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Abstract

The general expression for the second-order wave energy of a Vlasov-Maxwell
system derived by Morrison and Pfirsch is evaluated here for the case of a mag-
netized, homogeneous plasma. It is again shown that negative-energy waves
(which could become nonlinearly unstable and cause anomalous transport) exist
for any deviation from monotonicity and/or any (however small) anisotropy in
the equilibrium distribution function of any of the particle species. The partly
unexpected and particularly interesting feature of the results is that, contrary
to the proof of Morrisorn and Pfirsch, no restricting condition has to be imposed
on the perpendicular wave number k; of the perturbation (i.e. large k, is not
required). Finite- gyroradius effects are therefore not expected to improve the sit-
uation. Anisotropy alone would, however, impose a restriction on k;, the parallel
wave number, relating it to the gyroradius. As far as distribution functions with
vz%{:ﬁ > 0 in some region of v-space are concerned, however, this result -agrees
with a result found by Pfirsch and Morrison within the framework of drift-kinetic
theory.



1. Introduction

A general expression for the second variation of the free energy of a Vlasov-
Maxwell equilibrium was previously derived by Morrison and Pfirsch [3, 4], who

showed that negative-energy modes exist whenever the condition

(v-k)(agio) -k) >0 (1)

holds for any particle species v and for some vector k. Such negative-energy
modes are important because they may become nonlinearly unstable [1, 2] and
be of relevance to anomalous transport phenomena. However, the condition for
the existence of these modes may require very highly localized perturbations, i.e.
very high mode numbers k. In fact, Morrison and Pfirsch made this assumption in
order to prove condition (1). As far as distribution functions with v,%f:%) > 0in
some region of v-space are concerned, Pfirsch and Morrison [7], Eq. (144.b), ob-
tained negative-energy perturbations within the framework of drift-kinetic theory
with no conditions for k,, k., except k. # 0. Since the Vlasov theory becomes
inapplicable for wavelengths smaller than the Debye length, one must investi-
gate how strongly localized the perturbations have to be. Also, if the required
wavelengths are much smaller than the gyroradii, the relevance of the results is
questionable, and finite-gyroradius effects would have to be taken into account.
This paper treats this question for the case of a general, magnetized, homoge-
neous plasma; the localization needed for an inhomogeneous system is expected
to be of the same order of magnitude.

In the following, the right choice of representation of the perturbations in
velocity space is seen to lead to clear, simple but partly unezpected results, namely
the fact that for the existence of negative-energy waves in the system under
investigation no restriction has to be imposed on k) if a monotonicity-isotropy
condition for the equilibrium distribution function f,S”’ of any particle species v
is violated. However, if only anisotropy is present, then a restriction relating the

parallel wave number k, to the gyroradius has to be imposed.



2. A Convenient Expression for the Free Energy of
a General Vlasov Plasma

According to [3], Eq. (61), the expression for the energy of arbitrary perturbations
about arbitrary Vlasov-Maxwell equilibria is
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the symbols used being explained in detail in [3]. The perturbations 6x and 6x
are derived from a generating function G(x,v). In particular ([3], Eq. (63))
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Here and in some of the following equations the indices v are suppressed for
simplicity.
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Equations ( 3) and ( 5) yield

170 e
déx = — | — i =1(%) -
x m[av(dG) cB X 6x o

BG’] )

and, therefore,

s ((55:)2 - (déx)z) + x x BO . déx =

1 J.e g e? 2 € 7}
—|226A . — = B 5o
o [206A av(dG) + 2 (6A)" + CB X 6x av(dG)

_EBO) y 5x.9G L ,0G 8 _(?_9)2]
cB X 8x 3x+26‘x 3v(dG) ox ' (2

The second-order wave energy can then be expressed as

d’z d*v oG, \? .0G, 8
2 s (0) el =
o ;./ 2m, " (x,v)[ ( dx ) e ax av(dG")

€y (0) 3G',, . BG., €y (0) BG,, __6_
mycB v Ox mucB v 0 46,
2
CsAy +2%26a . O Eog B9x
cz(éA) +2c6A av(dG,,)+26v v x 6B
e, 0G G, @ v x B(®)
P oo P Sl 0, X2 -
m, Ov {( ov Bx) (E + c )}]
t o [#a6E® + 687, (10)

The terms appearing in 62H can be transformed into more convenient expres-

sions which, with the single exception of the term quadratic in § A, do not contain

,(,0) itself, but only its derivatives in x-v-space. For this purpose, we define a
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vector a,’ as in [3], i.e.
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These relations allow the second-order wave energy to be written as
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Here, all the terms in square brackets which depend on the generating function

G are expressed as divergences either in v- or in X-space. This proves convenient
for applications.

It is straightforward, but lengthy and tedious, to show that Eq. (15) is in fact
the same as Eq. (10).




Through some integrations by parts and neglect of surface terms, Eq. (15)

can be transformed to

Bz d3v [0 f‘°) G\ G
62 - '/ {_ ( . y) 3
o Z V' ox ) x

2m,

8G,\ / e %G, , ,0G,
_(a® .95\ (& g, Gy
(a” v )(m P ks )

B i i(B(O) 9G, ) -fc L X (c’iG,, xE(O))}
av m ox

myc ox Yov
aflo 8G, 0G, 3G,
tbx { (3; av) +(“Gv)a—v}

+f(0)( 6A) 2%32;? ) {d(Gv5A) - G,,ix(v . 6A)}]

+$]d32(61?2 + §B?), (16)

an expression which has the same structure as Eq. (13) of Ref. [4], but with x

and v as the independent variables.

3.  Second-order Electrostatic Wave Energy for a Mag-
netized Homogeneous Plasma
We now consider a homogeneous equilibrium with a constant, unperturbed

magnetic field and no electric field, and assume purely electrostatic perturbations,

1.e. we take
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and set
6A = 0. (18)

In this case, it is convenient to use Cartesian coordinates (z,y, z) in x-space,
and cylindrical coordinates (v, ®,v,) in v-space, ¢ being the angle between the
projection of v onto the z—y-plane and the (arbitrary) z-axis.
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where we have set

(20)
Thus, Eq. (16) becomes
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Note that derivatives of G, in v-space only appear as derivatives with respect
to ¢!

Since the equilibrium is x-independent, an appropriate ansatz for the gener-
ating function G(x,v) is

Glx,v) = 3(g(V)e™* + g"(v)e™*) (22)

G is obviously real, ¢* being the complex conjugate of g. We limit ourselves
here to a single k. Any generating function G could be represented as a Fourier
integral over d°k, with coefficients g(v, k).

Inserting Eq. (22) in Eq. (21) and subsequent x-integration over a periodicity
volume V leads to
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The complex function g(v) can be represented as

g(v) = ¥(v)eTM) | (24)




where ¥(v) and I'(v) are real functions. Since g(v) must be single-valued, ¥ and

I’ are subject to the periodicity conditions

V(vi, ¢+ 2m,v,) = ¥(vy,o,v:) (25)

and
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with n any integer number, i.e. n = 0, £1...
Inserting Eq. (24) in Eq. (23) yields
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which is the general expression for the second-order energy of electrostatic waves
of wave vector k in a homogeneous magnetized plasma.

Note that §2H is now a functional of ¥, which appears as ¥ andd¥ /8¢, and
of ', which appears only as 9T'/0¢.

4. Extremization of the Free Energy

It is now straightforward to minimize Eq. (27) with respect to I'. This can
be done either by minimizing with respect to I itself, with Eq. (26) taken into

account as a boundary condition, or by minimizing with respect to g—z, but then

the subsidiary condition

2r AT
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would have to be introduced. We choose the first way: the Euler equation to
minimize §2H with respect to T', if we write §2H = [d®I(T,Ty), Ty = &, is
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Since gfc = 0, Eq. (29) implies
oI
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Explicitly, this means that
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where %, as determined from Eq. (31), still has to be inserted explicitly. The
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electrostatic energy term has been dropped in Eq. (32) since the perturbed charge
density can be made zero for the perturbations considered here. This is shown
in the Appendix.
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where

ey, -k =kzcos¢ + kysing . (37)

Inserting Eqgs. (33), (35) and (36) in Eq. (32) yields
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Note that this expression for §2H does not contain e,, -k any more, but only
k.. This means that the results will be independent of k,, the perpendicular

wave number. If we define
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then the function I‘E,z) has to satisfy the equation
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The functions C,,(vy,v;) , which is constant in ¢, and I‘Lz) are determined from
Eq. (40), together with the boundary condition on Ff,z), namely I‘,(,z)(d) +27) =
I‘.(,2)(qb) + 27n,:
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where we have defined a local anisotropy parameter o, (vy,v;):
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We now consider this equation more closely:
4.1 k = 0 (wave propagation perpendicular to B(®)
In this case we obtain
(0) av, \? 2mn?
2 3 V v v
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and §2H < 0if —I‘a— > 0 for some v, , v, and for any particle species v, i.e.

the presence of a loca.l minimum in f,, )(v ?) guarantees $H < 0 for allky. It
suffices to localize ¥, (%& is then also localized) to the region in v;, v, where
—é’:— > 0. Outside this region ¥, vanishes and all other ¥, are set equal to zero.

The sign of §2H is then determined by the sign of the integrand in the region of
localization. There is no restriction on k, , contrary to the results obtained in [5].

Those results are obtained when the class of possible perturbations is restricted
by a particular choice of test functions, namely I', = 0 and %ﬁ’—: = 0, so that

they do not correspond to the minimum 6°H.

4.2 k, # 0 (either parallel or oblique wave propagation with
respect to B(®)

If —&,— > 0 for some v, , v;, one localizes ¥, around these velocities. Then:

If @, = 1, all terms in Eq. (43) are negative.

If a, # 1, one can use n, to make the expression in the square brackets
negative:

If @, > 0, one can take n, = 0,-%“ = 0.

If @, < 0, one can take n, > 5:;;‘ >0orn, < Eﬁ‘- < 0,% = 0.

Note that no condition is imposed on either k. or k.

(0 3 > .
If J—,—aa” ) < 0 for some v, , v;, one again localizes ¥, around these velocities.

v
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The case %1;,— < 0 is the most interesting one since this condition always
4

2
obtains for some v, . The positive contribution of (%“) can be eliminated by

choosing
av,
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In this case we have
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and thus, since ¥2 is localized in v, v,, the condition for §2H < 0 is
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which means either
nyw,
a, > E‘l: > 1 (49)
(for @, > 1) or
nywy
a, < E <1 (50)

(for a, < 1).

The integer n, and the wave number k, can be arbitrarily chosen, and it is
always possible to satisfy one of the inequalities (49), (50) for any anisotropy
a, # 1, without any restriction being imposed on k!

Ha,>1 (%‘g—) < %{g—) < 0), then k, is restricted by condition (49). If one

z L

sets k.v; = v, = Z then inequality (49) becomes

27 2r
[ 8 % e > n,T, > — . (51)
Wy wy

This means that n, times the time that a particle needs to travel the distance
A; must be larger than the period of the gyromotion, but smaller than a, times
this period.

fl1>a,>0 (%'({-) <& %é%-) < 0), then k; is restricted by condition (50) in a

way similar to that in the preceding case.
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Ifa,<0 (—%— 0, ——Lﬁ;— > 0), then choosing n, = 0 satisfies inequality (50)
without any condztwn bemg imposed on k., except k; # 0. This is similar to the
results obtained by Pfirsch and Morrison [7], Eq. (144.b), within the framework
of drift-kinetic theory for equilibrium distribution functions with vz—gf— > 0in
some region of v- spa.ce

For a, = 1 and —Lf;— < 0 everywhere, we obtain f(o) f(o)('o L 'uz) The
equilibrium dlstnbutlon is a monotonically decreasing function of the particle
energy, and no negative-energy modes exist. This is consistent with the general

results obtained in [6].

5. Conclusions

In the case of a magnetized, homogeneous Vlasov plasma, waves of negatlve

energy (62H < 0) exist for any deviation from monotonicity (i.e. if —Lg— >0

and/or —aL;'z— > 0 for some v,, v;) and/or any anisotropy a,(vy,v:) # 1. No
restricting condition is imposed on the perpendicular wave number ky. The
situation therefore cannot be expected to be alleviated by finite-gyroradius effects.

For distribution functions with both %Lv‘(a? and f—ag%’; < 0 everywhere , but which
are anisotropic (a, > 0 and @, # 1 in some region of v-space) the existence
of negative-energy waves imposes a restriction on the pafallel wave number k,
(cond.ition (49) or condition (50)). However, if the distribution function is such
that —12,— > 0 in some region of v-space, then there is no restriction whatsoever
on kg, k_.,, except k; # 0. As shown by Pfirsch and Morrison (7], Eq. (144.b),
this latter result also obtains within the framework of drift-kinetic theory.
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APPENDIX

Neglect of the Electrostatic Energy Term
The contribution of the electrostatic energy term
L / Pr6E? (A.1)
8w

has been neglected. To justify this, let us consider the perturbed electric charge
density dp. Generally, the charge density is

- Ze,/f,,d% , (A.2)
and the perturbed charge density is
- Ze,jaf,,d% . (A.3)

The perturbation in the distribution function is given by
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with p, the canonical momentum of species v, i.e.

P, =m,v+ %A(o)(x) . (A.5)
It therefore follows that
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The perturbations éx, and ép, are given by
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Employing the relations above, one obtains éf, as a function of x and v:
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Specializing this expression to the equilibrium given by Egs. (17), we obtain
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where we have used the fact that G, is single-valued, and that f;{,o) is ¢-independent.
Taking into account G, as given by Eqs. (22) and (24) yields

(D) ) . : :
Zj da 1 €y ( k)q’y(v)(esr‘v(v)-i-;k-x_e-'Fv(")—‘k"‘) . (A..14)

The perturbed charge density ép can be made zero since our expression for
2

§2H only contains ¥2, (%&) , which are then chosen localized in v) or v..
The distribution of signsin ¥, and %%"- is free. For instance, one can take ¥,
piecewise continuous in v} or v, with changing signs so that positive and negative

contributions to ép balance each other.
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