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Abstract

The spectrum and the solutions of the 1-D Schrodinger equation with a quasiperi-
odic potential V are investigated numerically. Quasiperiodicityin contrast to periodicity
makes possible the localization of modes. V' is taken as the sum of two incommensurate
periodic é-function series. The spectrum consists of bands separated by gaps which
correspond to plateaus in the winding number. The spectrum of extended solutions
(three-frequency-quasiperiodic) is found from the initial value problem. Localized so-
lutions cannot be found in this way, owing to numerical instability. Instead, localized
solutions (exponential decay on both sides) and the concomitant point spectrum are
obtained from a boundary value method. An alternative method to find the point spec-
trum for bounded potentials is proved valid also for é-function potentials, as used here.
Connections with the MHD spectrum of toroidal plasmas and Alfvén wave heating are

pointed out.



1. Introduction and Conclusions

The aim of the present investigation is the numerical study of localization of modes
in media with a simple quasiperiodic modulation. The type of modulation studied here
apparently has not been investigated before in the context of localization. Quasiperi-
odic “structures” or “modulations” are familiar mainly from solid state physics but they
occur in other areas like plasma physics as well. Also, the applicability of a method
to find the point spectrum of localized solutions, which is valid for bounded modula-
tions, is tested for unbounded é-function type modulations. The latter type leads to

recursions which are much simpler to handle numerically than differential equations.

The propagation of waves (i.e. existence of modes, after Fourier transformation in
time) through a periodically modulated medium is one of the key problems in solid state
physics and has been solved long ago. It is well known that propagation is possible in
continuous energy bands, separated by forbidden gaps. This follows from the Floquet

theory of ordinary linear differential operators with periodic coefficients.

In recent years there has been increasing interest in media with “superstructure”,
namely with an incommensurate modulation superimposed on the primary periodicity.
In this case the one-dimensional Schrédinger equation takes on the form

d?y
~ 72 + V(klI,kg.T) 1,b =k 1,[) (11)
dz
where V is 2x-periodic in both arguments, and the modulation lengths L; = 27 /ki, 1=

1,2, are such that L;/Ls is irrational. Such V(z) are called quasiperiodic.

In plasma physics equation (1.1), augmented by a first order term, describes the so
called “MHD shear Alfvén continuum” in the low pressure limit in general toroidal ge-
ometry [1]. It describes the propagation of waves along the magnetic field in a toroidal
surface with irrational rotational transform. The two arguments of V correspond, re-
spectively, to the poloidal and toroidal variation of the plasma equilibrium. E— <V >
determines the average refractive index and V— < V > is a measure of its variation.
The existence of eigenmodes of equ. (1.1) which are single valued over the toroidal
surface has been demonstrated for a model potential V in [2]. Such toroidal modes
may be destructed by localization if the combined poloidal and toroidal modulation of
the plasma equilibrium is too strong [3]. The “shear Alfvén continuum” is important
e.g. for the heating of plasmas. (The term “continuum” here originates from consid-

eration of the radial dependence of the modes and should not be confused with the




continuous versus point spectrum of equ. (1.1) proper, to be discussed below. Never-
theless, knowledge of all possible types of solutions of equ. (1.1) is instructive or even

necessary to understand the full MHD mode equations of general toroidal equilibria.)

The mathematical theory of equ. (1.1) is intricate, owing to problems with small
denominators as in KAM theory. For a review, including also more general potentials
V, and further pertinent references see [4], and, for short, also [5]. For large E and
smooth V(z) the solutions are of generalized Floquet type [6], [7], namely a product
of a quasiperiodic function with an exponential function e'** (+ conj. compl.). This
holds provided L,/L, satisfies some diophantine inequality. Again, wave propagation
is possible, for u real, and forbidden in an infinity of gaps, for ¢ imaginary. Although
the gaps exist almost everywhere in a Cantor like fashion the measure of the allowed

L is finite and the spectrum is still continuous.

For small eigenvalue parameter E, however, different behaviour is possible [4]: so-
lutions 1 (z) may exist which decay to zero exponentially at both sides for z — Fco.
Such solutions with (¥ dz ¢?(z) < oo are called “localized”, in contrast to the “ex-
tended” solutions of the (generalized) Floquet type. They belong to the point spectrum
of equ. (1.1). Although for almost all quasiperiodic potentials the spectrum has both
a continuous component (absolutely continuous and singular continuous) and a point
component [4], there exist particular cases where the point component is empty [4],
either for arbitrary L,/L,, as conjectured for example in [8], or for special classes of
Li/L, [9]. Apart from the standard cases mentioned below few explicit analytical
investigations of the spectra for quasiperiodic V' have been done, e.g. [8], [10], [11],
[12].

In order to explain the motivation of the specific potential taken below a short
review is necessary. Much of the work on equ. (1.1) has been done with a discretized
version of it: in the spirit of Kronig-Penney [13] the medium is replaced by a (one-

dimensional) sequence of é-functions,

+co
Vi) = ) F8lz—=m). (1.2)

n=—0co

Quasiperiodicity of V' is achieved either through the choice of the amplitudes F, or of
the positions x,. The simplest choice is a periodic set of z, with periodicity length
Ly, say, z, = 2o + nL;, n =0, £1, ---, and an incommensurate modulation of the
amplitudes F, with periodicity length L,: F,, = P(kez,) = P(27na), o = Ly/L,, and

P(t) 2n-periodic in t. In this case equ. (1.1) boils down to the recursion (see below)




Paza + Pn-1 + P, Yn = E ¢y, (13)

where P, = ﬁ(?ama,E) is proportional to P and is 27-periodic in its first argument,
and E = E(E). Most of the analytic work on the spectrum and on localization has
been done with equ. (1.3), notably with P, = G sin(27na +6), with G, 0 = const, see
for example [14] — [18]. Other functions P, were considered in, for example, (8], [11],
[12], [19] and [20].

Quasiperiodicity can also occur through geometry alone, at constant amplitude F;.
The one and only case investigated so far is a periodic modulation of the distance

A, = Tn — Tp Of neighbouring pulses, with periodicity length Lo:
2, — Tn1 = L1 + P(27na). (1.4)

In this case a recursion of the type Ap(E) Yngr + Bo(E) Yn1 + Cu(E)Yn =0 results,
where A, = A(2rna, E), etc., are again 2r-periodic functions (see below and refs.
[10], [17]). Analytic investigations in references [10], [17) and [21] have shown that

localization can occur in this case also.

Since so far only one discrete quasiperiodic geometry has been discussed in the
literature it seems desirable to investigate a qualitatively different type of geometry
also. For this purpose we consider the following case: V(z) = V(kyz, ko) is simply
the sum of two periodic potentials, each with constant amplitudes [, = —F and
F, = —G, and periodicity length L; and Lo, respectively, with Ly/L incommensurate,
see Figure 1. (The signs are purely for convention, see below.) According to this simple

rule the potential

+oo +o0
V(kiz,kpz) = — F S (z —rLi) -G 3. 6(z — sLy) (1.5)
results. The distance £, — ZTn-1 of neighbouring points is not a periodic function of

n anymore. This makes the main difference to the previously considered arrangement.
Remarkably, in the study of thermodynamic properties of quasicrystals both cases and

combinations there-of have already been considered [22].

In Section 2 recursion relations for ¥, are given for our case. Asa novel feature,
they involve coefficients which are themselves determined by recursions and cannot be
expressed in closed form as functions of n. The (presumably) continuous spectrum of
extended solutions is obtained in a straightforward way by running the recursions long

enough and keeping only bounded solutions.
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The point spectrum of localized solutions, in contrast, is found by consideration of
a boundary value problem (see Section 3). Since the eigenvalue parameter E enters
nonlinearly it is nonstandard and is handled using the ideas developed in [23]. The
localized eigenfunctions obtained decay exponentially on both sides (with superimposed
oscillations), with a tendency towards more than one peak if the boundaries are put
farther apart. It is shown analytically that the recursion relation is numerically unstable
for localized solutions and is therefore unable to (re-)produce them. This holds for the

non-discretized equation (1.1) as well, if it is treated as an initial value problem.

Bondeson et al. [24] and Romeiras et al. [25], who considered smooth quasiperiodic
potentials in equations related to equ. (1.1), used an alternative method to obtain the
point spectrum. Theory [26] predicts that the spectrum of equ. (1.1), for bounded
quasiperiodic potentials, consists of those values of F for which the winding number
(see below) 1s not on a plateau. If, in addition, the Ljapunov exponents are non-zero,
E belongs to the point spectrum. We compare this method for our potential with
the boundary value method and find agreement of the results. This demonstrates the
(heuristic) validity of the method just described for é-function potentials also. The
drawback of this method is its inability to produce localized eigenfunctions ¢ (z). (It
is well suited, however, to demonstate the existence of strange nonchaotic attractors
[24], [25] in the “phase” ¢(z) of 1(z) whenever ¥ is localized, a topic on which we do
not dwell here.)

Localized domains (if they exist) and extended domains are usually found inter-
spersed in the spectrum, up to a critical value E, which depends on the strength of
the modulation of the potential. For E > E, no localization is observed anymore. In
the case F' = (G, considered here, localization is found to set in at ' 2,0.6 or F < —0.7
(no Figure given).

Where ever in the spectrum localization occurs, for increasing modulation strength,
it is always connected with the “collision” of two plateaus of the winding number w.

Since each plateau has its own symmetry (w a specific integer combination of &, /2 and

k2/2) localization is seen connected with symmetry breaking.

No indication is found that the é-function type of the potential or its specific ar-
rangement makes invalid any predictions borrowed from the spectral theory of bounded

quasiperiodic potentials.



2. Extended solutions

With the é-function potential (1.2) equation (1.1) goes over into a recursion relation
from one puls to the next: v itself is continuous across the puls while d¢’/dz jumps by
an amount F,. Between the pulses ¥ evolves freely and satisfies ¢(z) = ¢ sin(vEz+cp)
with constants c;, c. If this is put together one obtains for the values ¢, = ¥(z =
2o +0) and ¢, = d¥(z = z, +0)/dz [10], [17],

in = M"'”"'l -1211—1 ? (21)
where ¢ = (kibn, )" and
Cnn-1 Sn,n-1
Mn.n-—l = . (22)
— San-1 St Cnn-1 Fﬂ / k Cnn-1 + Snn-1 Fn / k

Here k = / E and

Snm = sin[k(z, —zm
. [&( ) 23)
Enn = 08| k(2s, —Zm)] -

If the visually obvious position of the z,, in the potential 1.5 (see Fig. 1) is formalized

one obtains the recursion

wemn{([] ) o () e ) B e

where [z] means the integer part of z. In order to complete the definitions of equ. (2.2)

F. has to be given the value —F or —G, depending on whether z, is a member of the
sequence 7 L, or s L, r,s =1, 2, ---. For simplicity, the relative initial phase of the

two sequences 1s set to zero.

An equivalent scalar form of the recursion relation is obtained by eliminating Pn
from equs. (2.1), (2.2), [10]:

F,
Snn—1 Ynt1 + Sn+in Yp—1 — Sn+ln Snn-1 T Yo = BEniim-1 Pn - (2.5)
(If F, is chosen as a periodic function of n and 2, — Tn-1 = L, = const, and/or

if &, — T, is chosen as a periodic function of n one obtains the types of recursion

mentioned in the Introduction.)




The recursion (2.1 has been solved numerically in the interval £ = 0. — 1., with the
incommensurate values k; = 1 and ky, = (\/3 — 1)/2, chosen arbitrarily. 1000 values
of E were taken in this interval. Amplitudes F' = G of the potential from 0.1 to 1.0
were considered, see Fig. 2. In the Figure dots, blending into lines, mark those values
of E for which the sequence of amplitudes A(n) = 1/ k22 + 1/)3 stays bounded after
N = 10* iterations, while blank spaces correspond to unbounded cases. Bounded is
defined here arbitrarily as staying below A,, = 10°, at starting value unity. Changing
N to 10° or decreasing A, by a factor of 10 does not visibly alter the picture. Fig. 2
shows sequences of bands with bounded solutions, separated by gaps which grow with
increasing amplitude. Higher resolution, in agreement with theory, reveals finer and
finer gaps. For F' # (G and also for F' < 0 and/or G < 0 the spectra are qualitatively
the same. (In the latter case, E— < V > and with it the average refractive index can

become negative, for large |F'| and/or |G|.)

All solutions ¥(z) thus obtained are of the generalized Floquet type, as Fourier
analysis reveals. Figure 3, as an example, shows a Poincaré section of amplitudes
Ay(n) = / k22(z) + ¥*(z) at @ = nLy at F = G = 0.8 and E = 0.55, with the two
periods L, /2 (short) and 27/(2p) (long) visible in the figure.

In conclusion, the numerical solution of the recursion relation (2.1) as an initial
value problem brings forward the extended type of solutions only. The spectrum thus
obtained corresponds to the absolutely continuous spectrum described by Dinaburg and
Sinai [6] and Riissmann [7] although they proved its existence for continuous potentials
only. In the next Section the reason for the apparent lack of localized solutions is

discussed, and such solutions are constructed by a different method.




3. Localized solutions

Localized solutions go to zero at both z = Zoo. This suggests treatment as a

boundary value problem, with ¥(z) = 0 imposed at positions far enough apart.

Let ¥ = ¥n41 = 0, where N is a suffiently large number. The recursion relation

(2.5) then assumes the form

N¢ =0, (3.1)

where N is a symmetric N x N tridiagonal matrix with diagonal and off-diagonal

elements a, and b,, respectively, given by

- TR R B
b = m n=1,2 - N-1,
and Eb_ = (¢1,--- ,¥n)T. Eigenvalues E = k? are determined by
d(E) := detN(E) = 0. (3.3)

Equations (3.1) — (3.3) constitute a nonlinear eigenvalue problem in E. It is handled
numerically in the following way: after an LU-factorization of N the value of d(FE) is
determined at very closely spaced intervals § E of order 107°. This allows determination
of zero-crossings of d(E) quite accurately. However, in automating the procedure, care
has to be taken of the presence of poles of d(E). As pointed out in [23] poles are caused
by non-zero solutions of equ. (1.1) which exist between neighbouring supporting points
Tn, Tn_1 of the recursion and have nodes at these points. With equs. (2.1);(2.2) and
P = Pp1 =0, gbn_l # 0, the condition for such modes is sin[k(zn — Zn-1)] = 0.
This implies poles at E = k? = (xr/(zn — Tn-1))? 5 7 =0, 1, 2, - for all n =

1, 2, -+, N+ 1, in agreement with the observed numerical behaviour.

The result of this procedure, applied to the case F' = G = 0.8, for example, is
shown in I ig. 4, upper part (short vertical lines). It shows the point spectrum in the
region E = 0. — 0.42 for increasing extension »f the domain, N = 100 — 600. Fast
convergence towards a structure with well defined bands takes place. (Also visible are
isolated eigenvalues which come and go with variation of N. These spurious modes have
amplitudes strongly localized at the boundaries of the domains.) For comparison, the

spectrum obtained previously from the initial value method is repeated in the middle
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trace (dots). It is evident that the boundary value method reveals several eigenvalue
bands, — “new” bands —, in the region F' < 0.3 which are absent in the middle trace.

In order to clarify the situation the eigenfunctions é(ﬂ:) are examined.

For this purpose equation (3.1) together with the normalization "_, %2 = 1 was
solved with a standard nonlinear-equation solver for the N +1 unknowns ¥y, -« -,¥,, E.
This also provides an independent check on the eigenvalues E. The method requires
initial guesses of the unknowns, for which simple 3-point peaks or flat profiles in é were
used, while £ was taken close to previously found values. By repeating the procedure
with various FEjniiia and various positions of the peaks an overview of the properties
of the eigenfunctions is achieved. In all cases considered the eigenvalues so obtained

agree to accuracy 6 E with values from the determinant method.

Figure 5 shows the amplitude A;(n) of the eigensolution with eigenvalue £ =
0.1060618 (dots), for example, taken from one of the new bands. Evidently, it is a
localized solution with an exponential decay on the average on both sides. Note the
logarithmic scale in the Figure. (The Poincaré sections at z, = nL; and n L, fit
smoothely together, so that the full sequence of A(n) looks the same.) All eigenfunc-
tions examined, in the new bands, are found to be of this localized type, with the
position of the peaks shifted rather arbitrarily as a function of E, and with occasional
“steps” in the decay. (See also below.) In contrast, eigenfunctions taken from the old

bands are of the extended type, like in Fig. 3.

If the values of ¥g = 0, ¥, of Fig. 5 are inserted as initial values into the recursion
relation (2.5), together with E, the recursion gives the values shown as circles in Fig.
5. For a while the values agree with those of the boundary value method but later on
they depart, and the recursion solution switches to an exponential growth. This shows
that the initial value method fails in finding localized solutions because the recurrence
relation becomes numerically unstable. In addition, localized solutions, for 1 given,

require values i; or 1o which are not arbitrary and which are not known in advance.

The instability is a consequence of the decay to zero of the localized solution, as the
following considerations show. For this and subsequent purposes it is useful to introduce
the phase angle ¢ of the vector ¥ = (kv, 1,[J)T by the definition tan ¢ = ki,b/i/;, where
: = v/ E. Remarkably, ¢ satisfies a first order, nonlinear differential equation

1%
j—: =k — -% sin® ¢ . (3.4)
This connection has been observed and exploited for related purposes in, for example,

[24], [25]. Linearizing equ. (3.4) one obtains the equation
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d V(z)
— = — 1 A 3.5
e Inéo 2 sin 20 (3.5)

for a small perturbation 8¢ of ¢(z). On the other hand, the amplitude A(z) =
ﬁ2¢2($) + ?(z) satisfies kdln A?/dz = V(z)sin2¢ so that

A%(z) 6¢(z) = const . (3.6)

The relation k¢2d(8v/¢)/dz = —A?§¢ between a perturbation 6% of ¥ and é¢ finally
yields

(3.7)

s(z) = ¥(z) [5!/)0 ddoAo ./:c dz ] ,

Yok Ju ¥2(2)
where the index zero refers to the values at an arbitrary £ = o. If ¥(z) goes to

zero fast enough, for example exponentially, then 61(z), owing to the denominator P2,

diverges towards infinity. This implies the instability quoted.

For 6-function potentials V(z) = ¥, Fr 8(z —z2) equ. (3.4) for ¢ is integrated be-
tween the pulses by ¢ = ¢F_y +k(zn—Tn-1). Ifit is rewritten in the form d cot ¢/dz =
[V(z) — k?]/k — k cot? ¢, the jump condition across pulses cot ¢t —cot ¢y = Fo/kis
obtained. With careful consideration of the branches of the cotangent the sequence of

¢t = ¢(zn £ 0) results. From ¢ the winding number w,

w = lim ¢(z) [z = lim ¢ | z, (3.8)

r—00

can be calculated.

Instead of solving equ. (3.5) direct it is easier to take the derivative of the implicit
recursion relation ¢} = ¢+ (¢t_,) from above. For 8¢, = 8¢} this yields

6_41,1 B 1'_‘[ 1 + cot?¢;

6do =0 1+ cot? ¢f (3.9)

This allows evaluation of the Ljapunov exponent Ag = limz—oo(In|6¢/6¢0]) /. Ag
is a measure of divergence of neighbouring ¢-trajectories and, via equ. (3.6), also a
measure of the speed with which ¥ (z) goes to infinity — or to zero, if Ay <0. In
Figure 6 Ay is plotted for F'=G = 0.8 and E = 0. — 1. As expected from the previous
discussion it is either zero, in the region of extended solutions, or negative, both in
the gaps and the regions of localized solutions. ( A different functional relation Ay(E),

however, is evident in the latter case.)
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Also shown in Fig. 6 is the winding number w(E). For E fixed, w is independent of
the starting value ¢ = ¢, i.e. of gbo/l,bg. This implies that a solution with ¥(z) — oo
has the same value w as a solution with ¥(z) — 0, if it exists. In this sense w is a
“robust” quantity. In agreement with theory [4], [26] (although developed for bounded
potentials only, apart from special cases) w(E) is a continuous nondecreasing function
with plateaus at w = (mw; + nw;)/2, m, n integer. Theory further states that the
spectrum of equ. (1.1) consists of those E which are in the complement of the plateaus.
For the spectrum of extended states this is confirmed by comparison of Fig. 2, F' = 0.8,
and Fig. 6. For localized states it is made evident in Fig. 4. In the bottom trace
those values of E are shown for which w is not in a plateau and Ay < 0 (taking
Aw > € = 21072 for neighbouring values of E and |Ay4| > €; = 2 x 1072 proved to
be numerically reasonable criteria). The bands thus found (long vertical lines) indeed
agree with those of the boundary value method (short vertical lines). This, therefore
provides an independent method to locate the positions of localized solutions in the
spectrum, as applied in [24], [25] for smooth potentials. Of course, neither method
allows one to check whether the spectrum of localized solutions is dense, as suggested
from theory for bounded potentials or potentials leading to equ. (1.3), since the limit

N — oo is non practicable.

With the method just explained Figure 7 is obtained. It shows both the extended
spectrum of Fig. 2 and the spectrum of localized states, in the region £ = 0. — 1.0 for
various ' = G between 0.1 and 1.0. Inspection also at higher values of E indicates that
there is an upper bound E,(F') for the existence of localized states. E,— Ey = const- F'
seems compatible with the numerical results, for Ey =< V(z) >= —F/L; — G/L,.
This fits together with the result proved in [7] for analytic potentials V(z), |[V| < F,
that there is a constant ¢ such that for E — Ey > ¢ F? all modes in the spectrum are
extended. For £ < E, bands with localized solutions are interspersed in general with

bands of extended solutions, see for example F' = 0.9 and F' = 1.0 in Fig. 7.

Fig. 7 shows that localization sets in where gaps begin to overlap, in particular the
big ones like (m,n) = (1,0) and (0,2), or (0,3) and (2,0). With m or n being zero,
these gaps correspond to the symmetry of purely periodic potentials, the periodicity
length L being equal either to L, or L;. This suggests the following simple picture
for localized solutions: If gaps with different symmetries overlap, ¥ (z) clings to one
symmetry for the ascent and to the other symmetry for the descent. (More generally:
to different combinations of the primary symmetries.) In the purely periodic case, in

contrast, according to the Floquet theory, an ascent or a descent must go on forever.
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In line with this picture it is conceivable that in the quasiperiodic case the switching
between ascent and descent occurs repeatedly. This is indeed observed, see for example
Figure 8. If the extension of the intervall zy — zo in the boundary value problem is
increased the number of such secondary etc. peaks often goes up. When starting at

very low amplitudes, they seem to be triggered by numerical round-off effects.
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Figure 1: Quasiperiodic set (dots) from addition of two periodic sets (circles).
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Figure 2: Spectrum of extended states, for various amplitudes F' = G.
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Figure 3: Amplitude A;(n) of extended solution (Poincaré cut at z = nL,).
F =G = 0.8, F=10.58
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initial value problem (circles). ' = G = 0.8, E = 0.1060618.
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Figure 6: Ljapunov exponent A4 and winding number w for F =G = 0.8.
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Figure 7: Spectrum of extended states (points), and localized states (bars),
for various amplitudes F' = G.
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Figure 8:
F=G=1.0, E=0.0751363.
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Amplitude A;(n) of localized solution with several peaks.




