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Abstract

An intercomparison between coefficients of low energy, velocity proportional electronic
energy loss is presented on the basis of experiments, simulation and an analytical model.
The experimental case taken from the literature is the transmission of H* , Dt and He™
ions through a 590 A thick polycrystalline Au foil with an initial energy varying between
4 and 17 keV impinging normal to the surface. A version of TRIM.SP is used for the
simulation with different built-in electronic energy loss models after the LSS theory, the
Andersen and Ziegler compilation, linear response calculations and selfconsistent density
functional theory. The analytical model is based on the solution of the classical equation of
motion of the projectile. This latter method is proposed for the evaluation of the coefficient
of electronic stopping from experimentally determined instantaneous energy values (e.g.,
the most probable outcoming energy in transmission) in order to achieve comparability
between experiment and theory.



Introduction

The present paper proposes a way of deducing the unknown coefficient of low energy,
velocity proportional electronic stopping power from experiments. A specific set of trans-
mission experimental results taken from the literature [1] serves as basis of comparison,
but other experiments may also be covered as far as they furnish us with the initial energy
and an instantaneous energy of ions along their trajectory while penetrating in, or just
leaving a solid (e.g., ion scattering). As a special value of instantaneous energy, the most
probable outcoming energy of Ht ,D* and He™ ions transmitted with an initial energy
between 4 and 17 keV through a polycrystalline Au foil of 590 A original thickness is
considered for the comparison with Monte Carlo simulation of transmission through an
amorphous gold foil of similar thickness. The instantaneous energy of the ions is calcu-
lated also analytically solving a newtonian equation of motion of ions regarded as point
charges along linear trajectories in the adiabatic limit. The comparison is not presented
exclusively for instantaneous energies, but complete measured and simulated transmission
energy and emission-angular spectra are compared, too.

Tools

1) Simulation. The TRSPVMC (vectorized version of the TRIM.SP) Monte Carlo
code [2] was used to simulate the transmission event. The projectiles are followed along
their paths until they stop, be reflected or transmitted through in a series of collision
histories.

- Nuclear collisions are described by the incorporated interaction potential proposed
by Biersack and Ziegler [3], a fitted analytical formula containing four exponential terms
in the screening. This potential is based on the Thomas-Fermi atom model with exchange
and correlation contributions. It basicly coincides with the Kr-C potential [4] in the whole
radial distance range.

- The low energy velocity proportional electronic stopping based on the LSS calculation
[5] is
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with N target atomic density (A~2) and S, electronic stopping cross section (eVA?), p
target mass density (gcm™2), L4 Avogadro’s number, e electron charge (eVY/2A1/2) ap
first Bohr radius (A), v and vp projectile and first Bohr velocity (As_l), resp., Z; and Z,,
and M; and M, projectile and target atomic numbers and masses (these latter in atomic
units/), resp. E is the instantaneous energy (eV) and k the so called coefficent of friction
(eVY/2A~1), then dE/dz. is given in eVA~!. For H* , D™ and Het the LSS k values
are 0.066, 0.047 and 0.071 eV1/2A~1, resp. Note that for such units, the projectile masses
are included in the k values.



For the description of the electronic stopping close to the nuclei, an impact parameter
dependent loss after Oen and Robinson [6] is built in. An equipartition rule applies then for
taking both distant and close interactions into account. It has been shown already (6] that
the Oen-Robinson stopping power as a function of energy asymptotically tends to the LSS
curve from below with increasing energy. The Oen-Robinson stopping contribution to the
inelastic energy loss becomes negligible for only very low energies (about 100 eV). Linear
response theory [7] describes also a frictional force like electronic stopping for projectile
velocities smaller than the Fermi velocity
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with m (eVs2A~2) electron mass, i Planck constant (eVs), C dimensionless constant cha-
racteristic to both projectile and target material. For proton-gold interaction, an average
k has been determined as 0.089 eV!/2A~1(NLG) [8]. Selfconsistent density functional cal-
culations (ENR) [9] result in a k 1.1 times bigger than that for NLG. The Andersen-Ziegler
tables (AZ) [10] suggest also velocity proportional stopping for low energy protons. The
coefficient is 1.36 times that of LSS.

For helium k is 0.098 eV!/2A ! according to NLG [11], while it is 1.3 times larger for ENR
[9]. For AZ [12], k slightly varies with energy (due to the 0.45 power of energy instead of
0.5) around the LSS value. Unfortunately, both the Andersen-Ziegler tables [10] for proton
and the Ziegler tables [12] for helium are lacking low energy experimental data for their
fitting. These before mentioned coefficients have also been tested in the simulation as well
as in the analytical calculation.

2) Analytical Model. Supposing a frozen point charge moving along a linear trajectory
in the solid exposed to lose energy due to both electronic and nuclear interactions, we can
describe the motion in the adiabatic limit as a simple newtonian. Insisting to the velocity
proportional electronic stopping of the form dE/dz. = —kEY? (k in eVY/2A~1 E in eV
and therefore dE/dz. in eVA‘l) we can probe different coefficients as described in the
previous point for the sake of comparison with experiments and simulation. Concerning
the nuclear stopping, we can assume an energy proportional stopping power for Ht and
D* , since the energy range in question is well beyond the maximum of the stopping
power vs energy function. Unfortunately, for Het this holds for energies above 10 keV
only. The lines fitted to the nuclear stopping power of the form dE/dz, = oE — [ had the
following values. o = 6.923%107°,1.369+107°,2.7x107% A~1, and § = 0.401,0.797,3.048
eVA-! for H+ , Dt , Het (above 10 keV only), resp. If E is substituted in eV, the
stopping power is obtained in eVA~1. The equation of motion including both electronic
and nuclear stopping contributions is then obtained as

"+ Kz' — A(z')2* +B =0 (3)

with K = k/(2m,) in s™!, if m; is the projectile mass in physical units (eVs2A—2),
A=@a/2in A~! and B = /m, in As—2. This differential equation can be solved for
z(t), v(t), v(z), E(z) and dE/dz (total stopping including both electronic and nuclear
contribution) instantaneous quantities in a closed form. (See Appendix A.) These latter

4

—
]



two (via Eq.A8 and from A9) as a function of travelled pathlength and initial energy, resp.
will be compared to the results obtained by direct integration of dE/dz, +dE /dz.. Direct
integration has been numerically performed using the full form of dE/dz, as described
in [13] without the before mentioned linearization (Eq.B1 — B2 in Appendix B). The
comparison can reveal to what extent the linearization is adequate for the final sections of
the trajectories, where the projectile energies fall below the lower limit for the linearization.
Direct integration has no restrictions concerning energy, but it can give no account for
the time dependence of the projectile motion. In both cases it turns out that the nuclear
stopping can be regarded as a perturbation for the initial energies in question, but becomes
significant for the slowed-down projectiles.

Methods of Evaluation

In order to get coefficients of the electronic stopping from measured most probable
outcoming energies we follow the evaluation widely used by experimentalists , i.e.,
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by integration of either Eq.1 or 2, where the actual value of z is the layer thickness in &, E,
the initial energy and F; the instantaneous energy at a depth z, both to be substituted in
eV. (We shall refer to this evaluation method as exptl.) Further possibilities are available
for this critical evaluation in the literature. In their transmission experiments Blume et
al. [1] introduced an average energy of the projectile (E), that the particles most probably
possess in the solid,
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for every projectile and every initial energy. Then they accepted a k (for each projectile)
belonging to the highest E, since the k (E) functions showed saturation at the high energy
limit. (This method is referred to as expt2.) Expt3 is a method suggested by Cano [14]
on the basis of a finite difference, i.e.,

F = (5)
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with z having the actual value of the foil thickness, again. For the sake of comparability,
we distinguish between input and output k£ values in the simulation. The input k ’s are
those described in the Tools section. The output k ’s have been determined on the basis
of the most probable simulated outcoming energy according to the different methods of
evaluation used in the experiments (Eq.4 — 6). These output k values may be considered
unphysical, but they still help us to reveal occasional inconsistencies in methods exptl,
expt2 and expt3. The analytical method directly results in a k value, if the equation for
E(z) (from Eq.A8 or Eq.B1 — B2) is solved for an unknown K (thus k ) substituting a
measured or simulated most probable outcoming energy for E(z) at the foil thickness.

k
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Questions to Be Answered

The logic of drawing conclusions from this intercomparison of coefficients of electronic
stopping is as follows. -

1) With comparing k ’s obtained from the same experiment via different methods
of evaluation, we can clear up the role of the average energy (FE,,) value at which the
instantaneous electronic stopping is taken, whereas E,, is a simple mean value by inte-
grating dE/dz. between 0 and z and Eo and E; (most probable outcoming energy), or
a weighted average (E), or a finite difference as obtained from exptl, expt2 and expt3,
resp. Problems with such simplification of a complete continuous energy loss distribution
function to a single mean value have been already discussed to some extent [15].

2) The comparison between input and output k£ values of the simulation can reveal
the importance of the nuclear stopping contribution to the total energy loss. With regard
to experimentally determined k ’s and simulated output k£ values, we may attribute the
differences to several phenomena not included in the simulation. Such effects are the
electronic and nuclear energy loss straggling, skewness and higher moments, the changes
in the charge state of the projectile, relativistic effects in the close interactions, different
probed target electron densities. Concerning inaccuracies of the experiment [1], we can find
the texture effect, namely, that partial channeling can take place in the polycrystalline gold
foil (which situation cannot be described with the central symmetrical interaction potential
included in both the simulation and the analytical method mentioned in the Tools section),
and furthermore, the target thickness as well as the target density may not be even. In
addition there can be an absolute error in the original thickness measurement up to 20 %,
and an induced surface recession (target thinning) due to sputtering.

3) k ’s obtained via the analytical method compared to measured k ’s furnish us with
information similar to those mentioned in the previous points. The analysis of the rela-
tionship between analytically determined and simulated output k ’s reveals the difference
between energy loss in a friction like picture (motion along a straight line) and in a multiple
scattering model. One should take into account here that the travelled pathlengths can be
different in the two cases.

Further questions can be answered besides the Z; (or rather the M;) dependence of
the transmission spectra regarding not only the peak positions of the measured and simu-
lated spectra, but also the shape of the peaks to find out the role of projectile scattering
in off-normal angles (travelling longer paths). Total energy loss vs initial energy functi-
ons obtained via transmission experiments, simulation and the analytical method can be
compared to results of ion induced secondary kinetic electron yield [16-18] . Finally, the
analytical method is proposed to find the electronic stopping coefficient from measured
energies at any given point of the linear trajectory of the projectiles.

Results and Discussion

Fig.1la, b and c show the square root of the most probable outcoming energy (E; in
keV) against the square root of the initial energy (Eo in keV) for H¥ , D* and He™
projectiles, resp. The different symbols refer to experimental (taken over unchanged from
[1]) and simulated results, these latter distinguished by the different theoretical approaches
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of the electronic stopping as described in the Tools section (LSS, AZ, NLG, ENR), and the
analytical method containing a coefficient of electronic stopping corresponding to the best
fitting simulation (achieved by a trial and error method for 17 keV, and referred to as LEV
from now on). The bars indicate the influence of a 20 % absolute error allowed for the
experimental determination of the original foil thickness. (Lower energy, E; corresponds
to thicker target.) For proton, the best result could be obtained in the simulation by an
electronic stopping coefficient, which was by 7 % larger than the ENR value (in harmony
with the estimation in [19]). However, every approach beyond the LSS yielded data within
experimental error. For deuterium, LEV could be achieved by an electronic loss coefficient
1.5 times that of LSS. The NLG and ENR values are those obtained for proton divided by
the square root of their mass ratio (not included in the figure). AZ data are not available
for deuterium. For the case of helium, NLG can be tolerated, ENR furnished us with too
low most probable energy values, which fact suggests that the picture of a neutral helium
penetrating in amorphous matter may not be an adequate description. LSS and AZ points
lay within experimental error. LSS was accepted for LEV. One should, however, note that
the statistics of simulation as well as that of the experiment were much worse for He™
since more energy entered the target involving many more collision histories. Therefore,
the number of escaping projectiles becomes smaller with increasing projectile mass, thicker
target and lower initial energy. The lower limit for the number of transmitted per incident
projectile was 1 %. The analytical results are in fair agreement with the measured ones.
The intersections of the straight lines fitted to the experimental results in [1] with the
E, axis indicate initial energies, that are fully deposited in the target, namely, projectiles
below these limits are absorbed. The off-set is the highest for DT , the lowest for Ht
implying a non-negligible projectile mass effect besides the Z; effect. The upturn of the
experimental values for low impact energies may be due to the following reason.

The experiments were started at high energies and the samples had a restricted area
exposable to the primary beam (due to the foil holder), therefore we should not exclude
that the foils could be thinned due to sputtering in course of the sequence of measurements.
To get an idea about the probability of this induced thickness change, we can make an
estimate for the removed layer thickness (As, from both surfaces) as follows.

boutt  Yint Yijt  YIt YIMyt

iy n n ne neA pLaeA (7e)
or for the present case
Yot
As=2%10"— 7b
S * 7Y (7b)

with v, sputtering rate, t duration of bombardment, ¢,,: and ¢;, outgoing and incoming
particle fluxes, resp., n target particle density, ¥ total sputtering yield (in forward and
backward directions), j primary current density, I primary current and A area of the
irradiated target surface. If one substitutes I in A, ¢t in s, p in gcm ™2 and A in mm?, then
Eq.7b gives the removed layer thickness in A. Forward, backward and total sputtering
yields (number of sputtered particles over the number of incident particles) as a function
of primary energy (in keV) are shown in Fig.2a, b and c for Ht DT and Het projectiles,
resp. For a typical experimental case A = 1 mm?, I = 3 x 107!% A, which means that the
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removal of 100 A takes approximately 107 to 10° s. This long must the experiments have
not taken, i.e., we can neglect the influence of this effect on our results. It is good to keep
in mind, though, that Eq.7b gives a lower bound for As only.

Normalized measured (taken over unchanged from [1]) and simulated transmitted par-
ticle intensities (number of transmitted particles over the number of incident particles) vs
energy (keV) of the transmitted H* projectiles for some sample cases of 4 to 15 keV in-
cident energies are compared in Fig.3. Note first that the peak positions corresponding to
12 and 15 keV initial energies are too low incosistently with the most probable outcoming
energy values in Fig.1 (as displayed in [1]). The factors of normalization (f) are also dis-
played. The horizontal bar shown as an example on the peak at 12 keV shows the influence
of the allowed 20 % tolerance in the foil thickness measurement. (A shift towards lower
energies corresponds to a thicker target.) The simulation was done via LEV electronic
stopping. (The resolution of the simulated spectra is not better than 1 % of the initial
energy, i.e., the energy interval between successive sampling points is 0.01Ey.) The analy-
tical method results in peak positions within experimental error. It is noteworthy that the
widths of the simulated and measured spectra are in agreement unless for low energies,
where energy straggling becomes significant and the simulated spectra show almost even
distributions (not shown in the figure). For higher energies the peaks have symmetrical,
gaussian like shapes. For lower energies a broad low energy shoulder appears. The less
expressed tail in the experiment is partly due to the uncorrected measured spetra for a fix
energy resolution of the detector, i.e., the experimental values should be divided by energy
at each energy. Another reason is that only a small fraction of ions can get through the
target without change in the charge state, namely without capturing an electron. Since
the capture cross section steeply increases with decreasing energy [20], the majority of
projectiles are neutralized very probably in a duration one or two orders of magnitude
smaller than the total time of flight. This estimate is done for bulk aluminium, though
[20].

For our case Fig.4 shows the time of flight in units of 1071% s against the travelled linear
depth (in A) for the sample case of HT penetrating in gold for two different initial energies
and two different values of the coefficient of electronic stopping. Solid and dashed line
correspond to LEV and LSS coefficients, resp. The curves all start at zero and terminate,
when and where the projectiles loose their energy. This calculation has been obtained by a
linearized nuclear stopping power. For Ht |, the linearization of the nuclear stopping does
not play a visible role in the dynamic description as compared to the full nuclear stopping.

Returning to our main stream of charge exchange processes, and assuming that only survi-
ved or reionized charge are detected, the neutral background spectra for low energies would
surpress the peaks seen in Fig.3 completely. The density functional formalism results in an
energy loss dependence on energy for neutrals similar to that of the linear response theory
for frozen charges [21]. It would be then reasonable to get simulated low energy peaks,
but the measured peaks could not be attributed to such a bulk energy loss process, since
the ionization of the measured ions happens very likely at the exit surface (within 1071% s
as estimated from the capture cross section of He scattering on Al from [9]). The spectra
are taken with a small angular acceptance around the surface normal. The low energy
shoulders are responsible that the expected value of the transmitted energy distribution is

8



always lower than the most probable outcoming energy attributed to the maximum. For
H* , D' and He' projectiles, the ratios of the most probable outcoming energy and
the maximum energy vary between 0.71 and 0.87, 0.75 and 0.91 and 0.75 and 0.78, resp.
approaching unity with increasing energy.

Fig.5a and b display a detailed example of a transmitted energy spectrum (number of
transmitted particles over the number of incident particles) vs energy (keV) of transmitted
protons of 17 keV initial energy as measured (taken over unchanged from [1]), simulated
and analytically determined, resp. parametrized by the polar emission angle (final scatte-
ring angle) shown in the insert. Simulation and the analytical point have been obtained via
LEV. The bars show again the uncertainty due to the inaccuracy of the thickness measu-
rement. (Lower peak position corresponds to thicker target.) The spectra are normalized
to unity. Note that with increasing polar angle the most probable outcoming energy shifts
towards lower energies according to the fact, that the projectiles escaping under oblique
angles must have travelled longer paths, i.e., they had more chance to lose their energy.
The statistics becomes poorer with increasing polar angle. The analytical point agrees
well with the peak position.

Fig.6 is a compilation of k values (in units of eVl/ ZA_I) as a function of energy (keV).
Fig.6a, b and c show results for Ht , DT and He' |, resp. Different symbols denote
different theoretical approaches for the input k values (LSS, AZ, etc), and the analytical
points. Note that the illustrated k ’s are output values (the corresponding input k ’s are
shown by the horizontal lines) resulted by the simulation after many possible projectile
histories. It is instructive to observe that the input k values are lower limits of the output
k ’s (as evaluated via exptl) in the high energy regime. This has to do with either the
nuclear energy loss included in the simulation and contributing more and more to the
total loss as the instantaneous energy of the projectiles decreases, or it means that the
evaluation methods do not work properly, or both. Table 1 is a collection of rounded
AE./AE, (electronic per nuclear energy loss of transmitted projectiles) obtained via LEV
simulation. The measured k values have a break down for low average energies [1], which
contradicts to our physical picture as well as to Eq.4. If we do not consider transmitted
projectiles in tilted angles, we restrict ourselves by excluding nuclear stopping contribution
to the energy loss, i.e., we consider projectiles that have travelled the shortest pathlengths
(projected instead of average range), and in addition we probe a metallic electron density
lower than the average. This leads to an overestimation of k ’s and thus that of the
electronic energy loss by a factor of 1.1-1.2. Table 2 is a compilation of simulated k values
(eV1/2A-1) determined as input (for different theoretical approaches) and output values
evaluated via all three exptl, expt2 and expt3 methods. Note the above mentioned high
values for the lowest energies. The ignored nuclear loss contribution changes the mean
k value (increases it) suggesting that none of exptl, expt2 and expt3 apply, even if they
would be correct for targets of finite thicknesses.

A more detailed illustration of k values (€V!/2A~!) against emission angle for 13 keV
H* and He' projectiles is presented in Fig.7a and b, resp. Different symbols correspond
to different input k values again. The bars denote deviations due to the allowed 20 % error
in the thickness measurement (lower k is attributed to thinner target). These k values
have been corrected for the different pathlengths [1]. Namely, an arithmetic mean of z and
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z/cosd
1
cos ¥

z=5(l+—) (8)
effective thickness has been substituted for z in Eq.4 (exptl), where ¢ is the emission angle.
The correction aligns the k£ values and moves them systematically closer to the stable
(input) values giving evidence that the cosine distribution can be an adequate description.
Remember that the measured k values are too high due to the evaluation used (expt2 in
this case).

The analytical model is also applicable to present instantaneous energy of the projec-
tiles moving in the solid. Fig.8a, b and ¢ show energy degradation of HY , D* and He'
projectiles, resp. vs travelled pathlength in gold. The starting points indicate the initial
energies, while depths, where the curves vanish correspond to thicknesses of gold with the
capability to absorb the projectile. Solid lines denote results with LEV coefficient of elec-
tronic stopping, dashed lines are attributed to other coefficients. A full form of the nuclear
stopping has been considered. The gradients of these curves (namely, the instantaneous
energy losses) are greater by the entrance of the projectiles (this stays hidden in the log-
arithmic depth scaling, see the linearly scaled insert in Fig.8a), which fact forwards us the
message that the energy square root depending electronic energy loss is dominant at these
higher energies. At farther depths the energy functions become less steep, slowing-down
and energy deposition proceed, and the energy proportional nuclear stopping overtakes
the governing role.

Fig.9a, b and c display electronic stopping power (eVA_l) vs initial energy (keV) for
H+* , Dt and Het projectiles, resp. For HY and Dt the nuclear energy losses are
small even for low energies (see Table 1). However, for He™ the nuclear loss contribution
is significant. The upward arrows in Fig.9c show shifts, that have been obtained by taking
not only electronic, but nuclear energy losses into account, too. The bars in the figures
denote the effect of uncertain foil thickness again (smaller loss corresponding to thinner
target). The analytical curves are based on a full nuclear stopping contibution. Not only
the experimental points of [1] (unconnected dots), but data deduced from kinetic secondary
electron emission yield measurements [16,17,18] (dots connected by dotted, dashed-dotted
and dashed lines, resp.) are displayed in the figure, too. The kinetic secondary electron
yield is proportional with the electronic energy loss (y = AdE/dz.). If we take A=0.108,
0.197 and 0.112 AeV~! for H* , D% and He* , resp., by fitting the electronic energy losses
at 17 keV, we find a convincing coincidence between measured and calculated electronic loss
functions. The fitted A values are in agreement with published data [22]. The analytical
curves lay well below the experimental data owing partly to the inadequate experimental
evaluation of the raw data leading to an average energy loss rather than to an instantaneous
one. In comparison with the simulated results we should admit that the rudeness of the
analytical model, first of all the assumption of a linear trajectory allows farther penetration
of the projectiles, consequently becomes responsible for the lower energy loss.

The description of a charged particle moving along a straight line in an electron
gas is based, e.g., on transmission experiments in channeling directions of single crystals
[1,22]. One would expect higher k values for polycrystalline and amorphous materials.
This fact has been justified from both experimental and theoretical aspects in earlier
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works [1,8,19] and is verified in the present paper, too. The good agreement between
measured and analytically determined most probable outcoming energies suggests us that
the projectile motion in the solid can be properly described by the decelerated motion
due to electronic and nuclear stopping, i.e., the multiple scattering model can be saved
for angular distribution examinations. (Such investigations can also be characterized by
the analytical model assuming, e.g., a cosine pathlength distribution.) Concerning the
evaluation methods (Eq.4 — 6) shown not to give reasonable results, the application of the
analytical model is recommended as an easy way of finding the coefficient of electronic
stopping as discussed in the Methods of Evaluation section. For transmission experiments,
the analytical method results in about the same k values as the simulation with LEV
electronic stopping.

Assuming that target electrons of the range of metallic electron densities (with a one
electron radius between 0.5 and 1.6 A) respond similarly to the penetration of light ions
(as suggested from both linear response and density functional theories), we can make a
prediction for the appropriate coefficient of electronic stopping as compared to the LSS
value. Data compiled in Table 3 are LSS (input) k values of amorphous targets of metallic
electron densities [23] multiplied by a correction factor calculated for gold, i.e., 1.6, 1.5
and 1.0 for Ht , Dt and He™ projectiles, resp. Similar data from the Andersen and
Ziegler [10] and Ziegler [12] tables are also listed for the sake of comparison (for the case
of helium only for initial energies below 10 keV and, for average energies between 0.5 and
the actual power of energy [12]). Obviously enough Z; oscillations as predicted by the LSS
theory are preserved.

Conclusions

The authors succeeded in achieving reasonable agreement concerning several quantities
(most probable outcoming energy, energy and angular spectra, deduced stopping powers
of low energy light projectiles transmitted through gold foils) between their Monte Carlo
simulation and experiments taken from the literature. An increased electronic loss was
found for HY and Dt projectiles in amorphous matter compared to single crystalline
targets. The LSS stopping had to be modified by a factor of 1.6 and 1.5 for H* and
DY projectiles, respectively, while it remained unchanged for He* . A handy, analytical
calculation is recommended for the evaluation of the coefficients of electronic stopping for
experimentalists.
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Appendix A

In the energy range in question, the nuclear and the electronic stopping power can be
described as
dE/dz, = aE — f = o'v? - (A1)

and
dE/dz, = —kEY% = —k'v (A2)

resp. The newtonian equation of motion of a frozen point charge moving along a straight
line and exposed to energy loss due to both nuclear and electronic interaction with the
medium is then obtained

" + Kz' — A(z')®*+B =0 (A3)
with K = k'/my = k/(2m1)/2 ins™!, A=o//m; = /2 in A=}, B=B/m, in As=2,if k
is in eV/2A-1 o in A~! and 8 in eVA~!, and m; is the projectile mass in physical units
(eVs2A—2).

The initial conditions for this second order, nonlinear, inhomogeneous, separable or-
dinary differential equation are ¢(0) = 0 (s), z(0) = 0 (&), dz/dt(0) = vo (As™!). We
substitute v for dz/dt first, and solve the first order equation for v(t) instantaneous velo-
city (As~!) by separating the variables, and integrating from 0 to ¢ in time (from vo to v
in velocity).

A1/2/A +_K__A1/2
1-— %exp(—Al/zt) 24
with A = K% + 4AB (s~2). We can now solve Eq.A4 by for z(t) instantaneous travelled

pathlength (A) separating the variables and integrating from O to ¢ in time (from O to z
in distance).

v(t) = (A4)

2A1/2

2Avg — K + Al/2

(45)
(An actual value of z(t) can be the foil thickness in transmission.) We can now express
t(z) (in s) from Eq.A5 by expanding z(t) in a McLaurin series of second order.

o) m 1O K/A+ AY2]A —[(vo — K/A + AY/2]A)? — (Av} — Kvo — AB)z]'/?
) AvZ — Kvo — AB
The motion of the particle is finished, the particle is stopped, if the determinant in Eq.A6
becomes nonpositive. Therefore the maximum projected range (A) is
(vo — K/A+ AY2]A)?
A‘U% — K'vo — AB

K — 3A1/2 1 24vy — K — AY/2

z(t) = sA T A In[1 - 24vo — K + A1/2

exp(—AY%t)] + In

(46)

zma:c 5

(A7)

Substituting ¢(z) back into Eq.A4, we get v(z) instantaneous velocity (As~1) as a function
of the travelled pathlength
AI/Z/A K — A1/2
+
vo—K—A1/2
1 - e Tarresp|—At(z)] 24

12

v(z) = (48)




E(z) instantaneous kinetic energy of the projectile is then E(z) = im;v(z)? (in eV) and

dE/dz instantaneous total energy loss per pathlength (eVA~!) is

mu(z)?[v(z) — A2/ A]
[(vo — K/A+ A1/2/A)? — (AvZ — Kvo — AB)z]'/?

dE /dz = (A9)

which is a rather complicated, but purely algebraic implicit function of the initial energy
and the pathlength.

If the nuclear energy loss contribution is negligible, i.e., « = 0 and 8 = 0, then the
instantaneous velocity as a function of initial velocity and pathlength is

v(z) = v exp|(1 - %5)1/2 _1) (A10)

Eq.A10 is the sum of the following infinite McLaurin series

v(a) =vo - (Kz.f)i (A11)

The first order expansion of this series satisfies the solution proposed earlier [8].

Appendix B

The numerical solution of the integration of dE/dz involves the full form of dE/dz,
as proposed in [13]

ZvZasM1 N

dE/dz, = 0.4231 * G B1
/ (M + My)(27° + 23/%)1/2 -
where
log (1 + ¢€)
€+ 0.10718¢0-37544
and

M,E
Z1Z5(My + Mg) (222 + 23/%)1/2

E to be substituted in eV, N in A~3, M; and M in atomic units to get dE/dz, in eVA-1,

We obtain - ,
° dFE s,
R (B2)

€ = 0.03253

and
f(E') =dE/dz,(E') + dE/dz.(E')

13



Namely, the unknown instantaneous energy value E appears in the lower limit of the
integral for a given value of Ej initial energy and z travelled depth. Therefore one has
to find the root of Eq.B2. The iterative approach for the root (a slowly converging, but
exact interval halving method was applied) implies the successive evaluation of the integral
with the argument f(E’). The evaluation of the integral can be executed by a Gaussian
quadrature. With the help of the following transformation

_EO—E Eo+ E

El
g4t s (B3)
Eq.B3 becomes
Eo—E [T
5 f(E")dg (B4)
—4
to be approximated by
Eo— E & Eo—E, Eo+E
2 > aif( g b o —2—) (B5)

1=1

with the weights and abscissas from e.g., [24].

14
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Tables

Table 1) Collection of rounded AE./AE,, values (electronic over nuclear energy loss
of H+ , Dt and Het ions transmitted through gold foils) obtained via LEV simulation.
(Negative signs stand for unavailable data.)

projectile initial energy (keV)

4 5 8 12 13 15 17
Ht 39 - 59 82 85 91 108
Dt - 15 20 - 28 - 36
Het 4 - 5 - 7 - 8

Table 2) Collection of k values (eV*/2A~1) determined as input and as output values
from the experiment [1] (via three ways of evaluation exptl, expt2 and expt3) and on the
basis of different theories of the electronic stopping (as described in the Tools section) for
Ht , Dt and Het transmission through gold foils. (Negative signs stand for data not

available.)
projectile | theory input | output
or exp. initial energy (keV)
4 8 11 12 13 15 17 average
Ht LSS 0.066 | 0.105 0.074 - - 0.070 0.070 0.070 | 0.078
NLG, AZ| 0.089 | - 0.100 0.099 - 0.100 0.094 0.097 | 0.098
PN 0.099 | - 0.116 - - "0.110 - 0.102 | 0.109
LEV 0.106 | 0.147 0.119 - 0.117 0.113 0.110 0.111 | 0.120
expl - 0.097 0.121 0.116 0.125 0.122 0.128 0.110| 0.117
exp2 - - - - - - - - 0.128
exp3 - 0.075 0.097 0.097 0.104 0.103 0.108 0.096 | 0.097
4 5 8 13 17 average
Dt LSS 0.047 ] 0.064 0.057 0.053 0.050 0.049 | 0.055
LEV 0.071 ]| - 0.094 0.082 0.075 0.075 | 0.082
expl - - 0.067 0.075 0.081 0.080 | 0.077
exp2 - - - - - - 0.091
exp3 - - 0.058 0.066 0.073 0.073 | 0.069
4 8 13 17 average
Het LSS, AZ | 0.071 [0.147 0.111 0.085 0.080 |0.106
NLG 0.098 |- - 0.119 0.120 | 0.120
PN 0.116 |- - 0.139 0.133 | 0.136
LEV 0.071 | 0.147 0.111 0.085 0.080 | 0.106
expl - - 0.099 0.101 0.101 | 0.101
exp2 - - - - - 0.117
exp3 - - 0.084 0.088 0.090 | 0.087




Table 3) LSS, AZ and LEV k values (eV'/2A~1) for Ht , D* and He* projectiles
moving in amorphous targets of metallic electron densities |23|. (Negative signs stand for
data not available.)

target projectile _
Ht Dt Het

LSS AZ LEV |LSS AZ LEV |LSS AZ LEV
Li 0.031 0.021 0.050]0.022 - 0.03310.027 0.020 0.027
Be 0.089 0.085 0.1420.063 - 0.09410.079 0.086 0.079
B 0.103 0.102 0.1640.072 - 0.10910.093 0.126 0.093
C 0.093 0.095 0.149|0.066 - 0.09910.086 0.119 0.086
Na 0.023 0.020 0.038|0.017 - 0.02510.023 0.052 0.023
Mg 0.040 0.052 0.065]0.029 - 0.043 10.040 0.055 0.040
Al 0.057 0.079 0.091]0.040 - 0.061 | 0.056 0.063 0.056
Si 0.048 0.065 0.0760.034 - 0.051 10.047 0.046 0.047
K 0.013 0.022 0.021]0.009 - 0.014 |0.013 0.028 0.013
Ca 0.023 0.040 0.037]0.016 - 0.02510.024 0.042 0.024
Ti 0.058 0.087 0.09210.041 - 0.061 |0.059 0.086 0.059
vV 0.074 0.102 0.118 10.052 - 0.078 |0.075 0.126 0.075
Cr 0.086 0.105 0.13710.060 - 0.091 |0.088 0.149 0.088
Mn |0.084 0.089 0.134 }0.059 - 0.089 |10.086 0.132 0.086
Fe 0.088 0.094 0.1410.062 - 0.093 {0.090 0.126 0.090
Co 0.093 0.089 0.150|0.066 - 0.099 |0.096 0.121 0.096
Ni 0.095 0.103 0.15210.067 - 0.101 10.098 0.122 0.098
Cu |0.089 0.099 0.142|0.063 - 0.094 [0.092 0.088 0.092
Zn 0.069 0.087 0.110]0.049 - 0.073 |0.071 0.068 0.071
Ga 0.054 0.081 0.086(0.038 - 0.057 |0.056 0.053 0.056
Ge 0.047 0.078 0.075]0.033 - 0.050 |0.049 0.075 0.049
As 0.049 0.077 0.078 10.034 - 0.052 |0.051 0.055 0.051
Se 0.039 0.068 0.06210.027 - 0.041 {0.040 0.055 0.040
Rb 0.012 0.019 0.018]0.008 - 0.012 10.012 0.031 0.012
Sr 0.019 0.036 0.031]0.014 - 0.020 {0.020 0.039 0.020
Zr 0.046 0.091 0.074(0.033 - 0.049 {0.048 0.122 0.048
Mo 0.069 0.130 0.111]0.049 - 0.07310.073 0.157 0.073
Pd 0.074 0.112 0.1180.052 - 0.078 10.078 0.122 0.078
Ag 0.064 0.104 0.1020.045 - 0.068 | 0.067 0.101 0.067
Cd 0.050 0.084 0.080{0.035 - 0.053 10.053 0.065 0.053
In 0.042 0.076 0.067]0.030 - 0.044 1 0.044 0.057 0.044
Sn 0.040 0.075 0.065|0.029 - 0.043 | 0.043 0.067 0.043
Sb 0.036 0.078 0.057(0.025 - 0.038 10.038 0.057 0.038
Te 0.032 0.065 0.052(0.023 - 0.034 |0.034 0.046 0.034
Cs 0.009 0.020 0.015]0.007 - 0.010{0.010 0.031 0.010
Ba 0.017 0.039 0.027}0.012 - 0.018{0.018 0.049 0.018




Ta

Pt
Au
Tl
Pb
Bi

0.062
0.071
0.074
0.066
0.039
0.037

0.032

0.083
0.091
0.093
0.091
0.052
0.055
0.053

0.099
0.113
0.119
0.106
0.063
0.059
0.051

0.044
0.050
0.052
0.047
0.028
0.026
0.023

0.066
0.075
0.079
0.070
0.042
0.039
0.034

0.066
0.076
0.080
0.071
0.042
0.040
0.034

0.118
0.122
0.103
0.073
0.059
0.067
0.075

0.066
0.076
0.080
0.071
0.042
0.040
0.034
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