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Abstract

The Renormalization Group (RNG) theory is applied to magnetohydrody-
namic (MHD) equations written in Elsdsser variables, as done by Yakhot
and Orszag. As a result, a system of coupled nonlinear differential equations
for the “effective” or turbulent “viscosities” is obtained. Without solving
this system, it is possible to prove their exponential behaviour at the “fixed-
point” and also determine the effective viscosity and resistivity. Our results
do not allow negative effective viscosity or resistivity, but in certain cases the
system tends to zero viscosity or resistivity. The range of possible values of
the turbulent Prandtl number is also determined; the system tends to dif-
ferent values of this number, depending on the initial values of the viscosity
and resistivity and the way the system is excited.




1. Introduction

Turbulence is one of the most challenging and least understood problems
in classical physics. Fluid turbulence is usually studied by considering Navier-
Stokes equations. Electrically conducting fluids, however, can contain mag-
netic fields and are described by magnetohydrodynamic (MHD) equations.
MHD turbulence occurs in laboratory settings such as fusion confinement de-
vices (e.g. reversed field pinch) and astrophysical systems (e.g. solar corona).
Many theories and tools used to study Navier-Stokes turbulence were adapted
to MHD turbulence in view of their similarity.

The Renormalization Group (RNG) ideas first appeared in the fifties in
field theory [1]. Wilson’s work [2] on phase transitions is the most successful
application of RNG and led to numerous other papers in many different
fields. Foster et al. [3] adapted the work of Ma and Mazenko on nonlinear
spin dynamics [4] to study fluid turbulence. They considered Navier-Stokes
equations driven by a random stirring force, with correlations increasing with
the wave-number k, and analyzed the long-term long-distance behaviour of
velocity correlations. More recently, Yakhot and Orszag [5, 6] modified this
work, reversing the wave-number dependence for the force correlations, but,
in order to go further, they made controversial assumptions on the expansions
about the “fixed-point” Navier-Stokes equations, which have been discussed
in [7]-[12]. ‘

The basic idea in applying RNG to study fluid turbulence is to eliminate
the smaller-scale modes, including their effect in the effective viscosity, so
that only the largest scales remain. This is interesting since for high Reynolds
numbers the range of scales present in Navier-Stokes turbulence is so wide
that a direct numerical solution is, at present, impossible. In the case of
MHD turbulence, the smaller-scales are also eliminated, but their effect is
incorporated in the effective viscosity and effective resistivity since there is
a magnetic field present.

An application of RNG to MHD, in the manner of Foster et al. [3], was
reported in 1982 by Fournier et al. [13]. Consequently, in their calculation
they weighted the inertial nonlinearity and Lorentz force differently. Long-
cope and Sudan [14] extended the work of Yakhot and Orszag [5] to reduced
MHD.

In our study we treat the full MHD equations in the manner of Yakhot and
Orszag (5], using Elsasser variables [15], and, in contrast to Fournier et al.
[13], we weight all nonlinearities in the same way. Since the MHD equations
contain resistivity and viscosity, both must be simultaneously renormalized



and the turbulent or renormalized Prandtl number deserves special attention.
In fact, its range of values can be determined by the RNG technique, which
is the main result of the paper.

In section 2 the MHD equations and their Fourier transform are described.
Section 3 is devoted to the splitting into high- and low-wave-numbers for
the physical quantities and the averaging over the high-wave-numbers. The
rescaling of the averaged equations is discussed in section 4. Section 5 is
devoted to the results of the RNG iteration and the RNG differential equa-
tions. Finally, the conclusions are presented in section 6 and some details of
the calculations are given in the appendices.

2. MHD Equations

The equations describing a resistive, viscous, incompressible magnetofluid
are the well-known MHD equations. Stationary, isotropic MHD turbulence
requires energy input to compensate for the losses due to the viscosity and
resistivity. One way to do this, is to add stirring random forces to the MHD
equations, which, as will be seen later, allows the Renormalization Group
(RNG) technique to be applied. The MHD equations then considered are

'?9_:+(v.v)v = —Vp+(VxB)xB+1Viv+fi,, (1)
%—? = Vx(vxB)+nV’B+fs, (2)
V-v = 0, (3)
V-B = 0, (4)

where v is the viscosity, 7o is the resistivity and fy, fg are the random forces.
As usual, v is the velocity of the fluid, B is the magnetic field and p is the
pressure. For the sake of simplicity, the density and magnetic susceptibility
are taken as units and the random forces are chosen divergence-free:

v-f, =0 (5)
v.-fg = 0.

Using Elsasser variables [15],
P = ¥4, (7)
Q = v-— B, (8)




we can rewrite the MHD equations as

oP
o7 T(Q V)P = —Vp" +aV’P+ 5VIQ+f, (9)
0
8_?+(P-V)Q = —Vp +aV’Q+BV’P +g, (10)
with
1
Qo = ’2-(!/0-1"?0), (11)
1
Bo = E(Vo—ﬂo)s (12)
= fv+fB’ (13)
g = f,—fg, (14)
. B 5
g = ptge (15)

We introduce the Fourier decompositions of P, Q, f, g and p* with an
ultraviolet cutoff A to apply the RNG technique to equations (9) and (10).
In the case of P, we have

P (k,w) eitkx—wt) (16)
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where d is the spatial dimension and our expressions are valid for d > 2.

As P and Q, by virtue of definitions (7) and (8), have zero divergences, the
Fourier transformed equations can be simplified. Indeed, if the divergence of
the Fourier-decomposed MHD system is taken, p* can be expressed in terms
of P and Q [16]. With the definitions

~

k = (wk), (17)
§ = (C,q):i ] (18)
L [t d q '
/dq - /_oo 21 Joca (21)% (19)
Jimn (k) = km (6111 = %) — kaln(k), (20)

the [ component of the MHD equations is
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where )\, is the expansion parameter of the RNG technique, which at the end
can be taken equal to one, and Go(k) is the Green function of system (21)
as defined oy its inverse

—iw+aok?  Bok? ) (22)

-1/7 —
GD (k) - ( ﬁgkz —w + 0:0]62

As in [3, 4, 5], the random forces are specified by their two-point correla-
tions:

 fala )l q) > = 2k™Y Ag(27) ! T (k)6 (w + )6(k + q), (23)
< f(w,K)gn(C,q) > = 2k VBo(27) ! Jmn(k)8(w + €)é(k + q), (24)
< gm(w,k)ga((,q) > = Qk-yAO(Q"‘-)dH Jmn(k)é(w + ()6(k + q). (25)

We consider the amplitude of the correlation < fg > to be Bo and the
amplitudes of the auto-correlations of f and g to be equal (Ag), which cor-
responds to < fygp >= 0 as in [13]. Otherwise, it turns out that the RNG
technique leads to a system of equations which has more terms than the orig-
inal one, e.g. a V2B term in equation (1) and a V?v term in equation (2),
which means that the RNG technique breaks down. This situation may be
due to the fact that a finite < fyfp > could create coherent structures via
cross-helicities.

3. Renormalization Group Applied to MHD

Our approach is the same as that applied by Yakhot and Orszag [5, 6] to
the Navier-Stokes equation on the basis of Foster-Nelson-Stephen theory (3].
Detailed accounts of the RNG technique can be found in [7] and [17]. The
functions P and Q and the forces f and g are first divided into low-wave-
number and high-wave-number components:

P(k) 0<k<Ae

2y — k 0. 2
FiE) { P(k) Aem<k<A’ s 25

QF.,Q7, f5, f7, g5 and g7 can be defined in a similar way. The MHD system
is then decomposed into

PR Y g (ff({c))-—z'/\océfcv!f k
(Qf(k)) = GW gy (k) Ji5un (k)




( Jdg [Q< i} +Q>( )][Pn<(é) + P,?((j)] ) (27)

[d§[P(k = §) + P2 (k- 9))IQs(d) + Q2(a)] )
Pl>(i") _ >ri f>(f‘) i >0 7>

(14103 =0+ Q3 DlE(0) + 720 ) e
J g [Pk —§) + P2 (k - 9)QS(4) + Q2(4)]

where the superscript of Gg(fc) and Jimn(k) means division into low- and
high-wave-number components.

Our aim (with the use of compact notation) is to eliminate the P> and

@~ from equation (27) by solving equation (28). The procedure can be done
by expanding P> and Q> in powers of \g:

Pﬁ(%)) _ (P@(%) (Pﬁ(ff))
(Q?(k) Qfa(k))““ 0
2 PI;(E) n Pl?;(k)
+ %( 5l )+ (B )+ e

Substituting equation (29) in both sides of equation (28) and equating the
terms in powers of Ao, we obtain up to the second order in Aq

(&) -0 (fF) @
)

o

P?(i" _ 7> >0
( Q}i('@) ) = —ZJlmn(k)GD (k)
(fd«:[@;({‘c—q*)w ok = QPS(9) + P4 )]) (31)
J d§ [P5 (k= ) + P2o(k = DI[QS(4) + Q2(d)]
P%(i‘) T - >
(Q‘?z(k) ) = —iJ7a(K)G3 (k) (32)
(fdé{@g({‘v—q*)w o(k = QIPA(9) + A—q)[P<(q)+P,a](q) )
S dq[P5(k — §) + P2o(k — 9))Q2 (q)+P>1 k= )[Q5(9) + Q(9)]

Substituting P> and Q> for their perturbation series (29) in equation
(27), we have

P,<(i5))= <(i f;‘(%))
(Qf(k) G"(”( o< (k)

n



—idoJi5un (K)GS (K)
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[ dq[PS(k — @) + P2o(k — D)@ (4) + P (k = DIQF(9) + Q2@ /-

where P> and Q7 can be expressed in terms of Fg and Q3 by means of
equation (31).

The next step is to average out the effect of the high-wave- numbers in the
shell Ae~™ < k < A. The procedure is as follows:

e The low-wave-number components (P<,Q<, f<,¢<) are not affected by
the averaging process, i.e.

<Pi>=P5,<Qf>=Qf, < ff>=f5 <9 >=g-

e The matrix G§ and its elements are statistically sharp, and so the
averages involving Py and QF are calculated by means of equation
(30) and the statistical properties of f~ and g”. Then, as the stirring
forces have a Gaussian probability distribution, we obtain

<ff> =<gt>=0,
SR> = <rlin 5=% <fPglgs >=<g gngn >= 0,
and
<B> = <@h> =0,
< PgProPi> = <PgPQm> = 0,
< PgQmo@mo > = < Qp@moQmo > = 0.

e The random forces are statistically homogeneous (see equations (23)-
(25)), the zero-order high-wave-number terms depend only on the statis-
tics of the random forces and JS, (0) = 0. Therefore, all terms of the
form JS, (q) < Py ()P (¢ — p) > are zero.

e For y < d the third-order low-wave- number components are disregarded
because they vanish as the iteration goes to the “fixed-point” [3, 5, 7].




The result of this averaging process is
Pﬁ(!})) _ @i (fﬁ(fc))_-A < 0G0
(Qf(k) GO( ) gl((k) ? OJImn( ) 0( )
fd@@;(ic—q‘)P:(q‘))_ 20908 (Ml(fjc))
[ Finpii- oo ) —a0s® () )00

We call the matrix

M(k) = (ﬁ:g) (35)

“Correction Matrix” and describe in appendix A how it is calculated , the

procedure is analogous that of Navier-Stokes [5, 7). Equation (34) can be
rewritten as

_p P<(fc)) (f; (i‘c)) . (quQ S(k—g)P; (*))
< gy [ S\l XoJS . (k o1 ,
i ()( QF (k) <(ky ) = PoTm I\ a5 pEGE - )0%(0)
(36)
where the “new” Green function is
- —w « g 1 2
Gl-l(k) = ( ﬁj—k21k _z'wﬁ+ka1k2)a (37)
with
a = o+ — AdAoﬁo ln E( " — 1) Fi(ao, Po), (38)
af v €
A
B = o+ At A (e o, ), (39)
8 1
As = (2r)dd(d+2)’ | )
R = (20d*-3]+[d-y]S) ﬁ2+([2y 15 d]—[3d2—8]S)B—Z
+ 2-[y+d- 4]5)00 +(d+2)(1-[d-2]S )aoﬁm (41)
R o= ( —[y+d+4]5)ﬁg+([°y+d+6] &S )ﬁo

+ (20 -3 +[d-y)S)af - (d+2)(1+[d—2]S)acBs  (42)

and S = ByfAp, e=y—d+4.
It should be noted that this result was obtained based on the assumption
that the effective viscosity and resistivity remain positive.

|



4. Rescaling

System (36), obtained after averaging in the shell Ae™ < k < A, is
very similar to the original one (21), but with k defined in the interval
0 < k < A e™". By introducing a new variable k such that

k= ke, (43)

the system is again defined in the original interval. To compensate, the
following general scalings are considered:

o = we'l?, (44)
P(o,k) = P<(w k)e™<(), (45)
Ql(‘:’al‘() = Qf(wsk) —C(r ) (46)

- where the functions a(r) and c(r) are still to be determined. In order to
prevent system (36) from being modified by the rescaling, we must also have

f@k) = fi(wk)e=, (47)
Q@ k) = gf(w,k)er=), (48)
G(p)pres ale"(’) e (49)
iy a2 giestirE, (50)
Ar) = Aoet)-(d+lr, : (51)

The way the stirring forces work on the system must be unaffected by this
procedure; and therefore the correlation of the rescaled stirring forces must
be kept equal to the old ones. This requirement is only met if

2c =3a+ (y+d)r. (52)

Then, the rescaled system 1s

&by ( (k) ) ( @@ ) )T () ( fdéém(}—é)ﬁn@ ) |
Ou(k) ai(k) k (

which is formally identical to system (21), showing that we can apply the

RNG technique.

Using equations (43)-(48), it is possible to obtain the invariance relation
for the spectral energy, which is the sum of the kinetic and magnetic energies.
This leads to the spectrum [3, 7, 16]

E(k) ~ E~3/3+24-9/3, (54)




We determine y by requiring that this spectrum fit energy spectra expected
for MHD turbulence, such as the Kolmogorov spectrum [18],

E(k) ~ k™%/3, (55)

which was obtained analytically for decaying MHD turbulence [19], i.e. y = d.
The phenomenological spectrum of Kraichnan [20],

E(k) ~ k™32, (56)

is also considered for y = d—1/4. It is worth pointing out that we disregarded
the third-order low-wave-number nonlinear terms, supposing that y < d. The
choice y = d is at the limit of validity of this supposition, as was the case
with Navier-Stokes equations (7, 21]. The choice y = d —1/4 is in agreement
with this assumption. However, the choice y = d + 2 needed to obtain the
spectrum E(k) o~ k=3, which appears in some cases in two dimensions [22],
cannot be considered.

Fournier et al. [13] considered two different coefficients for the correlations
of the forces (y; and y,), but this is not possible in our case, because the
rescaling of P and Q would have to be different from each other, and, by
virtue of their definitions (equations (7) and (8)), this does not make sense.

5. RNG Equations and Results

In order to eliminate a finite band of modes and be able to take the
infrared limit, we iterate the procedure, eliminating an infinitesimal wave-
number band at each step. With the iteration being performed as in Yakhot
and Orszag [5], equations (38) and (39) can be taken as recursion relations
for oy and ;. By using a general procedure (see, for example, Reichl [25])
these recursion relations can be turned into differential equations [16]:

dO:‘ _ )\g 2(7‘) 1 e A alr ™ Yl
Z = ‘_4 AdAOQ'Z(T') 1/2(7‘)7]2(7*) € Fl( ( )1«5’( ))7 ( )
B _ XN, B 1 T s 5

ET— e IOAdAoaz(T) .r/z(f‘)nz(?‘) € F2 ( ( )) ,B( )) : ( 8)

A particular solution of this system of nonlinear differential equation is

a, = X3, (59)
By = Xl (60)




X, and X, are such that
X
X

T =

(61)
is the constant that satisfies

2-[y+d+4]S)w" + ([—2d2+d+2y+12]—[d2+d—y]5)-r3
+([—2y+2d2+d—8]+[3d2+d—y—8]5)72
+(-ld+4)+ [~ +y+dS) = (d+2)(1 - [d-2S) =0. (62)

It can be proved [16] that as r — oo the ratio o/ goes asymptotically to
7, so that the exponential behaviour in equations (59) and (60) is not only a
particular solution but also the behaviour of the system at the “fixed-point”.
The exponential behaviour of the effective viscosity and resistivity at the
“fixed-point” is easily obtained by means of equations (11) and (12). By
analogy with RNG applied to Navier-Stokes [6, 16], the effective viscosity
and resistivity are, respectively,

v ~ kB, (63)
n ~ k™3 (64)

From equations (57) and (58), it is possible to construct another differen-
tial equation which is easier to analyze. Defining

a v+7
T === 4 65
B i (65)
we get
de 1 ({da adf
e N (o B < 6 A I 6
dr B (dr B dr) 165)
Substituting equations (57) and (58) into (66), we obtain

e N, e B 1 |
& = 1 o) ) i

with

[-2 + {y + d + 4} S]=*

+ [2d2—d—2y—12+{d2+d—y}5]$3

4+ [2y—2d® —d+8— {3d* +d—y—8}S]z®

+ [d+4—{-d®+d+y}Sle+(d+2)[1 +(d-2)S]. (68)

3
H
p—
I

10




The sign of dx/dr is determined by the polynomial z(z) since we are consid-
ering positive effective viscosity and resistivity. Therefore, we look for the
zeros of z(x) given by

2t - (2 —d-2y—12)2® - 2y -2 —d+8)2* — (d+4)xr —d -2

(y+d+4)zt+ (> +c)x3— (3d2 +c—8)x2 + (A2 —d —y)z +d? — 4’
(69)

where c = d — y.

We restrict ourselves to analysis of the region —1 < S < 1. This restriction
can be shown to be due to the assumption < f, fg > = 0. On the other hand,
when the auto-correlations of f, and fg have the same amplitude, it follows
that S = 0. In the case < f, fy >=0,weget S = —1, and for < fgfg >=10
we have S = 1. Typical plots for S(z) are shown in Figures 1 and 2. In
Figure 1, we have d = y = 3 and in Figure 2 d = y = 2. Since the plots for
y = d—1/4 are very similar to those for y = d for every d, they are not shown
here. For a certain d, the plot for y = d — 1/4 differs from that of y = d by
just the numerical values of z in the plot, e.g. the value of z3; depends on
Yy, but their form is exactly the same.

For a given value of S and a initial value of z¢, we obtain the direction in
which the renormalized value changes as the RNG iterations proceed, using
the plots S(x) and the sign of z(z), which give the arrows in the plots of
S(z). For instance, if o > 1 and S > §,, it follows that z — oo as r — oo.
From the arrows we are able to localize the attracting regions of the plots,
which are indicated in Table 1.

For d = 3 (Figure 1), the parameter space that tends to z = 1 (zero
resistivity) is much larger than that leading to z = —1 (zero viscosity). For
To > 1, we have essentially the same behaviour for d = 3 and d = 2 (Figure
2) and the system tends to £ — oo if § > S,, the stirring forces being
mainly kinetic in this region. For z9 < —1, there are differences between the
behaviours of d = 2 and d = 3. For d = 3 (Figure 1) there is an attracting
region between the minimum of the curve at the left side (z,,, S;) (not shown
in Figure 1) and the point (zps, S = 1). This region does not appear for d = 2

and it is rather easy, in this case, to reach £ = —1 since the whole curve is
repelling. This does not happen for d = 3, because there is only a small area
of the parameter space that leads to z = —1.

The next step is an analysis of the system considering the possibility of
negative viscosity or resistivity. In order to get negative values, the effective
viscosity or resistivity must cross x = 1 (zero resistivity) or z = —1 (zero
viscosity). When we have exactly zero resistivity (or viscosity), there is a
divergence in dz /dr (see equation (67)) and the RNG calculation is not valid.
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Figure 1: Plot S(z) ford=y =3
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Figure 2: Plot S(z) ford =y
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Table 1: Regions of attraction for x

d=3y=3 d=3y=2.78
<z li=2 l<xx 1D =
T =00 T = b
r=1 =1
Tm=—-184<z<-23=zpm |Tm=-384<z<-24=2Nn
T =—00 T =—00
r=-1 z=-1
d=2y=2 d=2y= Li9
1€ xsx18=%;: ] < as L=,
r =00 T a0
=1 z=1
T =—00 I =—00
z=-—1 z=-—1

For certain values of S and z, the system tends to the region of negative
effective viscosity or resistivity (see Figures 1 and 2) and we are interested
in the behaviour of the system once it crosses z = 1 or z = —1 and is inside
this region. We then suppose that the corrected resistivity (or viscosity) is
negative after a certain number of iterations (finite r) and the calculations
must be redone after that owing to the change of sign, which leads to changes
in the result of the integration. In appendix B, we give more details of these
calculations. The differential equation obtained for negative viscosity and
positive resistivity is

dz _ X, , e ) 1
7 = 1670w () Vz(,.)‘uz(r)R(I)a (70)
where
R(z) = 4 +6+S(d+3)’
+ 4 —d—y—28+S5(d—10)z°
+ 4[-3d2 —d+y+31+S(-2d" —d+2y +28)]z°
+ 4 +d—y—24+S(2d" —d—2y-3D)z"
+ 2[2d + 2y + 44 + 355)2° + (—19 + 85)z
+ 2(2-S)z—19. (71)
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In the case of negative resistivity and positive viscosity, we have

d_:c__)«_gAAe" B(r) 1
dr — 16707 Ae z3(r) v2(r)p(r)

R(z). (72)

In the regions where the system tends to negative effective viscosity or re-
sistivity, the function R(z) is negative [16]. Therefore, the tendency of the
system is to return to the region of positive viscosity and resistivity (|z| > 1)
owing to the signs of dz/dr near ¢ = 1 and ¢ = —1. This tendency is
shown by the arrows in the region —1 < z < 1 in Figures 1 and 2. How-
ever, once in the region, it tends to the negative region again, and then the
system is trapped in the region of zero resistivity or zero viscosity. It must
be clear that it is not possible to have initial viscosity and resistivity such
that —1 < z¢ < 1. The arrows in this region just show the behaviour of
the system if it enters this region after a finite number of iterations. The
attracting regions are ¢ = 1 and ¢ = —1, corresponding to zero viscosity
and resistivity, respectively. Therefore, it is impossible to obtain negative
effective viscosity or resistivity with RNG calculations, though some closure
theories allow negative effective resistivity for 2-dimensional MHD [23] and
reduced MHD [24]. Negative effective resistivity could only have occurred for
negative values of 5 (see Figures 1 and 2), this corresponding to the magnetic
regime, where negative effective resistivity appears in closure theories [24].
Nevertheless, in our case we cannot have negative effective resistivity, but
the system stays with a zero effective resistivity. A possible explanation for
this fact is that the RNG theory breaks down for negative effective values of
the viscosity or resistivity. It could also be that the RNG technique shows a
way of annihilating viscosity or resistivity. If the latter interpretation turns
out to be true, this could be very useful in many practical situations.
One physically interesting quantity being the Prandtl number

v
P=-, ' (73
8= )
we can relate it to z, .
t+1 ~
= — (4
= (74)

and obtain the possible values for the turbulent or effective Prandtl number.
Table 2 shows the attractive regions of P;. Each region of attraction of F,
shown in Table 2 corresponds to a region of attraction of z shown in Table 1.
For a certain initial Prandtl number Py, it is possible to obtain the value to
which the renormalized Prandtl number tends, in a way similar to that used
for z [16]. The value considered “experimentally” (P =~ 1) is also possible

15



Table 2: Regions of attraction for the Prandtl number F;

d=3y=3 |[d=3y=275| d=2y=2 |d=2y=1175
o< P <5H o< F<5 00<P<35| c0< P <35
Pf=1 Pg=1 P¢=1 Pt=1
P =0 P =0 Pr=no P =60
04<P<09|04<P <09
P =1 P=1 B=] P =1
Pt= Pt=0 Pg-:(] Pt=

in our results, depending on the initial conditions and how the system is
excited. For instance, if the velocities are the excited quantities, it follows
that P, — 1 in the region S = 1, vy > mo. We can speculate that if the
- system is excited in a different way or if we have different initial conditions,
experimentalists could obtain different Prandtl numbers.

6. Conclusion

The application of the RNG technique to MHD has brought several new
features which were absent in the case of Navier-Stokes equations. First
of all, the magnetic field is not a “passive vector” as noted in [13], which
obliges us to renormalize simultaneously both the resistivity and viscosity.
In [13], where the correlations of the stochastic stirring forces were assumed
to increase toward large k, the authors had to weight the magnetic and
kinetic nonlinearities in a different way. In our work the k-behaviour of the
correlations is reversed according to [5] and to the physical expectation. This
leads us to weight the magnetic and kinetic nonlinearities in the same way.
This circumstance makes the ordinary differential equations of RNG (see
equations (57),(58)) much more involved than Navier-Stokes case [5].

Despite this mathematical difficulty, which prevents an explicit general
solution of equations (57),(58) in closed form, as in [5], we are able to make
statements about the asymptotic behaviour in r of the solution and determine
the effective resistivity and viscosity. In particular, it is possible to deter-
mine the attracting values of the turbulent Prandtl number (see Table 2) as
a function of the parameter S, which characterizes the relative correlation
strength of the kinetic and magnetic stirring forces.
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Note that the values of the Prandtl number do not depend upon the abso-
lute values of the stirring forces and their correlations. Therefore, statements
apout the turbulent Prandtl number are more likely to be representative of
real turbulence, which is usually maintained by boundary conditions and not
by volumetric stirring forces. This aspect is obviously absent in Navier-Stokes
turbulence.

From Figures 1 and 2 it is possible for any given S and initial values of
To = (vo +10)/(¥o — 10), with |zo| > 1 (or Pty > 0) to see in which direction
the renormalized value is going to change with the iterations of the RNG.

Negative effective viscosity and resistivity are not possible in our results;
instead, the tendency is to have zero effective viscosity or resistivity in certain
cases. A possible reason for this is that the RNG theory does not work for
negative effective values. It could also be that the RNG predicts a way of
having zero effective viscosity or resistivity.

Appendix A
Calculation of the Correction Matrix

Since the calculations are very lengthy, the details will be given elsewhere
(see [16]). We limit ourselves here to considering two typical terms of M,
and M, as follows:

Ty = Jia(k) [dd [dp 72,23 (D) Q5 - 5) < Qaolk — D) P2(5) >

+PS(P) < Qro(k — 4) ro(q‘—ﬁ) >), (A1)
T = —Jsa() [ di [ dp 72,0k - a3 (k- 9) (Q(k - 4 - )
Pa(@)Pa(3) > +PL(h) < Po(@Qu(k—d=p)>). (A2

The integration over p can be performed by using the two point-correlations
of the forces (equations (23)-(25)). After this integration, T} and 7, are

T = 205,(0) [ dd (@)= @)k~ al™ (Q5(k) 12, (k~ q)

[~ Aoz (4§~ k)ug (k- §) + w3 (4 - k)z3 (k - ¢))
+ Bo{lz5 (k= @)I° + lug (k- 9)I*}] ‘
+ I3 (k — Q)P (k)[Aof|z (k — §)I* + ug (k — )[7}
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— Bo{z5(§— k)3 (k—§) +u3(§— k)3 (k- 9)}]), (A.3)
T = —2J5a(K) [ di I3, = @)ud (k — d)g (Q< (kI (a)
[Ao{l=z5 (@) + 43 ()*} — Bo{z5 ()u3 (=4) + u3 (§)z3 (=4}]
+ PE(R)IZ(Q)[—Ao{ =3 ()ug (= + u3 (§)23 (—4)}
+ Bo{lz3 ()1 + 43 (9)*}]) - (A.4)

The next step is to perform the ¢ integration. It should be noted that,
owing to the definition of the functions of high-wave-numbers (26) in the
integrands, the integration over q must be performed at the intersection of
the intervals Ae™™ < ¢ < A and Ae™™ < |k — q| < A. This is expressed with
a greater-than sign over the integral of the q integration

teo d¢ > dq
/ &

- ) B (A.5)

First the integration over ( is calculated by residue method. In order to
have a tractable contour in the complex plane, we have to assume definite
signs for both the effective viscosity and resistivity. First we take positive
effective resistivity and viscosity since their initial values are always positive.
Calculations that consider the possibility of negative renormalized resistivity
or viscosity are explained in appendix B. We have a total of 16 different
integrals in ( to perform, e.g.

o= [ d za(@)uolk - )P

Th 1 —iw + apg® + v|k — q°
4ok —qf? \ [(aog? + wolk — q|* —iw)? — Biq*]wo

—iorione tmike—ql ) (A.6)
(@0 + 7ok — a2 — iw)? — A2q'no ) ’
400 i .
I = [ dC uo(k — §)zo(@)uo(—4)
_ r@ﬂ(—q]z( 2ap + Bo
" dag ¢ [(colk — q? + v0g? — iw)? — B3k — qf4]wo
20!0 === ﬁo )
- s AT
' [(aolk —aF + 702 — iw)? — B2k — al'lmo (A7)

with I, and I, parts of T; and T, respectively.

We are ultimately interested in terms of order k%, which contribute to
the renormalized “viscosities”. Since Jimn(K) is of order k, we only need to
consider the terms of the integrand up to the first order in k. In the infrared

18




limit of interest w — 0, an expansion in k is performed and we obtain for
the integrals above

7 B3 ¢ 2 2 2 2\ k-q
I, = —— — — 5 .
8 CE% Vgng 3&0 ,30 + 2 (4&0 ﬁo) q2 (A 8)
- 2 q-—4
L = 3% : 9
: 8&'31}31}0( +ﬂ°+2ﬁ° ) (A.9)

These calculations lead to typical terms for M; and M, given in [16] by

T = éiz Voln Tisun(K) P (k) (A.10)
> d k -
j ( q)d | k — q |_y nrs( )er(k_ CI) (Dl + El q q) )
1 1
T21 = gg_%von lmn(k)Q<(k)
> dq e k-
f (271')dq 4era(k - Q)Jm(Q) (DZ + E2 q q) 3 (A.ll)

where T, and T3, are parts of T} and T5, respectively, and D; and E; are
functions of ag and fAo.

With the definitions of Jim, and J., (20), the following products of the
integrands are calculated up to the first-order in k:

myr qnqa
. Jnra(q)er(k - q) = (km - quqf ) (61;5 - q2 ) b (A.12)
Qan QmQr qmqnqrq_q
Jnra(q)Jma(k — q) = gqr (6mn - 2 ) + kn O k_, 2 = (A13)
q q q
nqr gm(s
era(k = q)Jnr(Q) = (kn — krgé"z—‘) (61113 = q2 ) 3 (A14)
qmGn Inqs \ 9rqm
ers(k = Q)Jns(q) = [kr - q'r] (6mn - qz ) - (kn - k_q qz ) q2 .
(A.15)

Simplifying further the “Correction Matrix” and noting that Jimnémn = 0,
we can calculate the whole expression by using 4 different types of integrals
over q:

> dq

Il = kmﬁm Wq

A, (A.16)
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>
B = kn/ g Lot v=d (A.17)

(27)* ¢
> dq gmangr _y_4
Iy = e v .
: f (2r)?  ¢? d (A.18)
_ > 49 gm0n9rds _y-s
L = k/ e (A.19)

As mentioned before, the integration must be performed at the intersection
of the intervals Ae™™ < ¢ < A and Ae™" < |k — g| < A. Up to the first order
in k, the last inequality can be written as Ae™™ + kcosy < ¢ < A + kcos,
where « is the angle between k and q. The intersection of these intervals is
then

Ae " <g< A+ kcosy, cosy <0,

‘)
Ae "+ kcosy < g <A, cosy>0. e

Then, we have for equation (A.16)

s dq —-—y—4 __ 1 A -y—4 —y—4
@e? T (%)df a0 [ dag - Jydas

s (QIT)J [ 40 [ dag™" (A.21)

and similar expressions for equations (A.17) - (A.19), where the domain

= {Ae™™ < ¢ < Ae™" + kcos~} is valid for cosy > 0 and the domain

= {A + kcosy < ¢ < A} is valid for cosy < 0. The first domain of
integration in equation (A.21) makes no contribution to the k power of the
integrand, but £ and ¥ do. The integrals I, I2, I4 are already of first order
in k, and so when calculating these integrals we only need to consider the
interval Ae~" < g < A since the other two domains make contributions to the
second order in k. However, I3 is of order zero in k and it must be calculated
in the three domains, but in the first domain this integral turns out to be
zero, so that only £ and ¥ contribute to the calculation. The result for the
integrals [5, 16] is

S AT e _ 1), (A.22)

L = kménsm €
1 S A~
I2 knérmd(zﬂ.)d € £ ) ( )
1 Sq
A~ (e =1 k b-mn + k 6mr T k 6nr A24
b= —gaggen D .
I, ke Sa AT (er 1) (Spunbrs + Smrbns + Smabiar) . (A.25)

d(d+2) (27) e
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The result for I3 is exact for d = 2, while for d = 3 it can be proved only for
certain values of 4 [16]. We did not manage to prove that it is valid for any
angle v, but due to isotropy it can be expected to be true. In the expressions
above, we have € = y+4 —d and S, is the area of the sphere in d dimensions,
Sq = 27?|T(d) (see [5, 7]).

Applying the result of the integrals in our expression and keeping in mind
that Jimnémn = 0, we obtain an expression that can be further simplified by
using

T (K)E P (k) = 0, (A.26)
T (K)ka Q5 (k) = 0, (A.27)
T (K)kn PE(k) = K*PS(k), (A.28)
T (K)EmQS(k) = K2QF(R). (A.29)
The overall result for the “Correction Matrix” is
Ml(]:") _ AoAdﬂ_g 1 A~ (e — 1) &? F F Pf(%)
My() & a3ing ¢ F R )\ Q)
(A.30)
with
Fi = —Di+(—5+y+1) Do+ (& -3)Ds+ (=5+1) D+ B+ B,
(A.31)
F2 = -—(d2—3)D1+ (%—1)D2—E2+D3+ (‘;—y—l)D.;—Eﬁ
(A.32)

Using the expressions for D; and E; [16], we obtain equations (41) and (42).

Appendix B

Correction Matrix for Negative Effective Viscosity or

Resistivity

Our task is to obtain an expression for the Correction Matrix valid for
negative viscosity and positive resistivity and another valid for negative re-
sistivity and positive viscosity.
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Let us take the same typical terms of the matrix M(k) and calculated in
appendix A and then analyze the changes they have for negative viscosity
and positive resistivity. The case of negative resistivity and positive viscosity
is considered afterwards.

If we choose certain initial conditions and S, then after a certain number
of iterations we have zero viscosity. At this point an infinite discontinuity
occurs in equation (67). The system would enter the region of negative
viscosity, and we want to know what will happen to the effective viscosity
and resistivity once we are inside this region. Therefore, in this region the
“initial” values of our iteration are not the molecular (initial) values, but
a “corrected” positive value for the resistivity 7. and a very small negative
value for the viscosity v, and all the old initial functions are now written as
functions of these “corrected” values.

The expressions for T; and T, are the same up to the p integration ((A.1)-
(A.4)), with just the initial values being substituted for the “corrected” val-
ues, e.g., z5(¢) is now z5(g). However, the calculations change when the ¢
integration is performed, owing to the different positions of the poles in the
residue integration.

For the integrals I, and I, for negative viscosity, for instance, we obtain
after expanding in k, keeping terms up to the first order and considering the
infrared limit w — 0,

L= [ d¢ z@)luclk - P
K . (402 (202 = 20cfc + ) (e — Be)* K

16 a2 v29? B

¢ Be k-q
(2a® + 8a2f3. — 36a?B? + 260332 — 190?82 + 8a.3 — f¢) k- q
Qcﬂz

I = j - §)ze(d)ue(—4)

)xBl)

™ Bt (o5 e 4 (et B.)% (2. — Bc)(202 — 2a.B: + B2) k*
= oY, oig—
16 02 vznc ¢ B B? k-q
(1008 + 4028, — 8a?B? + 8022 + Ta?2B — 6a.B: + B k-q
c [ [+ . (B.Q)
acf? ¢
The typical terms Ty; and Ty, parts of Ty and T5 respectively, are then
1a® 1
Tll ].6 ﬁz 2 lmﬂ(k)P<( ) (BS)
> dq —— ( ] k- q k2 )
— =l g™ V¢ Jassl) Tl = D, +E + R
[ el =l (@I = ) ( D + B + R
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lal

T = 35 35 73 Jian (0Q5(B)

> dq —y=—4 ! k q kz
Imrs(k — q)Jns D, + E,— y 4
[ g e i) (B4 BE I+ ) (B
with D}, E; and R; being functions of a., 3. [16].
The integration follows the process described in appendix A, the only
difference being that now we have one more type of integral to calculate, in
addition to the integrals I; to I, ((A.16) - (A.19)) [16]:

k* > dq grgmg
I - mYyn ...y -4 :
* T k) @) e ! (B:5)
k%21 Sd A€

= EE (QW)d € (8 - 1) [5um5nr + ‘Sunémr + 6ur6mn - 26um6mn6nr]-

The Correction Matrix obtained for negative viscosity [16] is

My(h) 1, A (BB (B
(b ) - w0 (8 2) (e ) 2o

with
F, = 4{(d2—14)+5(d+2)} +4{( d+y+10)+25(—d2+12)}‘;—§

el

+ 4{(d* —13) — S(d+ 2y + 26)}9‘—° +4{(d +y + 15) + 10S}a?

— (154 85)a.B. + 48 — 193—3, (B.7)
5
F, = 4{(—d*—6)—S(d+3) 5 S+4{(d+y+14) + 125}ﬁ2
. |
+ 4{3(? = T7) + S(d -2y - 4)}=*
4{(-d+ vy +12) + S(—2d* + 5)}a?
— 2(14 +155)acB. + 4(1 — 45)87 + 25%. (B.8)

Following the same procedure as described in section 5, we then obtain the
differential equation for z (70).

The calculations for negative resistivity and positive viscosity are com-
pletely analogous to those of negative viscosity and positive resistivity. Ow-
ing to the symmetry of the poles, the results can be obtained from the above
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results. The poles are just reflected on the real axis, as compared with the
case of negative viscosity and resistivity. Therefore, the expression for the
Correction Matrix is just changed by a minus sign, and so this change of sign
is present in the differential equation for z, as shown in equation (72).
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