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Abstract

It might be necessary to take nonlinear instabilities into account in order to
explain anomalous transport. Such instabilities can exist even for arbitrarily
small initial amplitudes if the system possesses linear negative-energy modes,
as was shown already in 1925 by Cherry [1]. Since the class of equilibria allow-
ing negative-energy perturbations is much larger than the class of equilibria
that are linearly unstable without dissipation, the search for negative-energy
modes seems to be rather important. After reformulation and generalization
of Cherry’s oscillator example, which allows a simple physical interpretation
of the nonlinear instabilities and shows the relation to continuum theories
such as the Maxwell-Vlasov theory, the question is discussed how to obtain
energy expressions for various linearized theories. The known energy expres-
sions are in general rather impractical. Two new methods are described that
yield energy expressions which can be used similarly to the potential en-
ergy 6W in ideal MHD. The simpler one allows the energy of the linearized
Maxwell-Vlasov theory to be obtained; the more complicated one can be ap-
plied to any Maxwell-collisionless kinetic theory and even yields the whole
energy-momentum and angular momentum tensors. The latter method is
used to treat the collisionless drift kinetic theory. Only the main points of
this treatment can be presented here. Some general results are derived for
the Maxwell-Vlasov theory. This is done in the form of examples. For one
example a comparison between the Maxwell-Vlasov and the Maxwell-drift
kinetic theories is made.




Introduction

Usually the question is asked whether a system is linearly unstable. If it is, an
attempt is sometimes made, too, to find out what the nonlinear development
of the linearly unstable modes might be. There also exists, however, the pos-
sibility of a system being linearly absolutely stable but nonlinearly unstable.
(For references on nonlinear explosive instabilities see J. Weiland and H. Wil-
helmsson [2] and H. Wilhelmsson [3].) An impressive example, a numerical
study of collisional drift-wave turbulence, was recently published by B.Scott
[4] in which he demonstrated self-sustained turbulence of a linearly stable
plasma slab resembling the plasma edge regions of tokamaks. His main re-
sults are that all of the features of nonlinear mode structure are determined
by nonlinear processes, divesting linear stability criteria of their relevance
to that structure, or its amplitude; contrary to today’s common perception
in tokomak physics that drift-wave turbulence cannot be the agent behind
energy transport in tokamak edge regions, many important features of ex-
perimentally observed tokamak edge fluctuations could be reproduced, most
particular the amplitude ordering e¢/T > 71/n > T/T; the transport is found
to be gyro-reduced-Bohm-like. In Scott’s study a certain threshold ampli-
tude is needed. It can, however, even happen that the nonlinear instability
occurs with arbitrarily small initial perturbations. This was shown for the
first time in 1925 by Cherry [1]. He presented a simple example demonstrat-
ing that linear stability analysis will in general not be sufficient for finding
out whether a system is stable or not with respect to small-amplitude per-
turbations (see also [5]). His example consisted of two nonlinearly coupled
oscillators, one possessing positive energy, the other negative energy, and the
frequency of the one oscillator was twice that of the other. The exact two-
parameter solution set he had found exhibited explosive instability after a
finite time.

What is meant by positive and negative mode energy follows from the defi-
nitions below:

o energy of the equilibrium: £©;

e frame of reference: £©) minimum;




e energy of the perturbed system dynamically accessible from the equi-
librium: £©) + §&;

e 6&: mode energy;
e 6& < 0 : equilibrium possesses free energy.

A question is then: What does 6 tell us? The following list describes
situations relating to §&:

e 6& > 0 : stable;
e & =0 : necessary for linear instability;

e 6& < 0 : amplitudes of perturbations with 6 < 0 grow if energy is
removed from them by

1. dissipation,

2. coupling to positive-energy waves in the same system, which means
nonlinear instability.

In order to get some insight into the mechanisms responsible for the nonlinear
instabilities described, Cherry’s oscillators are discussed in Sec. 1 in some
detail; in particular, reformulation and generalization corresponding to three-
wave interaction and allowing a simple physical interpretation are presented.
In Sec. 2 another simple model is investigated, that of a charged particle on a
hill with superimposed magnetic field. This example serves to test a multiple
time scale formalism which could also be applied to continuous systems and
should generally lead to explosive or non-explosive instability, if there exist
negative-energy modes which can resonantly interact with positive-energy
modes. Section 3 reviews a number of existing expressions for the energy of
linear perturbations and discusses the restrictions and difficulties connected
with them. In the past, investigations of nonlinear electrostatic instabilities
in homogeneous plasmas were performed on the basis of one of these expres-
sions [6],[7],[8],[9],(10]. Section 4 gives an elegant derivation of the energy of
linear perturbations for the Vlasov-Maxwell theory based on the Lie group
formalism. Section 5 sketches a more complicated derivation of the energy
which, however, allows the whole energy-momentum and angular momentum




tensors for general Maxwell-collisionless kinetic theories to be obtained. For
details the reader is referred to Ref. [11]. Sections 4 and 5 also give some
first applications.

The class of equilibria allowing negative-energy perturbations is much larger
than the class of equilibria that are linearly unstable without dissipation, and
anomalous transport might well be caused by nonlinear instabilities relating
to such negative-energy perturbations. As regards these perturbations the
energy expressions mentioned above can be used similarly to the potential
energy in the energy principle of ideal MHD.

1 Cherry Oscillators

Cherry’s Hamiltonian is given by

ay
I
|

w (PP +q}) + ;w2 (p2+3)

2 (2¢ip1p2 — q2(gf —p?)) .

4
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a = 0 means two uncoupled oscillators of frequencies w; > 0 and wy, > 0
which possess negative and positive energy, respectively.

If w, = 2 w; , one has a third-order resonance. Cherry found for this case
the following exact two-parameter solution set:

V2 .
G = —— sin(wit +7) ,
— 2
o= v2 cos(wit +7) ,
e—at
g = — sm(2w1t + 2’7) 3
e—at
—1
p2 = cos(2uwt + 27) ,
e—at




where € and ~ are constants.

These relations show explosive instability for any a # 0 , whereas the lin-
earized theory gives only stable oscillations. There is also no threshold am-
plitude. Small initial amplitudes only mean that it takes a long time for
the explosion to occur. In a continuum theory, such as the Vlasov-Maxwell
theory, the assumed resonance corresponds to the conservation law

Wy + wy + w3 =0

for a three-wave interaction. It is therefore of interest to have a formulation
and an example which are closer to the structure of a three-wave interaction.
To this end, it is advantageous to introduce complex quantities (see [12]) by

E=p+1q9q , & =p-—-igq
Canonical variables are

=P ; £/2i=Q,

and Cherry’s Hamiltonian becomes
1 * 1 *x a * 3
H=—§W151§1+§W2§252+£(5f§2_ 32 &)

In quantum mechanical language £*/+/2 means creation of quanta and £/v/2
annihilation of quanta. The nonlinear terms then have the property of creat-
ing or annihilating two quanta of oscillator 1 and one quantum of oscillator 2
without changing the energy. Thus, the coupling terms do just what was said
in the Introduction to be the mechanism responsible for nonlinear instability.
With the new formulation we can write down the envisaged generalization
to three coupled oscillators in the form of the Hamiltonian

1 1 1
H = 3 Dowk & b + 5 2 616265 + B a” §16365.
k=1

The frequencies wj are assumed to satisfy the three-wave conservation law
q




The equations of motion are
fe = twp & + 107 866G [ &

For a set of special solutions we make the ansatz

‘Sk(t) s ﬂ(t) etwkitivk , Z{Pk = 0.

@ = ia" a2
Its solution is
ia* \1/3 )
a=’)’b(t) ’ 7—(W) ’ b":b'»
b = b2,
1
b = - 3
€e—1

¢ is a constant of integration. This yields the following three-parameter
solution set

ia*\1/® 1 gy -
6= () e Le

€— |Glt =1

e = €/ |al

These solutions correspond to Cherry’s two-parameter solution set .

It is possible to obtain also the complete solution for the three-oscillator case
[12]. It shows that, except for a singular case, all initial conditions, especially
those with arbitrarily small amplitudes, lead to explosive behaviour. This
is true of the resonant case. The non-resonant oscillators can sometimes
also become explosively unstable, but the initial amplitudes must not be
infinitesimally small.




2 Particle on a Hill

In this section a simple but characteristic physical example is treated which
consists of a charged particle on a hill with superimposed magnetic field. To
lowest order the hill is axisymmetric and parabolic and is described by the
potential

V(z,y) = —5(" +7).

With a constant magnetic field B in the z-direction, the equations of motion
and their solutions are

z =x+ By, j =y — Bz,

z+iy=(— (+iB{ =,

1wt

(xe™ — —w?+ Bw=1,
1 B?
= — — —=1.
w4 2JB:]: 4

Stability exists for B > 2.

w4y means: mainly gyromotion,

w_ means: mainly drift motion.

The energy of the motions corresponds to the mode energy and is given by

68 = %({i‘2 + 312) — (x*+y?)
21C”2 —31¢1
%|Co|2(‘-‘-’i =1)

= [Gof? (%’—1:&;%/%2—1).

£+ =10, §E. <10,

This shows that

When friction is added, one has

(+(@B+7) =

It holds that for all B Sw > 0, and hence instability, is possible.
When a potential z* is added positive-energy modes and negative-energy
modes are coupled. The coupling is, however, only partly of the Cherry
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type. Yet numerical results exhibit instability again for very small initial
x, if there is resonance given by wy = 2w_. This can also be shown via a
multiple time scale formalism for the initial phase until the nonlinear term
attains the same order as the linear ones.

Finite Larmor radius stabilization is similar in structure to the particle-on-
a-hill problem. Negative §WW modes can be stable but become unstable with
friction.




3 Expressions Used for 6£ in the Past

I'or homogeneous plasmas the best known energy expression is

P o e

8= T w Ow

(e, - E(k,w)),
where w = w(k),

¢y hermitian part of ¢,

¢,: anti-hermitian part of ¢, must be negligible.

This kind of energy expression was used in the past for discussing nonlinear
instabilities as mentioned in the Introduction. It can also be extended to
inhomogeneous systems (see [13]).

Since E(k,w),w(k) or E(z,w),w have to be known, the use of these expres-
sions is in most of the cases of interest rather difficult, if not impossible. A
different kind of energy expression is known for 1-d homogeneous plasmas
and electrostatic perturbations [14],[15]:

€= *dm Zm"f

o
fvl =0v—F— 3?.)

99, +vag,, = —iEl,

at Jdz m,
8E1 =47 Ze,,jg,, fmdu

A simple application of this expression is the following: For any g? one can
choose the distribution of the signs in g, such that [ g¢,8f,0/0vdv = 0 and
hence E; = 0. This yields the conclusion

dvdI

aqu
dv

6€ < 0 possible if v >0

for at least one species v in a small interval of v in a frame of reference with
£©) = minimum. Therefore

fvo # monotonous function of v?
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in this frame guarantees the existence of negative-energy perturbations. This
result is not easily obtained with the first kind of energy expression. The
subject of the following sections is:

o generalization of the energy expression for 1-d homogeneous plasmas
with electrostatic perturbations to general 3-d inhomogeneous Maxwell-
Vlasov and collisionless drift kinetic equilibria with general electromag-
netic perturbations;

e generalization of the v%"-‘l > 0 criterion.

4 Maxwell-Vlasov Theory

The energy for the nonlinear Maxwell-Vlasov theory is well known and sim-
ple. Obtaining from this expression the one for the linearized theory 1is,
however, not a trivial matter. The problem is that 6& is of second order in
the perturbations, especially

68;;.’,1 = '[_T;_Ivzf(2)d3vd3$’

and so f(?) has to be expressed in terms of first order quantities. The methods
of achieving this are Hamiltonian and Lagrangian ones.
Two methods are described here(see [15],[11]):

e canonical transformation method based on the Lie group formalism;

e modified Hamilton-Jacobi theory,
also applicable to collisionless kinetic guiding center theories.

In this section the method of Lie-type canonical transformations is described.
(In Appendix A a brief derivation of Lie-type canonical transformations is
presented.)

The energy of the nonlinear theory 1s given by

1
e j (H — e®)fdzd’p + o j (E? + BY)d’z.




We now introduce

g(x,p,t) : generating function for
Lie-type canonical
transformations to

unperturbed orbits.
This yields the perturbed distribution function
f(x,p,t) = €1f°(x,p)
= P+, + % 9,19, £°1) + - -
g and the Hamiltonian H are needed up to second order:
g= g3 g

H=Ho+H +H +--.

The - not needed - equation for g(!) is
M + [¢", Ho] = H,.
We first obtain the first-order energy:

£ —

/{—EAl . %Jr(o) + (Ho — eg,o)f(ll} dzd®p

c dp
1
+E/mvm+nw&w%

With
Eg = ‘—V‘Dg, B1 = curlAl,

it follows that
1
47 j(EO -E; 4+ Bo - B))d’z =

1.
/(‘I’oﬂl <3 E.lo - Ap)d’z.
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Furthermore, one has
j HofVdPzd®p
= ]Ho[g(l),f(n)]d3:cd3p

= — [ gW(Ho, fO)dp
= 0.

Since it holds that
iy 2 j efDp, jo = fe%%f(mdgp’
all terms cancel and hence it follows that
£W = 0.
We now find the second-order energy:
£2) =
[ o {(Ho - e@0)f®
dH, e

i (1)
L3 Jp cAl)f

aHo €

tadsiue PN (

C

e (Eo . E-z -+ Bg * Bg)dsl'.
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The second-order distribution function is
£ = [, O] 4 % (4,16, 7] .
Similar again to the first-order case, one obtains
[ Holg®, rO1dzdp

= — [ g[Ho, fO)dzd
= 0

This yields the second-order energy expressed in terms of first-order quanti-
ties:

£@ —
1
/daﬂrdap {;Ho 9, [, 7O)]
en . 9Ho ) o)
CAl ap [g af ]
1 32H0 e (0)
2 ap:ap llAlkf

+ 2= f(Ei + B} d’z
By partial integration one can replace
1 1
5Ho [9%, 9, 7] by 5[Ho, Mg, 1),
The expression for £(?) is understood to imply summation over all particle
species.

In the sense of initial conditions ¢g(!), A, A, can be chosen arbitrarily, whereas
®, is restricted to satisfy

Ad) = —47p, = —47’2 f[g“) f(e)

where v denotes the particle species.
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4.1 Examples

The following notation is used below:
gV =g —g.
4.1.1 Homogeneous Plasma: Bo = Eq = 0, Electrostatic Perturba-
tions

For this case one has
1 = 1),
(I)o = Ao = Al = 0
The minimizing perturbations are
g = g(v, k)e'*™* + c.c.,
E, = El(k)eik'x +16iC....

This leads to the following expression for the wave energy:
£ =
L4 g TP 1ap - 9g
5 /d Vg k*g|* + (¢"k - vk 6V+C'C')
4 2
+ o |Eal’,
where V is the volume of a large periodicity box.
Integration by parts yields
£@ =
Vis l o of©®
—Ejd U‘.Zm“ql sk ov
174
—I|E1 %
167r| i

E, = 0 is made possible by a proper choice of signs in g(v, k). The frame of
reference which has to be used is defined by

Z]vfﬁo)d:*v = 0.

13




This means that £2) < 0 cannot be obtained by changing the center-of-mass

velocity. The condition for the existence of negative-energy perturhations is

then obviously

af©
ov

for at least one k, v and one particle species.

(This result also holds with A; minimizing £(?).)

k-vk- >0

Equivalent to this condition is that f(°) ought not to be a monotonous func-
tion of v? in the center-of-mass frame, in which the equilibrium energy is
minimum.

4.1.2 General Maxwell-Vlasov Equilibria - Localized Perturba-
tions

We now assume localization of ¢ to intervals
Dy 2y 58 L 7y
Furthermore, perturbations inside these intervals are chosen to be o e'k™

with
Az, kyAy, k,Az > 1.

This has the consequence that £() is dominated by gx nd ai % In this

way we arrive at the same expression for £(?) as in the first example.

4.1.3 General Maxwell-Vlasov Equilibria - General Perturbations

A conjecture by Morrison and Pfirsch [15] which is proved by Weitzner
and Pfirsch [16] says that necessary and sufficient for the non-existence of
negative-energy modes is that

fOx,v) = fO(HD)
and
f(O)
oH® =
This condition is closely related to the stability theorems of Newcomb [17]
and Gardner[18].

<0.
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4.1.4 Conclusions from the Examples

The problem is not whether an equilibrium possesses negative-energy modes
or not, but:

What is the necessary localization for €@ < 0 ?

It is therefore of special interest to have an energy expression for the linearized
Maxwell-drift kinetic theory. The next section describes how to obtain such
an expression.

5 Maxwell-Drift Kinetic Theory

5.1 Modified Hamilton-Jacobi Approach

We begin with the following definitions:
e H(pi,qi,t): Hamiltonian of particles;

® DiyeeyPryQlye- -5 qnt phase Space;

(Qth(Ia) = (1171,.’82,.',[,‘3) = X;

(p1,p2,P3) = P;

n = 4: needed for guiding center motion;

H©O)(P;,Q;,t): reference Hamiltonian;

e S(P,, q;,t): mixed variable generating function for canonical transfor-
mation
pi ¢ — P, Qi
as aS
pi = 3—% ’ Qi = 3_R
The modified Hamilton-Jacobi equation is

aSs as as
Y —qit) = Pis 1),

and

So = ZP.'q;

15




is the time-independent solution to H = H,.
The original Hamilton-Jacobi theory is the special case

HUEO.

We shall later choose Hy as the time-independent equilibrium Hamiltonian.
As will be shown below a Lagrangian for the whole theory, irrespective of
the special choice of Hy, is

~ [ dqdP 4(P, g, 1)

as as as
{a + H("a'aaq{yi) - I{O(R) E'P:st)}

1 [ me n2
+S?l_fd:c(E B?)

dqdP =dq, - dg,dP;---dP,, dj=dg---dgn.

Quantities to be varied are

with

¢, S, A, 9.

The variational principle is

t2
é Ldt=0

131

with
6p=65=6A=6®=0

at t1,%, and some boundaries in q,P space. Gauge invariance requires
H(Pi: qis t) =
I;'(p - EA, E, B, derivatives of E, B, ps,...,Pn, 4y -, qn)
c
+ed.

Lowest-order guiding center motion does not involve derivatives of E, B. In
this case the Euler-Lagrange equations are as follows
variation with respect to ¢:

as as
6t+H( :‘L t)—HO(PnBP )

16



variation with respect to S:

06 8 (0H 8 (8Ho )\ _
Wa—qz(ﬁaé)‘ﬁ?(a@ﬁ)—“’

variation with respect to ®:

1 0 d 0H

— e e e vdgdP + — - | == ¢dg

4w Ox k e/qb dBy 0x 6E¢ 4db,
variation with respect to A:

i (-1—-6:)—]3 + curlB) =

47 \ cdt

< a—Hc;sd(;dP
cJ dp

190 rdH oH
L8 O P
= [ S5 6dadP - curl f S 6ddP
with
OH _ OH(pi,git)
api Opi pi=22
and

dHy _ aHg(Pg, Q,‘,i)

0Q: ~ dQ;
Proof of the correctness of the above Lagrangian follows from the properties

of the density functions ¢. In order to obtain these properties, we introduce
a modified Van Vleck determinant [19],(20] defined by

9%S
3q;8Pk

o 85
Q‘-BF“

¢ = del

]

which solves the mixed-variable continuity equation for ¢. The general solu-
tion of this equation can then be written as

(p(Pi,qiat) = Q:-’f-(Pi,q;',t)
with

. as
f(R' ql'ﬂt) = f (5{;1Qi7i)

17




or
; as
oo = o) [ p 92
Pty = 1 (P,,(,_)Pi,t).
The function f(pi, ¢, t) solves the “Vlasov” equation

8f _ OH(pig.t)0f _OH Of

ot dpi dq;  0Oq; Op;

_of _
_Et—_[Haf]_O‘

The other function f(O(P;, Q;,t) solves the “Vlasov” equation for the refer-
ence system

01 | OHo(P. Qint) /)  0Ho 0f*)
ot OP; a0 0Q: OF,

af©
=—— — [Ho, f¥] = 0.
ot [ 07f ]
These “Vlasov” equations show that the density function ¢ has the right
properties, which proves the correctness of the above Lagrangian.

5.2 Energy Expressions

With a Lagrangian, it is straightforward to find an expression for the energy.

5.2.1 Nonlinear Theory

We first treat the nonlinear theory, which is simpler than the linearized one.
With the help of Noether’s theorem even the energy momentum tensor and
the angular-momentum tensor can be obtained. A sketch of the derivation
is found below. We present first the expression for the energy [11],[15] that
follows from the energy momentum tensor:

g = fd%dq‘dpf (H—e(D—E-EZ%)

i 3 2 2
+8F_/dm(E +B?).

18




For the derivation we introduce a notation which allows a simpler procedure
than the one used up to now:

601"'3611 =Ctaxaq4s'“7%‘u

QOa"'aQn :ct,x,Q.;,'--,Qn,

pO!"'aﬁﬂsz:psp‘h"')pn,
-p01"'spn=P03P3P4:"'1Pﬂ7

H(ﬁi,é{) =cpo + H(pla" 3y Pnsq1s :qr.at)1
H(U)(Pi)@i) = HO(Pla' "3Pﬂ)Q15“ ‘}Qn}t)a
3(}5 65'

BPO 3Pg

A;=0 fori>3,

H= H(ﬁz = A,‘C/C, Fﬂ)\)':

d§dP = dg, - - - d§ndP; - - - dP, = dqdP,

po : can be replaced by %f

k]

The Lagrangian is then
L =

. 7 = 0
- j djdPg (H(gf‘l,qa) - HO(B, 5 p-))

3 FpA
167 / dzFu
and the corresponding Lagrange density
E —
S
dqdP HON(P;, —=
- [ dado (G ) - HOR.52)

1

~Tor F ™
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The variation of the Lagrange density is given by

.. §C _8S 6L as
dgdP 6 —6—— e —

f . [ 66 ok 6(95/94:) 3§;+6(6S/6P,») dP;
L ;0 0L L p

o4 oFa

From this relation one finds the Euler-Lagrange equations

5L
56 ="

,3_( 5L )+a(5z )_0

9g: \8(8S/0a:)) " P, \s(8S/oB)) ~
oL 8 ac

24, 29 9F, = O

When these relations are used, §£ becomes

6L =

[ dia? |z (o5 957aa5) * o (55 sz )|

] oL
+25 (ﬁAu 5 Fm) .

Integration over P ma.kes the =% term vanish. Integration over § reduces the

BP,
sum over 2 in the - term to 0,1,2,3. Hence
6L =
a i o 6L ac
—_ dGdP6S ———— + 264, ——| .
5 [/ 9dP8S sosraan A“am]

In the sense of Noether we define variations first by translating the whole
system in space and time by

dz¥ =const p=10,1,23.

20




For any function F(z*) in the original system and the corresponding function
F(z*) in the new system it holds

P(z* + 62*) = F(a*)

and therefore

" aF
OF = F(.’E‘o) - F(.’L‘p) - —6:{?’)5‘;}'.
Application to £, S, A, yields, since the §z* are arbitrary,
9 o
a0 =0
where
as oL dA, oL

o) = [ djP — 8L

927 5(05/02) |~ 9z¢ OF,»

is the canonical tensor which is not gauge invariant. The energy-momentum
tensor T;‘ is the corresponding gauge invariant expression:

T) =
» .= [0S e oL ac "
[ daap (@ - EA") T ) s
Since £ depends only on -Eflj; — £A,, one has

A =€ 6£ _ BL
] d4dP a5 — 94y

With this and the Euler-Lagrange equations
d ox i
5:!:_“(@ ,—1,)=0

follows and hence

0 ma
E};Tp = 0.

We prove now that T,;\ possesses the non-relativistically regired symmetry.
To this end we consider variations resulting from an infinitsimal rotation of
our whole system:




A M
EH -_ _GA’

e, =0 for A and/or u = 0.

The components of the vector potential A,,p = 1,2,3 transform like the
components of a gradient, 2 e L. A similar procedure as before leads to

5 (T)a* - Tda*) =TE-Tf =0, k,pu=1,2,3,

which proves the non-relativistically required symmetry.

We introduce now p; instead of P;. Because of the meaning of ¢ this is done
by the substitutions

dP ¢ — dp f(pi, q:),

as
B P PEO
as e i
5o~ Ao = (O = (H(pi,00) - e6(ai ).

H©) can be dropped since in [ T9d®z one has, before p; is introduced,

6.5’)
" OF;

- /deP FOP;, Q)H (P, Qi) = const.

Hence H®) leads to vanishing four-divergence of T. This leaves

j dgdP $HO(P,

TPA =
e oH oH
s do 3 e i i
[ didos |(ba= £4) o +2Furge
1 HA /\___ uo
4TrF“pF - 5p Tor e

with P
Do ——Ay —
c
- (H(p,-,q,—,t) - G(I)(Qirt)) i

The energy expression presented in the beginning of this subsection follows
from

f BT = €.
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5.2.2 Linearized Theory

For the linearized theory we first find the corresponding Lagrangian.
Let Hy be the time-independent unperturbed Hamiltonian and ¢o,... the
unperturbed quantities such that

¢=¢o+ 60, ....
We then expand the Lagrangian up to second order in 6¢,.. .
L-'_—L0+L1+L2+... .

The unperturbed quantities make the L, contribution in the variational prin-
ciple vanish. Hence L, is the Lagrangian for the first-order perturbations
§p = ¢, 6S = Sy,---. It serves to find the second-order energy. The gen-
eral expression is again obtained via Noether’s theorem [11]. In it one can
express

o = af® a8,
~ 9q; 0P

d as
Gy . = | 0221
¥ 0g; (f 6Pé) '

The resulting expression is then a functional of
S1, @1, Ay

similar to the situation in the Vlasov case, with S; replacing g.

For the usual particle Hamiltonian and n = 3 the second-order Maxwell-
Vlasov energy is regained. In order to treat the kinetic guiding center theory,
we first have to find the Hamiltonian for the guiding center motion, which is
done in the following subsection.

5.3 Hamiltonian for the Guiding Center Motion
5.3.1 Lagrangian of Littlejohn [21] / Wimmel [22]

The Lagrangian is defined in terms of the variables
ta X = (qls g2, q3)1 g4,
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where ¢4 is an additional variable needed in guiding center theory.
The (non-regularized) Lagrangian is

L=SK% %= ed",
&
Koy Al %(qu +vE),

€®" = c® + puB + (¢} + VE),
ve = o(E x B)/B?,
b = B/B.

i being the magnetic moment, is treated as a constant of motion.

corresponding equations of motion are

1
E*+—VXB'—Ecj4b=O,
c c

b-x=v=q
with
. 10A* 09"
T ot ox’
B® =curl A",
V =X,

From these equations one obtains
B* + E*xb
c
Bj Bj

V=V, =q4

; o -
=9 =Va=_E"- o

For the Hamiltonian one needs

p=0L/dx = %A‘,

P4 = aL/6Q4 = {.
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These relations are constraints between the momenta and the coordinates.
The existence of such constraints has the consequence that Hamilton’s equa-
tions based on the usual Hamiltonian corresponding to the above - non-
standard - Lagrangian are not the equations of motion.

What can be done about this?

An elegant way of obtaining a Hamiltonian for such Lagrangians was once
developed by Dirac in the form of his constraint theory [23], which will be
adopted here.

The usual or primary Hamiltonian is

B, = x-0L/0%x+ qs0L[0¢s — L
= ed".

Dirac’s Hamiltonian for the present problem is the following expression:
e
H =@ + v, (p— SA")+ Vins

This Hamiltonian correctly yields

J0H
X = % Vg,
0H
=— =V,
94 O 4
In addition, however, one has
__oH__ o
P ox " ox

and
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These relations yield
d e, .
zi(p-a7) =
5, e..\ 0V,
- (a") (o= A7) - Gem

- 8\'9 . ( € ,)

P4 8q4 P A7),

These equations are solved by the constraints. It is important for what
follows, however, to be aware of the fact that the constraints do not represent
special values of some constants of the motion. Therefore é-functions of the
constraints are not constants of motion either. The distribution function f
must, however, be proportional to such é-functions in order to ensure that
the constraints are fulfilled, but it must also be a constant of motion. Both
conditions are satified by

f=
6(pa)8(p — ~A%) B y(x, vy, 1),

where f, is a solution of the drift kinetic equation

afs % v.9fs _
ot TV ox T V45, =

5.3.2 Linearized Theory

Since the constraints are to hold along the perturbed orbits, it is natural
that a displacement vector (£,£4) from the unperturbed to the perturbed
orbit must play a role. This means that, to the order needed, one has [11]

Si=8i(x,0) - €+ (P - SA(x, q4)) — &P,

that
so tha 55, 95,

ap — &0 gp, =T
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&,&, are displacements in X, g4 space similar to the displacement vector in
macroscopic theory. The constraints yield for them

1 - 6.§'1 € .
Syl (ax —zAl)’
§= ‘EJ.: + )\(X, Q4)BS,
with
Ej_* —
c 85’1 e
S b' ” Sl N = x
e B3> [ ¢ (3x cAl) B > bo
. 88, e ..
By (G - 2a).

1 [631

A=— == 4+ mhby - .
mBa" b £J—-]

0q4

With these relations the second-order energy is a functional (see Ref. [11])
of

A, 3 Al P (I)l ) gl(xsq%#)'

Except for ®;, which is constrained to
divE; = 47 p,,

these quantities can be freely chosen in the sense of initial conditions.

5.3.3 Extremization of the Second-order Energy

Introducing any convenient norm, one can try to find the minimum of the
second-order energy by varying the quantities

Al 3 Al ’ q)l ) SI(X‘JQ‘!H“")

with the constraint
divE, = 47p;.

This yields a Hermitian eigenvalue problem as in MHD.
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5.4 Example

As an example we consider a homogeneous plasma with
By =const # 0, E; = 0,

A1=A1=¢)1“—_p1=0.

As in the Maxwell-Vlasov theory one can try to obtain, with the help of the
above formalism, conditions for the existence of negative-energy modes (see
[11]). The results for both the Maxwell-Vlasov and the Maxwell- drift kinetic
theory, are:

Mazwell- Vlasov theory:

Localized modes: k;r, > 1

(0)
k-vk- of b
ov

Mazwell-drift kinetic theory:
Extended modes: k arbitrary

af g0
dv|

0 for some k,v;

)| >0 for some vj.

These conditions must hold, in the center-of-mass system, for at least one
particle species.

The last condition is only a sufficient one. In the kinetic guiding center theory
initially non-vanishing field perturbations might be important.

Summary and Additional Remarks

The nonlinear instabilities of the kind discussed here relate to the existence
of linear negative-energy perturbations. They were found to be explainable
in terms of creation and annihilation operators. A discussion of the complete
solution of the three-oscillator case with Cherry-like nonlinear coupling shows
that for almost all initial conditions resonance leads to explosive behaviour.
In addition, the nonlinear coupling of the three oscillators allows runaway to
occur in the nonresonant case as well, but the initial amplitudes ought not
to be infinitesimally small.
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In a continuum theory the three-wave coupling expression usually con-
tains terms additional to those considered here. They are generally of a
kind which introduces nonresonant behaviour even in the otherwise resonant
case. One can speculate that their effect averages out so as to make the
resonant terms dominant. Among these resonant terms can be those which
shuffle the energy between positive-energy modes only or between negative-
energy modes only. But this can be expected to only modify the exchange
process between positive- and negative-energy modes. If this is so, one can
expect nonlinear instability rather generally when a continuum theory allows
negative-energy perturbations. An example of this behaviour is the particle
on a hill with a superimposed magnetic field in vertical direction and a small
nonlinear term destroying the axisymmetry of the linear system: numerical
and some analytical results indeed show instability under arbitrarily small
initial conditions in the resonant case. This example has only exchange of en-
ergy between positive- and negative-energy modes. A four-oscillator system
with one negative-energy mode (w = —3) and three positive-energy modes
(w = 1;2;3) modes can be shown, within a multiple time scale formalism, to
be nonlinearly unstable, although not always explosively, where the nonlin-
ear terms include those shuffling energy between the positive-energy modes
only.

For the Mazwell- Vlasov theory a formally simple derivation of the second-
order energy based on the Lie group formalism was presented. A modified
Hamilton-Jacobi formalism allows one to derive the full energy momentum
tensor and angular-momentum tensor for general Mazwell- kinetic theories,
especially the Mazwell-collisionless drift kinetic theory. In the latter case, as
in MHD, a displacement vector in the X, qq = v)| space plays an essential role.

The second-order energy can be considered as being expressed in terms
of initial conditions which can be chosen freely exept for the constraint given
by Poisson’s equation. The minimum of this energy is therefore obtainable
via variations of these quantities leading to a Hermitian eigenvalue problem
similar to the situation in ideal MHD.

Special results are:

e Mazwell-Vlasov theory:
Necessary and sufficient for the existence of negative-energy modes is
the deviation of the distribution function of at least one particle species
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in the frame of minimum equilibrium energy from being a monotonous
function of v2. This implies in general strongly localized perturbations.

o Mazwell-collisionless drift kinetic theory:
Sufficient for the existence of negative-energy modes in a magnetized
homogeneous plasma is that, in the center-of-mass system,

©>0 for some )|

is valid for at least one particle species.

Much remains to be done in linear as well as in nonlinear theory.

Appendix A

Derivation of Lie-type
canonical transformations

Infinitesimal transformations

A generating function for an infinitesimal transformation is defined by

L0 B,1)

N : integer
N — oo.

Let the Poisson bracket between a and b be

[a,b]zz(aa ab  0b 6a).

5z~ w0

The infinitesimal canonical transformations from x to X; and from p to P,
are then

X, = (14 5ILDx
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L LoL
PT N

This yields

1 9*L 1 9L
Bl TV_ap,-Ba:k + Fa.’ﬂkap;
1 0L 0L
% [

[X2:, Pix) = bar

1
= b+ O(ﬁ)

Finite transformation

N iterations of the infinitesimal transformations described above yield the
new variables

XN = (1 4+ %[L, -])Nx,

1 N
Pr=(1+5IL1) P

from whichit follows that
1
[Xn;, Pn] = 6ix + N - O(ﬁ)

For the limit
N—*OO:XN—>X, PN—>P

with
X = elllx, P =elllp

one finds

[Xi, Pi] = bix,

which shows that the new variables are again canonical.
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Proof of the theorem ell1F(x,p) = F(ellx, ell1p)
We start again with the infinitesimal transformations:

(1 + %[L, -}) F(x,p) =

1 (OLOF OQLOIF
Flx,p)+ 5 (5—3—.6_;:, - 3;6_:5,) ;

F (4 512D, (0 + 1L, Dp)
1 0L 1 0L

= F(x- E%JH- ﬁ&)
1 ,0LOF OLOF
- F = . B
(x’p) & N(al‘, 3p,- 3p¢ 8:::,-
1
-I-O(ﬁ).
N iterations lead to
1 1 1

O57) = V- O() = O()

- ' ¥
A}E?;o(l+N[L’.]) = '™,

Hence N — oo yields the statement.
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