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Abstract

The well-known theory of relaxed plasmas (Taylor states) is ex-
tended to external magnetic fields whose field lines intersect the con-
ducting toroidal boundary. Application to an axially symmetric, large-
aspect-ratio torus with circular cross section shows that the maximum
pinch ratio, and hence the phenomenon of current saturation, is in-
dependent of the external field. The relaxed state is explicitly given
for an external octupole field. In this case, field reversal is inhibited
near parts of the boundary if the octupole generates magnetic x-points
within the plasma.

1 Introduction

Various pinch experiments involve a toroidal vacuum vessel in which first
a toroidal magnetic field is generated by external coils. Then, after an ini-
tial plasma is produced by some ionization process, a toroidal current I is
induced. According to a postulate of J. B. Taylor [1], the plasma subse-
quently relaxes to the state of lowest energy compatible with conservation
of the total magnetic helicity H and toroidal magnetic flux ¥ (Taylor state).
The relaxation process involves turbulent magnetic reconnection, and Tay-
lor’s postulate cannot be valid unless the associated relaxation time is much
shorter than any other relevant characteristic times, such as those for plasma
diffusion, for skin penetration of the boundary, or for changes in external
circuits.

Most of the theory of the relaxed state has been developed on the as-
sumption that the boundary is a magnetic surface (an exhaustive list of




references is in the review paper by Taylor [2]). The magnetic field is then
a solution of the equation [3]

curlB = uB, (1)

and p is the smallest of all constants which yield the prescribed values of
helicity and flux, thus being a function of H and . If the vessel has axial
symmetry, large aspect ratio, and a circular cross section of radius a, thus
being approximated by a circular cylinder, the leading terms of the Taylor
state depend only on one nondimensional parameter, viz. the “pinch ratio”

0@ = 2mal /v = pa/2. (2)

The magnitude of this parameter is bounded by a maximum value Qg =
1.56, a phenomenon which is interpreted as “current saturation”. While the
plasma has the same cylindrical symmetry as the vessel if |O| < @y, it is
helically deformed if |©| = ©p, and any attempt to increase the current any
further leads to an increase of this deformation instead. The cylindrically
symmetric relaxed state is described by the “Bessel function model”, which
predicts reversal of the axial magnetic field near the boundary if the pinch
ratio exceeds a critical value ©, ~ 1.2.

The theory of relaxed plasmas has not been worked out for the case that
the toroidal vessel is not a flux surface (only the flux-core spheromak, whose
vessel has the topology of a sphere, has been considered [2]). Since some
pinch experiments (e.g. Extrap [5]) feature external magnetic fields whose
field lines intersect a toroidal boundary, we extend the theory to such cases.
This extension, though it may seem trivial, requires a different definition
of the helicity, and a rather involved examination of the boundary terms
arising from various integrations by parts. We show that the relaxed state
is still governed by Eq. (1), and that p is stili the smallest constant yielding
the prescribed helicity and flux. Only the boundary condition are different:
While one has B,, = 0 when the wall is a flux surface, B,, may now take
prescribed values which are arbitrary within the constraint

] 2B, = 0, (3)

which follows from divB = 0.

Applying the theory to a circular cylinder, we then show that the maxi-
mum pinch ratio @ is independent of the external magnetic field. Further
specializing to the external field created by four axial current carrying rods,




thus modeling the octupole field of the Extrap experiment, we give explicit
expressions for the magnetic field of the Taylor states and show that field
reversal is inhibited near parts of the boundary if the rod current is strong
enough to generate magnetic x-points within the plasma.

2 General theory

2.1 Fields and potentials

We consider a slightly dissipative magnetized plasma in the toroidal domain
T bounded by a highly conducting shell S7. The exterior of T is a vacuum,
and imbedded in this are rigid wires carrying time-independent currents.
These currents, together with surface currents in ST and volume currents in
the plasma (both time-dependent), generate a magnetic field B(x,t) whose
time dependence is accompanied by an electric field E(x, t).

We thus have the homogeneous Maxwell equations

divB =0, B=—culE (4)

(the dot denotes the time-derivative) in all of space. At S, the normal
component of B and the tangential components of E must be continuous.
Since the boundary is to leading order a perfect conductor, we thus have
the boundary condition

nx E=0. (5)

This implies that the normal component of B is time-independent (since St
is not assumed to be a magnetic surface, this component need not vanish).
As a consequence, the vacuum magnetic field in the exterior of T is time-
independent. Therefore, it merely serves to specify the boundary conditions
upon the magnetic field in T and need no longer be considered.

The homogeneous Maxwell equations are solved by expressing the fields
in terms of an electrostatic potential & and a vector potential A:

B=curlA, E=-A-V5. (6)
The potentials are unique up to a gauge transformation of the form
A—-A'=A+Vy, -8 =0-y, (7

with an arbitrary function x(x,t). Though this is not explicitly stated in
most of the literature, it is crucial that a gauge be chosen in which A is



single-valued. Since the fields are single-valued, this implies that V& is
single-valued. We find it convenient to assume, in addition, that @ itself is
single-valued.

To discuss an implication of these assumptions, we introduce a disk-like
surface S, bounded by a curve C, which lies in S7 and closes upon itself the
short way around the torus, as well as a surface S; bounded by a curve Cj
which also lies in S7 and closes the long way. The surface S, thus cuts the
torus into a singly connected domain, and S; cuts its exterior into a singly
connected domain. We choose the orientations of the unit normals n at the
various surfaces and of the arc length elements dl along the various curves
such that application of Gauss’ theorem and Stokes’ theorem produces no
minus signs. We denote the increase of a function f along C, (v = s,1) by
6, f. Both &, f and &, f are zero if f is single-valued, and f has a singularity
in T (or in its exterior) if §,f # 0 (or 6;f # 0). Both é,f and éf are
path-independent (independent of the choice of the cut surfaces) if Vf is
single-valued. Since ® is defined throughout T', é,® is automatically zero.
Our additional assumption that @ is single-valued thus means that @ can be
uniquely continued into the exterior of T'. Our assumption that A is single-
valued implies that it can also be continued into the exterior of T'. It also
implies that only gauge functions x with single-valued gradients must be
considered. Hence both 6,x and §;x are path-independent for all admissible
gauge transformations.

2.2 Conserved quantities

We will minimize the magnetic energy, keeping fixed quantities which are
conserved in an ideal plasma, and still approximately conserved in a slightly
dissipative one.

The time derivative of the magnetic flux through a disk-like surface S
with a bounding curve C is

i/d%n-B:/d?an.B:—fd.?on-curua:fdl-E. (8)
dt Js s s c

If the curve C is in the boundary S, then the boundary condition (5)
implies conservation of the flux. In particular, the normal component of
B at S7, and the fluxes 3, and 1y through the cut surfaces S, and S, are
conserved. (note that the latter depend on the choice of the cut surfaces
unless the boundary is a magnetic surface). The toroidal flux 4, will simply
be denoted by 3. This is because the flux 3 through the hole of the torus



does not affect the magnetic field in 7', and hence need not be ~onsidered
(it merely serves to normalize the vacuum field in the exterior of T).

While the helicities of infinitesimal flux tubes form an infinite set of con-
served quantities in an ideal plasma, only the total helicity remains mean-
ingful in a slightly resistive one and is then approximately conserved. The
basic definition of the total helicity,

Ho=/d3rA-B, (9)
T

requires modification because Hy is gauge-invariant only in singly connected
domains, and is conserved only if the boundary is a magnetic surface. Fol-
lowing Finn and Antonsen [4], we introduce a vacuum field Bg in 7' that
has the same normal component as B at S, and the same flux through S,.
This field is unique if B is given. When continued into the exterior of T,
it differs from the externally applied magnetic field only by a vacuum field
whose field lines do not intersect the boundary. The total helicity is then
defined as

= /Td:"r(A + Ao)- (B — By), (10)

where A and Ag are single-valued vector potentials of B and Bo. In Ap-
pendix A we show that H is gauge-invariant, and that it is conserved if the
plasma is perfectly conducting.

2.3 Relaxed state
We seek the state of lowest magnetic energy,
En = 1/ Pricurl AP, (1)
2J)r

with fixed helicity H, fixed toroidal magnetic flux 9, and fixed normal com-
ponent B, at the boundary S7.

The constraint of fixed H is observed by introducing a Lagrangian mul-
tiplier 4. One thus minimizes the functional

1
W = Ep — EpH = %L‘dBT [|(:urlA!2 — (A + Ap) - curl(A — AO)] . (12)

Forming its first variation, integrating by parts, and applying Gauss’ theo-
rem, one obtains

W = / d*7[6A - (curlB — uB) +_[S d*on - (6A x C), (13)
Y T
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where 1
C = curlA - §p(A + Ayg). (14)

Putting 6W = 0 for all admissible variations §A, one obtains the Euler
equation (1). The boundary term in the variation §/W must vanish, too, in
order that a solution of the Euler equation correspond to a state of stationary
energy. We show in Appendix B that this is automatically the case as a
consequence of keeping By, and 9 fixed.

We thus have the result that the states of stationary energy are solutions
of the Euler equation satisfying the boundary condition of prescribed By,
and with a constant p to be determined from the prescribed values of H
and 9. Since there may be several such states, it is not a priori clear which
one has the lowest energy. We show in Appendix C that among all states of
stationary energy the state of lowest energy has the smallest value of |u].

3 Circular cylinder

3.1 Fourier decomposition

If the toroidal vessel is axially symmetric, if its poloidal cross section is
circular, and if its aspect ratio is large, then it is approximately a circular
cylinder, and physical quantities are to leading order periodic in the axial
coordinate z, with a period L much larger than the radius a. In cylindrical
coordinates (r, 6, z), the magnetic field is then Fourier-decomposed according
to

B =Y ¢k=tmOpin(r), B = B™Vr+ rBE™V0 + B¥™Vz, (15)

k,m

where m runs through all integers, and k runs through all multiples of 27 /L.
Since L > a, the values of ka are closely spaced.
The components of the Euler equation (1) are

‘—?Bfm _ikBk™ — uBF™ =0, (16)
ikBF™ — B _ uB§™ =0 (17)
T dr f ’
km :
ld(iBﬂ_l__EBfm_pr”‘ = (. (]_8)
r dr T




If p # 0, the Euler equation implies divB = 0 or, when written in compo-

nents,
1d(rBF)
Ld(rB™) | M gk | segim — g, (19)
r dr T

This equation thus may be ignored if u # 0, but must be adjoined if y = 0.

The relaxed state is now determined by first solving the Euler equation
for given By, v, and p, then computing H as a function of g, and finally in-
verting the latter to obtain x as function of H, choosing among the branches
p(H) the one with the smallest |u].

3.2 Solution of the Euler equation

Since the Euler equation is a second-order system, it has two fundamental
solutions. It turns out that only one of them is regular at the origin. The
solution of interest is thus unique within an arbitrary constant factor, and
we can write

BF™ = ajmBE™(r),  BE™ = amBE™(r), BF = armB(r),  (20)

where gF™, ,’;”‘, B5™ is some particular non-trivial solution regular at the
origin, and the complex coefficients aj,, are arbitrary within the constraint
that B be real or, equivalently, that B~*~™ be the complex conjugate of
B*™_ If the particularsolution is chosen swith this property, then the con-
straint upon the coefficients is a_x_,, = aj,,.

For given m and k, case distinctions are necessary, depending on the sign
of u? — k?. These distinctions were previously ignored [2], but this omission
did not affect the result in the cases which were considered (the boundary
was assumed to be a flux surface).

If u? — k? # 0,then S¥™ and BF™ can be expressed in terms of g™,

i 1 afkm W g
B = (k e A ) : (21)
5= u? — k? dr rF )7
and BF™ satisfies the equation
g . 1dpke 2 g2 M\ pm
42 + s = +(p =k - 7 s = 0. (23)



A regular solution is

= J(\ 12 = k27) (24)
M = In(\/k? — p2r) (25)

if u2 — k? < 0 (Jy, is a Bessel function, and I, a modified one).
If u2 — k? = 0, then different relative signs of k, m, and g must be
distinguished. Let o be the sign of m. Then a regular solution is

if p?2 — k% > 0, but

o b=l (26)
g™ = iorhmi=, (27)
pEm =0 (28)
if o # 0 and p = ok, but
gEm = plmi=1 4 __kz_,.lml+1 ' (29)
T m? + |m| ’
2
BE™ = io [ riml—1 - T mi+ (30)
m? + |m| '
2ik
km _ 2% |m|
Bz il (31)
if 0 # 0 and p = —0ok, and
pr = —%ikr, (32)
1
B° = S, (33)
g =1 (34)

ifeo=0and p =k or p=—k.




3.3 Determination of coefficients

The boundary condition is

akmﬂfm(a) = frm, (35)

where fi,, is a Fourier coefficient of the given function B,(6,z). The coef-
ficient @y, is thus determined as long as 3¥™(a) # 0. Since the function
5™ (a) depends on 1, there are thus certain values of u for which the coef-
ficient aj,, is not uniquely determined.

The case k = m = 0 is exceptional because $%°(a) = 0 for all u. This is
consistent with foo = 0, which is equivalent to the constraint (3) upon the
boundary condition. The coefficient agp is thus never determined from the
boundary condition. It is instead determined from the toroidal magnetic
flux because this is given by

py = 2mati(|pla)aco, (36)

thus depending only on agg, not on any other coefficients. We will see that
J1(|p|a) # 0 for all possible values of . This implies that the relation (36)
can indeed be inverted to yield ago.

If k and m are not both zero, then 85™(a) vanishes only on a discrete
set values of u (the eigenvalues of the Euler equation with the boundary
condition B, = 0 and the additional constraint ¢ = 0). For each pair
(k,m), there is an infinite sequence of eigenvalues which we label with an
integer n, thus denoting them by pigmn. There are two possibilities: either
frm # 0, in which case agm, as a function of g, has a pole at each pgmn, or
Sfem = 0, in which case ag,, is arbitrary for 4 = pgmn. We conclude that the
magnetic field is uniquely determined as long as p is not an eigenvalue. For
W = Hkmn, it does not exist if fym # 0 (B, diverges as g — figmn), and it
exists, but is unique only up to an arbitrary multiple of By, if fim = 0.

3.4 Determination of pinch ratio

This implies that the helicity H (p) exists and is uniquely determined as long
as u is not an eigenvalue, but has a pole at g = pgmn if fkm # 0, and is
arbitrary at 4 = pgmn if fim = 0. Hence the line g = pgm, belongs to the
graph of the function H () if fym = 0, but is an asymptote if fim # 0. As
a consequence, the inverse pu(H ) has infinitely many branches, one in each
interval between adjacent eigenvalues.



The branch corresponding to the relaxed state is that with the smallest
||. This branch is obtained by observing the following two facts: First, the
spectrum is symmetric to the origin because the Euler equation is invariant
upon changing the signs of g, m, and By, or of p, k, and B,. Second,
the function H(p) is odd. We conclude that the branch p(H) with the
smallest |p| is an odd function with |pu(H)| < po, where pg is the smallest
positive eigenvalue. This function is monotonic even if the function H(u)
is nonmonotonic for |p| < po; in the latter case it has jumps, thus being
only piecewise continuous. Since the relationship between H and p is never
needed, we do not give it here. However, we remark that the function H(u)
depends on the boundary conditions, each Fourier coefficient fi, giving rise
to an additive contribution. The contribution of foo was given by Taylor [1];
it is a monotonic function of p.

It can be shown that B¥™(r) # 0 for r > 0 unless p? > k2. This
implies that all eigenvalues are obtained from Egs. (21) and (24). The
smallest positive eigenvalue was calculated by Taylor [1], k being treated as
a continuous variable. It is given by poa =~ 3.11 (or equivalently, @9 = 1.56),
and it arises for |m| = 1, and for |k| = ko with koa =~ 1.25. If the discrete
nature of the variable k is taken into account, both po and ko depend on
the aspect ratio, but are near the values given by Taylor because the aspect
ratio is large.

The maximum pinch ratio ©¢ is thus independent of the external mag-
netic field. It is attained at some finite H or only approached for large |H]|,
depending on whether fyx, vanishes or not. The latter case (the external
magnetic field resonates with the eigenvalue o) is exceptional because it is
excluded if the length of the cylinder is not a multiple of 27 /kq (it is also
excluded if the boundary is a magnetic surface or if the external magnetic
field has plane symmetry).

3.5 Summary

To summarize our results for a circular cylinder, we state that the magnetic
field of a relaxed state is a solution of the Euler equation with some |u| < po
depending on H and ¥. If u < po, only those Fourier components axn, are
present which are imposed by the external field. If fig, = 0 (which is the
general case), then u = pg is possible, and implies at1x, # 0; if fix, # 0,
then g = po is excluded, but a1k, # 0 for all u < po.

The helicity has been used to derive these results, but is not needed to
determine relaxed states. Using the pinch ratio instead is more convenient
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for two reasons: Firstly, it appears more explicitly in the Euler equation;
secondly, it is easier to measure. Accordingly, showing that a given magnetic
field represents a relaxed state merely requires verifying that the field is
force-free with a constant ratio of the magnetic field and current density,
and that the magnitude of this ratio does not exceed pg. It should be noted,
however, that the pinch ratio, unlike the helicity, is not conserved during
relaxation. Hence the latter is needed for predicting what relaxed state
arises from a given initial state.

4 Extrap

If the external field has plane symmetry (i.e. is independent of z), then
fkm = 0 for k # 0. The relaxed state then has the same symmetry if |0 <
©o, but a term proportional to cos(# + koz) is superimposed if |@| = ©y.
To determine relaxed states with plane symmetry, one can, instead of
Fourier-decomposing, determine the axial field B, as that solution of the
linear elliptic equation
V2B, + 4?B, =0 (37)

which satisfies the boundary condition
0B,/00 = paB,, (38)

and which is normalized so as to yield the prescribed axial flux 1. The
magnetic field vector is then given by

B= %VB, x Vz+ B,V=z. (39)

Its axial component is constant on the magnetic surfaces in this case (it
is proportional to the flux function, and Eq. (37) is the familiar Grad-
Shafranov equation).

We now discuss in detail the even more special case of an external oc-
tupole field, i.e. the field produced by four axial currents which are sym-
metrically placed at a radius much larger than the wall radius. We thus put
fem = 0 unless £ = 0 and m = +4, and assume that fo4 is real (this implies
foa = fo—4). The normal component of the magnetic field at the boundary
is then

B.(a,0) = 6% cos(46), (40)
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where the nondimensional parameter § has been chosen as the ratio of the
amplitude of the modulation and the average axial field (this modulation
parameter remains defined, and the relations of this section are still approx-
imately valid, if the modulation is not exactly sinusoidal).

If |®] < O, the relaxed state has plane symmetry. Its axial magnetic
field is then given by

_ b [Jollulr) _ 5 Jalr)
B: = ora [Jl(mm AT

If the rod current vanishes, we have § = 0, the boundary is a magnetic
surface, and the Bessel function model of the reversed field pinch (RFP)
obtains. In this case, field reversal obtains (the axial field at the surface
is opposite to that at the center) if the quantity |pu|a exceeds the smallest
positive zero of the Bessel function Jo or, equivalently, if |0 > 0. =~ 1.2.

While the RFP depends only on the single parameter © (ne = 20),
our model of Extrap also depends on 6. To study the phenomenon of field
reversal for § # 0, we assume g > 0 and § > 0 (due to obvious symmetries
there is no loss of generality). There are now two critical values ©4(9),
one for field reversal somewhere (partial reversal) and one for field reversal
along the entire boundary (total reversal). These two values are obtained
by inverting the two relations

Fi(0,8) = 2Jo(20) £ 6J,(20) = 0; (42)

cos(46)] : (41)

they coalesce at ©. for § = 0. No field reversal obtains if F_ > 0, partial
reversal obtains if F_ < 0 and F} > 0, and total reversal obtains if 4 <0.
Figure 1 shows the two curves Fi = 0 in the (©,6)-plane. It also shows the
curve on which the four x-points of the poloidal magnetic field (VB; = 0)
are at the boundary. Since this curve does not intersect the curve Frp=0
for |©] < O, total field reversal is impossible if the x-points are in the
plasma. In other words, field reversal is suppressed at least near parts of
the boundary if the octupole field is sufficiently strong to generate x-points
within the vessel.

5 Summary

We have extended the theory of relaxed toroidal plasmas to external mag-
netic fields whose field lines intersect the wall (Bn # 0). As in the case
B,, = 0, the magnetic field is force-free, with a constant ratio of the cur-
rent density and magnetic field whose magnitude has the smallest possible
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value yielding the given flux and helicity. Applying the general theory to a
large-aspect-ratio torus with circular cross section, we have shown that the
maximum pinch ratio (or, in other words, the phenomenon of current satu-
ration) is independent of the external field. We have explicitly determined
the relaxed state in an external octupole field modeling the Extrap exper-
iment. In this case, field reversal is inhibited near parts of the boundary
if the octupole is strong enough to generate magnetic x-points within the
vessel.
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Appendix A: Properties of helicity

First, we show that the helicity H is invariant under gauge transformations,
provided the vector potentials are single-valued. If A is replaced by A’ =
A + Vy, and Ay is replaced by Aj = Ao + Vxo, then H is replaced by
H' = H + AH and the change of the helicity is

AH = de?'«r(B —Bo) - V(x+ Xo) = /Tda'rdiv[(x + X0)(B — Bo)]. (A1)
Since x and xp may be multi-valued, Gauss’ theorem can be applied only if
the torus is made singly connected by cutting it with the surface S,. The
result is

AH = fs d?0(x + xo)n - (B - Bo) + &i(x +X°)js d®on - (B - Bo). (A2)

T s
The integrand of the first term vanishes because B and By have the same

normal component, and the second term integrates to zero because B and
By have the same flux.
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Second, we show that H is conserved if the plasma is perfectly conduct-
ing. Since B, and 1 are conserved, By is conserved, too, and Ag can be
chosen time-independent. The time derivative of H is then

e de?'r[A .(B - Bo)+ (A + Ao) Bl. (A3)
Using the equations for the various time-derivatives, we write this as
o= jj_ #1[—(B - Bo)- (E+ V&) — (A + Ag)-curlE]  (A4)
or, equivalently,
H= /T #r{-2B-E — div[8(B - Bo) + E X (A + Ag)l}.  (A5)
Applying Gauss’ theorem now yields
H:—2'/Tda-rB.E—Lszan-[Q(B—Bo)+(A+Ao)XE]- (A6)

The integrand in the volume term vanishes in an ideal plasma because the
fields and the mass velocity U are related by E + U x B = 0, and the
integrand in the surface term vanishes because of our boundary conditions.

Appendix B: Boundary terms in the energy varia-
tion

First, the constraint of fixed normal component By,

n-(curléA) =0, (B1)
is equivalent to the existence of a scalar function a such that

n X 6A =nxVa (B2)

at the boundary. Second, the constraint of fixed flux,

don - curléA = ]C dl-6A =0, (B3)
Ss s

implies §,a = 0. Third, the single-valuedness of A implies that a has a
single-valued surface gradient. Hence §;a is path-independent.

14



The boundary term is

éWg = [ d’on-(6A x C) (B4)
St

or, with A expressed in terms of a,

oWpg = d’on-(Vax C) = / d*on - [curl(aC) — acurlC].  (B5)
Sy Sr

Here the second term vanishes because the Euler equation implies
1
curlC = Eﬂ(B — By), (B6)
and because B and B have the same normal components. To apply Stokes’

AdgdenBS ARG A3 tm BT is cut along both C, and C; to become a singly

connected surface. The result is
W =f d1-(5,a0)+}( dl - (6,aC). (B7)
C, Cy

Here the second term vanishes because §,a = 0. Since §;a is path-independent,
the first term is

§Wg = b1a jc dl-C.nfin  BBAS afBRASAHEIA

Again applying Stokes’ theorem yields
§Wg = 6m[9 d*on - curlC. (B9)

The above equation for C now implies
g = %p&;a ]S &on - (B - By). (B10)

This vanishes because B and By have the same toroidal flux.

Appendix C: Energies of different stationary states

We wish to show the following: If two magnetic fields B; and B satisfy the
Euler equations
curlBl = ,lllBl, curlBg = p,ng (Cl)
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in T, have the same total helicities H; and Hj, the same fluxes ¥; and
o through the cut surface S,, and the same normal components at the
boundary S7, then it follows that

(13 — 1) (E2 = E1) >0, (C2)

and hence that By < E if |p1] < |p2l-
Equation (C2) follows from the identity

[ 5 =0, 1= 30n+m)IBE =B+ 5~ a)iBz = Bal* (C3)

upon multiplication by p; — po. To prove it, we first write the condition
H2 - H 1= 0 as

];daT[(Al 4+ Ag)-(B1—Bo)— (A2 + Ag) - (B2 —Bo)] =0 (C4)
or, equivalently,
de%{_ﬂL1 By — Ay By +div[Ao x (Az— A1)} =0.  (C5)

Since B, and B, have the same normal components at S, a gauge can be
chosen such that n x (Az — A;) = 0 at S7. Then the second term in the
integrand integrates to zero after applying Gauss’ theorem. Hence

/Td3r(A1 s By =iy s By)i= 0. (C6)

Second, we use some simple algebra to write

f = (Bs—By) - (p2B1+ mBa2) (CT7)

for the integrand in the identity which we want to prove. The Euler equa-
tions now imply

f = papa(Az — Ay) - (B1 + Ba) + div[(Az — Ay) x (u2B1 + 1 B2)]. (C8)

Upon applying Gauss’ theorem, the second term integrates to zero in our
present gauge. Hence

frdaff = pap2 /T d*r(Az - A1) - (B1 + By) (C9)
or, equivalently,
] &1 f = pap2 Ldaf[(AI By — Az -B) + div(A; x A)].  (C10)
T

Here the first term vanishes because H; = Ha, and the second term vanishes
in our present gauge. This proves our identity.
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Figure caption

Figure 1: Regions of different field reversal properties in the upper
right quadrant of the parameter plane. The two solid curves separate
the following three regions: No reversal obtains for small pinch ratios, total
reversal obtains for large pinch ratios and small modulation parameters, and
partial reversal obtains in the intermediate regime. In the region below the
dashed curve there are no x-points within the vessel. The vertical dashed
line marks the maximum value of the pinch ratio. The figure is extended
into the entire parameter plane by using the symmetry with respect to both
coordinate axes.
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