A- and B-type nulls. The singularities arising on the separatrix surfaces
are of a more complicated type than in the case of no nulls and in addition
essential singularities appears on the null-null lines between a pair of nulls.

This kinematic approach as developed by Lau and Finn (1990) is, how-
ever, only valid in the limit of vanishingly small reconnection rate Ey = O(7),
since the effect of the singular flow dynamics on the magnetic field is ne-
glected, B being prescribed as a smooth vector field. For larger values of Ej
the magnetic configuration is changed, presumably on a macroscopic scale.
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In two dimensions Syrovatskii has shown that, whenever Ey # 0 at an X-
point, a current sheet of finite length appears, as discussed in section 4.3.
The three-dimensional generalization in the presence of field nulls has still to
be worked out.

Finally we consider three-dimensional toroidal configurations, where field
lines are endless. Though field nulls do in general not occur, the new feature
compared with the axisymmetric case is the appearance of regions of stochas-
tic field line behavior. This means that such field lines are not localized to a
particular flux surface but fill a finite volume. It appears that plasma flows
resulting kinematically from the frozen-in condition E + v x B = 0 are sin-
gular in such a volume. Taking finite resistivity into account and allowing
plasma dynamics to modify the field locally will probably lead to turbulent
motions. MHD turbulence arising in regions of stochastic field lines has been
invoked as a model for tokamak disruptions.

10 Turbulent reconnection

As stated at the beginning of this chapter, the fundamental problem in the
theory of magnetic reconnection is to explain the observed fast times. In ex-
plosive magnetic processes such as tokamak disruptions or solar flares time
scales seem to be essentially independent of the value of the collisional resis-
tivity 7, and primarily connected with typical Alfvén times 74 = L/v4. Here
L is the size of the region, where the magnetic field is affected, for instance
the minor radius of a tokamak plasma or the length of a magnetic loop or
arcade in the solar atmosphere.

As a consequence stationary current sheet reconnection, which appears to
be the dominant mechanism for intermediate values of S, becomes too slow
for “realistic” S-values. A possible solution of the problem is to consider fur-
ther nonideal effects in Ohm’s law such as (anomalous) electron viscosity or
electron inertia, which in a weakly collisional plasma may be more important
than resistivity. However, a more effective modification of the reconnection
process at smaller 77 seems to be caused by a nonstationary behavior in the
reconnection region. A first indication of such behavior is provided by the
occasional generation and ejection of plasmoids. If 5 is further decreased,
plasmoids are generated more frequently and in a more irregular way, with
plasmoid coalescence becoming an important reconnection process, as seen
in Fig. 24. Thus secondary small current sheets are generated with life times
small compared to the global reconnection time. It is not difficult to visu-
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alize a gradual transition to a state of fully developed MHD turbulence, in
particular for nonsymmetric systems. In a region of stochastic field lines in
a toroidal plasma a certain level of small-scale turbulence is expected even
under macroscopically quiescent conditions.

Turbulent dissipation in MHD systems is very efficient, with energy dissi-
pation rates becoming essentially independent of 5 for large Reynolds num-
bers already in two dimensions, in contrast to 2-D Navier-Stokes turbulence
(Biskamp and Welter, 1989). This property is the more true in three di-
mensions. In a reconnecting system turbulence is not spread uniformly over
the entire magnetic configuration but predominantly confined to regions of
relatively small extent, where it is excited by strong field gradients, i.e. high
current density. The regions of strong turbulence are probably not fixed in
space but expected to fluctuate appearing here and there which gives rise to
an burst-like global behavior.

Small-scale MHD turbulence gives rise to a turbulent resistivity 7.ss and
hence to an effective reconnection rate independent of the value of the colli-
sional resistivity 7. An explicit expression for 7.5 in terms of the fluctution
amplitudes éB, év has only been derived under special assumptions (see
for instance Biskamp, 1984). The fact that turbulence is mainly excited in
regions of high current density suggests a linear relation

Ness =N+ alj — Jjo) (100)

where jo is some threshold value. Such relation is often used as a simple
anomalous resistivity model (e.g. Sato and Hayashi, 1979). Note that this
expression is motivated by properties of MHD turbulence and hence remains
within the framework of MHD theory, so that no ad hoc assumption about
the excitation of current-driven micro-instabilities is required, though the
latter can of course also contribute to n.s;.

The arbitrariness in using expression (100) is above all connected with
the choice of the threshold value jo. Consider the process of island coales-
cence, section 8.1, in the limit of » — O4, where a unique 7-independent
turbulent behavior is to be expected. If in modeling this process jg is as-
sumed to be rather low, the resulting process resembles the reconnection by
a quasi-stationary current sheet at relatively high . Choosing a somewhat
higher value of j, would allow the system to develop nonstationary features,
connected with plasmoid generation, but still suppress further fine-scale ef-
fects. Hence the value of jo determines the level up to which the reconnection
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dynamics is resolved. The question, to what extent a low-level model using
a simple relation such as (100) can describe the global features of the full
turbulent (n — O4) system, is difficult to answer.

Though a quantitative theory of turbulent reconnection is certainly very
complicated, the existence of turbulent dissipation rates independent of 7
in principle solves the problem of explaining sufficiently fast reconnection
time scales, a problem which in retrospective arises only when extrapolating
stationary current sheet reconnection rates to the limit of small . However,
for practical applications with a given low level of collisionality the general
statement that reconnection becomes independent of 5 for sufficiently small
values is often not very helpful, and even misleading. An example is given
by the sawtooth collapse in a hot tokamak plasma. Though typical S-values
appear to be very large, S ~ 10%, experiments indicate that reconnection
is considerably slower than the temperature collapse time scale, since little
helical flux appears to be reconnected.
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