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Far Forward Scattering
of CO; Laser Radiation by
Plasma Density Fluctuations in the W VII-A Stellarator.

Abstract

Far Forward Scattering of CO; laser radiation from density fluctuations in the poloidal
plane (perpendicular to the main magnetic field) of the WV IT— A stellarator plasma results
in asymmetric distributions of the beat signals in the detector plane of a Fourier lens.
It has been attempted to explain the asymmetric profiles with a model which describes
scattering from low-M-number quasi-coherent modes, i.e. poloidally propagating periodic
density structures of finite radial extent, centered in an annulus possibly near the plasma
edge. This is equivalent to the picture of the probing beam being scattered from two
waves with identical frequency {1 and center-wavelength A. propagating at two different
positions across the beam in nearly opposite directions; the waves have finite lateral extent
transverse to their propagation and the wave fronts are not parallel to one another, but
rather they are inclined with respect to another. This again means that for one selected
fluctuation frequency {1 and one particular mode number M there is a spread in wave
numbers K around K.. When the beam passes at a finite distance d from the magnetic
axis, superimpositioning of the scattered fields results in asymmetric profiles despite a
Klein-Cook parameter v < 1.

The mode numbers detected this way range from about 10 to 30; it seems as if there
exists for a given magnetic field configuration a maximal mode number which is common
to all frequencies, i.e. a mode pattern without a finite group velocity. The question arises
whether it is accidental that this number coincides with the periodicity of ”islands” which
the magnetic field would exhibit at "rational surfaces” near the plasma edge in the case of
small disturbances.

We have combined two already existing models, that of laterally extended wave fronts
and that of counter-propagating waves. In addition, we included lateral wave front profiles
other than Gaussian ones, and we introduced the picture of non-parallel fronts.

Finally, EM scattering from fluctuations which are not entirely isotropic, is briefly
discussed in general. The advice is given to detect both sidebands also in ordinary Forward
Scattering diagnostics, because their intensity ratio is a measure of the degree of isotropy
of the fluctuations.
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1. Introduction 5

Fluctuations of density and fields in tokamak and stellarator plasmas are in the focus
of interest because of their possible influence on particle and energy loss mechanisms. The
two main diagnostics involved are Langmuir probes and scattering of electromagnetic (EM)
waves. Probes offer the advantage of being capable of detecting both density and electric
field fluctuations (and the phase between them) but, for technical reasons, they can only
be applied in dilute plasmas (e.g. edge plasmas) . Not restricted by damage threshold
but requiring more technology is the more recently developed third method: scattering of
heavy ion beams, which also yields information on density and field fluctuations /1/. The
EM waves scattering technique, on the other hand, can only detect density fluctuations but
causes no disturbance whatsoever and is applicable to any relevant plasma region. While
probes and EM scattering have been widely used in tokamak plasmas /2/, there are not
many publications on scattering from stellarator plasmas /3/,/4/.

This report attempts to interpret some experimental findings in scattering with CO,
laser radiation from density fluctuations in WV I — A stellarator plasmas /5/,/6/. While
originally designed to detect density fluctuation wavelengths in the order of mm by forward
scattering and homodyning with a local oscillator, in the course of the experiment it turned
out that this scattering is dominated by the existance of longer wavelengths (order of cm).
In this case the scattering angle is very small and within the divergence of the probing
beam; the scattered fields then mix with the field of the probing beam.

This small angle forward scattering has been proposed /7/ and extensively treated
/8/ by M. v. Hellermann et al., and it has been tested /7/ and applied to tokamak plasmas
/9/. The technique is to select a beat frequency and scan its amplitude across the diameter
of the beam after passage of the plasma. This profile, the result of the interaction of the
scattered EM sideband fields with that of the probing beam, is expected to be symmetric
with respect to the beam axis as long as the sideband fields are symmetric (the profile
of the beam itself being assumed to be Gaussian). As a matter of fact, the profile is
reported to be occasionally asymmetric /9/ and possible explanations for this have been
proposed /10/,/11/. Under W VII-A conditions most of the recorded profiles proved to
be asymmetric. In the following a model is presented that — with reference to /8/ —
combines the effects of finite lateral extent and counter-propagation of density waves on
EM scattering, and also takes into account the inclination of the wave fronts with respect to
each other. Such a model might describe quasicoherent poloidal modes in an annular layer
of toroidal devices such as tokamaks and stellarators . In particular, when adjusted to the
elliptical shape of the plasma cross-section due to the / = 2 helical winding configuration,
the model can reproduce the asymmetric profiles found in this Wendelstein stellarator.




An outline of the general FFS scheme is given in Section 2; the modified model is
described in Section 3, the first part of which treats the case of one wave, and the second
part two counter-propagating waves. Finally, some results are presented in Section 4.

2.1. Some Definitions

Density fluctuations with wavelengths larger than the Debye length are entitled collec-
tive; although predominantly the electrons scatter EM radiation, the frequency spectrum
of the radiation scattered from them is determined by the motion of the ions. Scattering of
coherent EM radiation from collective density fluctuations (occasionally called ”collective”
or ”coherent” scattering) is in general accomplished by superimpositioning, i.e. super-
imposed on the low-amplitude scattered fields is the field of a so-called ”local oscillator”
(LO) of either the same frequency (as that of the incident beam) — "homodyning” — or
a shifted frequency — ”heterodyning”. The EM frequency w of the "probing beam”, the
»carrier” field T, is Doppler-shifted in the scattered fields, the "sideband” fields S: w £ {1
(1 < w); and it is the "beat” (or ”intermediate”) frequency {1 that represents the fre-
quency of the density fluctuations. Since in most applications of scattering from collective
fluctuations, the EM wavelength A is somewhat smaller than that of the fluctuation and
scattering consequently then occurs in the forward direction, we will denote the scattering
technique with an external LO as "forward scattering” (FS: A < A; external LO). When
the EM wavelength is much smaller than that of the fluctuation, A, and the scattering
angle therefor is very small and within the divergence of the probing beam, an external
beam is not necessary as LO, because the scattered fields are superimposed on the field of
the probing beam itself: ”far forward scattering” (FFS: X < A; self-mixing). * ) In
this case the wavelength A (wave number K = 2T and frequency (1) has to be obtained by
a ”curve-fitting” procedure; it cannot be derived from the scattering angle via momentum
transfer, as is done for larger angles, because at such small angles both "sidebands” (the
"red” and ”blue” ones or the ”left” and the ”right” respectively) are rather broad in angle
(poor K-resolution) and overlap. For that goal one derives the sideband EM fields S for
the particular situation, superimposes them on the carrier EM field T and formulates the
resulting intensity profile I in the detector plane, the "K - space profile”. This profile is
the distribution of amplitudes at the "beat” frequency () across the probing beam and is
characterized by two parameters: the wavevector K of the fluctuation and its axial position
z along the probing beam. The position across the beam in the detector plane is measured
in form of the normalized co-ordinate u, the wavevector in form of the normalized param-
eter v and the axial position in form of the normalized parameter ¢; so the profile has the
form I(u;v,¢).

* ) There is some confusion in the literature: occasionally the term "homodyning” is
applied to this situation (”self-mixing”), while "heterodyning” then refers to the use of an
external LO. Naturally, ”self-mixing” can only be run in the "homodyning” mode in the
above sense.



2.2. A Brief Review of Far Forward Scattering (FFS)

is necessary in order to explain how in this paper the existing theory is adapted to
the modelling of macroscopic density structures in the poloidal plane of the WV II — AS
plasma.

The treatment of FFS /7/ is based exclusively on refraction and diffraction: The
interaction of the EM wave with a density fluctuating phase object is represented by
refraction; the EM field amplitude distribution in the detector plane is related to that one
in the object plane by diffraction (in the ”slim beam” Fresnel approximation). The probing
EM beam is assumed to be a Gaussian, propagating along z in Cartesien co-ordinates, and
the phase object to be propagating across the beam, nearly along z: Fig. 1.

=

Fig. 1. FFS: A Gaussian beam propagates from left to right along the z-axis, and
the phase disturbance with wave vector K occurs in the object plane, a distance z from
the beam waist (z = 0), which is in the front focal plane of a lens. In its back focal plane
(2 = twice the focal length f) a detector array is located (detector plane). L is measured
perpendicular to K and is the lateral width of the density wave front.

For a given scattering angle (= A/A) there is a critical lateral width L of the density
wave A; as long as L does not exceed this value, i. e. —Lj\—% << 1, the phase disturbance may
be treated as a 2-dimensional phase-screen in the object plane (”Raman-Nath” scattering:
"thin grating” or ”thin layer”) /8/.

Let the electron density fluctuation 7, be independent of y (perpendicular to the plane
of Fig. 1), and let us assume that the scattering object is a density fluctuation in a plasma;
furthermore, that the ”line-integrated” fluctuation level along z,




originates from a lateral width L small enough in the sense mentioned above.
The index of refraction of a plasma then fluctuates, causing a fluctuating phase shift
of the probing EM field with an amplitude

®o=re-A-L-n, (r.is the classical electron radius) .
In case this fluctuation is a "monochromatic” wave, propagating across the beam along z :
®(z,t) = o sinp(z,t) ,with o(z,t) = Kz—Qt,
the phase of the Gaussian EM field is modulated by the factor
D(z,t) = ezp(i®(z,t)) . (1)

The phase factor D(z,t) gives rise to Bessel functions, but for 2 << 1 it reduces to
Mg L o > Do :
D(z,t) = exp(i®osinp) =~ 1 +iPgsinp =1+ ?e:zp(+up) - —é—ezp(—tgo). (2)

Let the detectors be linearly arranged along z in the detector plane at z = 2f and let this
co-ordinate z4 be normalized to the Gaussian beam waist wg in that (back focal) plane:

Let, furthermore, the density wavelength be normalized to the EM beam waist wo (radius
at which the central intensity 1 has dropped to 1/e) in the front focal plane,

v =K - wg.

A reader interested in the step by step derivation of the following egs. (3) and (4) must
be referred to / 7/ or / 8/, where it is shown that the small amplitude phase modulation
around D(z,t) = 1. in eq. (2) results in scattered EM fields that are sidebands S of
the probing EM field; they are shifted in spatial and in temporal frequencies, and these
sideband amplitudes (e.g. in V//e¢m) in the case of small phase disturbances are equivalent
to the +1 and —1 diffraction orders caused by a moving sinoidal phase grating. Related
to the detector plane and valid for a ”thin layer” approximation, they are:

thi”S;,, =FEy-®g- exp(—%(u +v)3(1 - ig)) - exp(£10t). (3)

The nearly unperturbed phase D(z,t) = 1. in eq. (2), on the other hand, amounts to a
nearly unperturbed field amplitude of the probing beam, the carrier T

T =Ep- e:cp(—%uz(l —1¢)). (4)

The fast time dependence ezp(iwt) of the EM field in the terms S and T has been omitted:
the detector electronics will not resolve it. The argument i¢ in this complex notation
reflects the curvature of the EM wave fronts.

4



In eqgs.(3) and (4) the position at the z-axis has been normalized to the Rayleigh length:

¢=zf/zp ;  zp=2mwi/\

The upper sign in eq. (3) refers to the "right” (index ”r”) and the lower sign to the ”left”
(index ”1”) sideband.

The field pattern of eq. (3) in the detector plane z4,y4 is the spatial Fourier transform
of the field patterns in the object plane z,y; superposition on T (eq. (4)) then leads to the
K-space profile.

Using a square law detector amounts to squaring of the superimposed fields, i. e. the
intensity (power density flow, e.g. in E“m%) of the emerging beam in the detector plane is:

thinI i (T +fhiﬂ- Sr +fhin Sl) . (C. c. ), (5)

where c. c. denotes the conjugate complex value of the first bracket.

One term in eq. (5) is independent of 7i, and it represents the (unperturbed) intensity
distribution of the probing beam; the terms that are proportional to 72 are also not
considered here, because they represent higher-order interaction effects. The term which
is proportional to 7. is the relevant one in our context; it represents the *beating” of the
sideband fields with that of the incident beam, the carrier. It can be seen /7/,/8/ to be
composed of two terms oscillating in time with {1, phase shifted by 7:

thin — B2. 8¢ - (**"g - sin(Qt) +1%™ h - cos(0t)). (6)

(For values of v << 1 this is equivalent to an oscillating Schlieren effect /8/.)
The u-dependent amplitudes t#"g(u) and ***"h(u) in eq. (6) are given by

thin ezp(%.,,z) = ezp(—(u - 3)?) - sin(es) + ezp(—(u + 3)?) - sine-),  (7a)

ey e:z:p(-l—ivz) = exp(—(u — %)2) -cos(e4) — exp(—(u + %)2) - cos(e_), (70)
where the abbreviation
€x = 025‘(1 1 E)
T 2, .50

has been used. In practice one measures the envelope of these amplitudes (the AC signal
at frequency (1 is rectified and then time-averaged in AT > %’5)

; 2 : -
th:nImt'z(u) = Eg p QO . exp(_zv2) 1 \/(thtng)2 oy (th:nh)2, (8)

which is a function of position u, with v and ¢ as parameter. This eventually is what we
have defined as K-space profile; in this ”thin layer” approximation it is symmetric about
u=20: thmfmiz(_u) = th'nIm{x('i'u)-




However, as mentioned before, measured profiles in tokamaks and stellarators tend to
be asymmetric about u = 0. This result has been tried to explain in two ways.

M. v. Hellermann /8/,/10/ outlined the influence from a finite lateral extent L (or
”thickness”) of the wave (i.e. the case where the condition £ << 1 is no longer valid).
For that purpose the differential equation describing the propagation of a plane EM wave
in a plasma modulated by a2 "monochromatic” density wave was solved approximately,
the lateral amplitude distribution of the latter being Gaussian in shape. This results in
”damping” of the sideband field amplitudes, which renders them asymmetric:

. in 1 b
thzckSI,r —th Sz,r . gg;p(—(’T(E e o 0)) )a (9)
with g b o 2Al ®
T=1 zrcosy v= Acosyp y
and -
o= vt 2

( ~, the Klein-Cook parameter, is almost identical with the value of {’\TA mentioned above.
It characterizes the scattering regime, v+ < 1 denoting the ”"thin layer” or Raman-Nath
approximation, y > 1 the "volume effect” or Bragg regime.) 1 is the angle of incidence, i.e.
between the density wave front and the EM wave vector 1?, which has the beam direction.
So two more parameters enter into the K-space profile ****I(u): the thickness L and the
angle 1, henceforth called the angle of irradiation.

Similarly, Sonoda et al. /11/ presented a strict volume integration over the entire
interaction region - thus including an arbitrary lateral extent of the density wave - , though
their explicit analytical results again refer to a Gaussian shape of that lateral profile (they
compared their calculations with results from microwave scattering from ion-acoustic waves
launched into a low-pressure d.c. discharge plasma).

The conditions for CO; laser scattering at W VII-A however, are characterized by
7 < 1 (Raman-Nath scattering), unless unreasonably large values of L are assumed (layer
lengths L a multiple of the wavelength A). This means that the observed asymmetries
cannot be explained in this way.

Therefore, as a second approach another model was tried: The probing EM beam in-
tersects two identical density waves travelling in different layers and in opposite directions;
asymmetries will then be caused by the phase difference between these waves /8/,/12/.
This could not explain the W VII-A results either, as long as these layers were taken as
thin and plane.

For all these reasons we present here another model of the small K density fluctuations
in toroidal plasma devices. It combines the picture of a finite lateral extent with that of
counter-propagation of density waves. In addition, this model is more flexible inasmuch
as it allows for arbitrary lateral amplitude distributions and also for an inclination of the
density wave fronts with respect to each other, such as might be the case in for instance,
poloidally bent density waves of finite radial thickness. And it turns out that this picture
eventually suffices to explain the data.



3. The Model

Though the relevant results from tokamaks in generally suggest microfluctuations
/2/ turbulent to a degree that might exclude their being assumed to be treatable as a
composition of linear waves, the proposal of this model is nevertheless motivated by the
suggestion that there is not only a fine-grain structure of microfluctuations that might be
highly turbulent and isotropic, but also a coarse-grain structure which is mode-like, and
that there exist plasma regions (e.g. the edge) where the latter prevails in amplitude.
This hypothesis is supported by some tokamak results /13/,/14/,/15/, where coherent
phenomena have been observed.

The model deals with scattering from density fluctuations in a poloidal cross-section of
a tokamak or stellarator plasma, i.e. propagating perpendicular to the main magnetic field.
Within this plane it assumes poloidally periodic density variations, with radial periods
comparable to the poloidal ones (K|~ |K|), settled in a layer somewhere between the
pressure gradient and the edge region. A probing EM beam will thus traverse this layer
twice when passing not too far from the magnetic axis (see Fig. 2).

Fig. 2: An EM beam is scattered from fluctuations of the electron density of a plasma
confined in a toroidal magnetic field. As indicated in this poloidal cross-section (perpendic-
ular to the confining field), the model assumes that part of these fluctuations is anisotropic
in the form of poloidal modes of frequency (), and with wavelengths A that cause scattering
in the FFS domain: The beam emerges with amplitudes and phases slightly altered at the
"beat” frequency (1. If the probing beam traverses this mode structure displaced by an
amount d from the center, the K-space profile at frequency () becomes asymmetric.




In particular, for the WV II — A stellarator this implies: The cross sections of the
magnetic dux surfaces are nearly concentric ellipses of constant excentricity; in polar co-
ordinates r and ¢:

1—¢€2
2 )
rild)= 1 —€2-cos2¢

(¢e=1—B?/A%; B and A the minor and major axes; r in units of A)

The mode structure of the density fluctuations in the poloidal plane is accordingly
modelled by the ad hoc assumption:

e(r, ;) = N(r,8) - exp(—i(0t — ©4(4))),

where the poloidal phase ©4(¢) is characterized by two features:

1) the wavefronts are inclined towards the center: % =0,
2) the wavelength A4 along the ellipse r(¢) is constant: %"% = 0.

Thus the phase is given by
®¢(¢) =2r-M - U(T, ‘;b)’

where M is the poloidal mode number and U is the partial circumference of the ellipse
between 0 and ¢, measured in units of the total circumference:

1 B el 3 B, 1 [B
=—.  Uom2m- (S(1+5) — 24/ >).
The amplitude distribution N (r,¢) in radial direction may for instance be a Gaussian:

W)= —2 . eap(-(mByy | o< gy,

Bre(¢)v/m Bre(4)

rc(#) being the center-ellipse of the elliptical layer with axes A and B.

The wavelength A. along the center-ellipse is taken as representative for the mode.
The probing beam intersects the center-ellipse at the angles of irradiation !21.. These
angles are given by the orientation of the beam with respect to the ellipse, in particular
by its displacement d from the center.

The goal is to derive the K-space profile in dependence of the the distance d and of
the thickness L by evaluating the side bands in analogy to eq. (9).

Confronted with the task to describe the interaction of the probing EM beam with
this density structure, we retreat to a simplified approach of superpositioning elementary
waves.

We shall first derive the EM fields scattered from each of the two intersections: scat-
tering from a laterally extended density wave with non-parallel fronts (*one wave”). There-
after we shall treat the interaction the two: scattering from two locally separated, extended
and almost identical density waves that propagate in almost opposite directions (”two
counter-propagating waves”).



One wave:

The lateral profile of the density wave may be characterized by its center r. and its
half amplitude half width L, — now permitted to be thicker than consistent with the phase
screen conception.

This profile is subdivided into N, sublayers (Fig. 3). The particular kind of subdivi-
sion and its indication of course is of no concern; for practical reasons we have chosen the
width [, of the sublayers to decrease in geometric order with the integer n:

1
iy — 2£n ; n=0,1,2,3,...; (lo=L, L= ELS Iz =..).

The number of sublayers accordingly is N, =2"*2+1 (No =5, N1 =9, N2 =....), each
of them centered at rr and characterized by an index k which runs from 1 at one side of
the density profile to Ny, on the other side: k = 1,2,3,...., Np. ke = 2"t! 4+ 1 is the index
for the central sublayer at r..

s

Fig. 3: The model: The fronts of the propagating density wave ("dens”) may be
non-parallel; their amplitude profile (indicated by different thicknesses) is replaced by N
discrete values ax (with ) ar = 1). So in this picture the EM probe beam ("elmg”)
intersects at different angles 1 N sublayers with different wavelengths Ag.




Fig. 4: Detail of Figd. The carrier T crosses two adjacent sublayers with a separation l,.
A, ¢ and a are mean values, 3(Ax + Aky1), 3(¥k + ¥r+1) and 3 (ok + ag41) respectively.

The figure serves to elucidate the evaluation of the phases Jik) of the sidebands in eq. (12).



For the purpose of tayloring symmetric profiles it is convenient to transform from rg
to the co-ordinate py which is the distance between the sublayer centered at rp and the
central sublayer centered at r.:

pr=rk—1c = (k—k¢) - In.

( For instance with n = 1 the 9 sublayers of thickness -‘;4 are centered at

1 = —2L, pz-———L vy P5 =0, ,p3—+Lpg—+2L)

In this heuristic and elementary approach the 3-dimensional phase structure is thus
represented by N, locally separated phase screens k with different amplitudes a; and
a phase factor D(z,t) of the type in eq. (1) and (2). Their wavelength Az and their
angle of irradiation vy varies with radius rx. And since in this FFS configuration there
is no spatial resolution, the situation can be looked at as scattering from a system with
?spatial dispersion”: Not only one single K, but apparently a whole group of wave numbers
contribute to the scattering signal at a given {}. When superimposing the scattered fields,
their phases must be taken into account, as shown in Fig. 4 (which is a detail from Fig.
3 and in which for simplicity the subscript ”k” has been omitted).

The central sublayer — or center-layer — at r.(¢) is irradiated at 1., and the other
sublayers are traversed by the probing beam at slightly different angles of irradiation x;
Aj together with A determines the scattering angles ax:

A=2-Ag-cos(th — 5‘-‘2-’5) -sin(%) . (10a)
At FFS this reduces to ai = arcsin(m).

For either sideband scattered around the directions . (at the center-layer) the
phase difference between EM fields scattered from adjacent layers £ and k£ + 1 has two
contributions, both being proportional to to I,, indicated in Fig. 4

One stems from a path difference of the EM waves due to their finite propagation
velocity:

(k) I . Ok
Lclmg e 2(‘””’ ) 31/4’]:) n(_) ’
measured in units of "'A—", this corresponds to the phase difference

ak 1

5B _ 2n L j _
2ncosty

elmg — A

The other phase difference arises because the two adjacent density "gratings” are
encountered by the probe beam in different phases: From & = & - sin(Kz — (1t) it follows
that a change from z to = + dz causes a relative change in phases of % =R draaunus
with

2nL t
dr = Lgtzu =, -tgyr  this amounts to 6(&:‘3‘8 = _I_k - _gz_ff"_
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Hence the net phase difference between EM waves scattered from adjacent sublayers is

A A . ;
B"“ggé‘g) = 63(:2‘9 < 6}:33 = -,\ﬁ . (%231112(—(;—‘:) F szm,bk) - cos® g - Yk , (10)
where, — by analogy with eq. (9a) -
L 21w
. . — L
Tk = Yk ZR - cosYk s Ag - cost (11)

We relate all phases to that of the center-layer; that means that they are made up by
the sum of the phase differences:

k
UV BN, Bragrgls), (12)

k=ke

N, different sideband fields of the type in eq. (3) are being scattered from the N, different
sublayers, each sideband field being characterized by another vg:

thi"Sg,,-k =F Ey-Dp- ezp(—%(u + )% (1 - i¢)) - exp(£iNt). (3a)

The phases in eq. (12) must be attached to the sublayer sideband fields in eq. (3a) before
superimpositioning:

N, N,
; k ak .o (k ;
Sy = kg—lthmsl,r ok e:r:p(—i-zé'i )) , with kE_lak = s (13)

Equation (13) is equivalent to eq. (9): it represents the sideband fields modified by
the "volume effect”. The lateral amplitude profile a; of the density wave front can be
shaped arbitrarily; for a Gaussian profile, for instance one has ay = %ezp(—(lﬁ%l%)z).

(When all wavefronts are parallel, all phase differences in eq. (10) are of the same

value B""'”Jic), and hence 5:22’:) = +(k — k) -Brags Sj(:c). It turns out that the thicker
the layer, the more narrowly will the scattered intensity be concentrated around an angle

. that corresponds to "‘Wéf) = 0; this is the well-known Bragg angle (¥c)o = ¥Bragg,
which is characterized by ¥gragq = -;—ozgmgg and A = 2A.s1nBragy: inserted into eq. (10),

the upper sign yields Brass 64(_'3) = 0. See also Appendix 1 and Fig.A2 in Appendix 2 !)
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The side bands S;, being calculated in eq. (13), the carrier field T remaining the
same as in eq. (4):

1 J
T = E, -ezp(-§u2(1 —1i¢)),
— the result of superimpositioning the fields S; r, eq. (13), and T', eq. (4), must be squared

as in eq. (5):
I=(T+S5,+51)-(c.c.);

and after some manipulation this results to a form analogous to eq. (6) :
I=E} ®-(g-sin(Qt) + k- cos(Qt)), (14)

with

< 1,2 2 . 1,2 2 (k)
g=+2ezp(—§(u + (v — vk) ))-ak-sm(—ig(u — (w—w)?) +65)
k=1

Nn
- E .e:::;r,'(———;-(n'.2 + (u+vk)?)) - ax -sin(—%g(uz —(u+ve)?) + 5£k)) , (15a)
k=1

- 1, 2 2 1./ 2 2y o 5(k)
hz-l-zezp(—i(u + (v — vk) ))-ak-cos(——ig‘(u — (v —vik)?) +637)
k=1

N,
= eap(—5 (83 + (o + 0)?)) @k - cos(— (s — (u+0e)?) +6) . (150)
k=1

And finally, the envelope — by analogy with eq. (8) — is given by

Imiz(u) = E3 - 0 - \/?(u) + A2 (). (16)

For a density wave propagating in a plane layer with a Gaussian profile, the results
from egs. (15a) and (15b) reduce to those from eq. (9), which was obtained from the more
rigorous treatment /8/,/10/ ( see Appendix 1 ).

OO0

In this context we note that the effect of finite lateral thickness on EM scattering in plasmas
—ie. Bragg scattering from monochromatic waves — was already investigated rather early,
e.g. experimentally in 1973 by Tsukishima et al. /16/, i. e. 3 years before the first
microwave (E. Mazzucato) and CO; laser (C.M. Surko and R.E. Slusher) scattering results
from a tokamak plasma were published (referenced in /2/). See Appendix 3.

13




Two counter-propagating waves:

We adjust the phases in eq. (12) to the description of FFS from a mode of frequency
{1 within an annular layer of thickness L, in a poloidal plane the cross-section of which
has the form of (a circle or) an ellipse with axes A* and B*, the ratio A*/B* being given
by the main magnetic field of the tokamak or stellarator. With Uy, the circumference of
a sublayer, and M, the mode number, the associated poloidal wavelength is Ay = %} :
A* = s- A and B* = s- B, where s denotes the size of the center-ellipse referred to
a standard case (A,B). The probing beam will intersect this annular layer twice and
encounter varying wavelengths Ag, in general each of them at different angles 14 and
Z1)k. Consequently, also the diffraction angles will be different: 2ax. The normalized
wave numbers v; and 2v; will have opposite signs.

In writing down the phases 1’265:") one must take into account a phase difference A
between the waves scattered at intersection 1 and those scattered at intersection 2; this
phase difference is related to the center-layer (in approximation):

d
A=—-(tog, — 2up),
Wo

and is determined by the diplacement d of the beam from the center.
Thus instead of eq. (13) there are now two sets of partial waves:

Nn

1,2
BA(Sy) = Y A (nsE,) - - eap(+i 2 60),
k=1
with
1,2 (thinS;’fr) =FEo-®o- ea:p(-—%(u +1,2 Uk)2(1 — ;.12 f)) - ezp(£iQt) . (18)

(Though this allows for different lateral profiles 2ay, in general it will be assumed that
both profiles have the same shape with 3.' ax = Y %a; = 1.) The phase difference A
between the EM fields scattered at both intersections of the EM beam with the annular
layer is included in 26, (%) (details in Appendix 4).

Eventually, the fields ought to be superimposed and squared by analogy with eq. (5),
and, as in egs. (6) and (14), the beat signal is — in the case of complete coherence (for its
definition see below) - :

I=E} -3 (g-sin(0t) +h- cos(Qt)) ;
in this case the amplitudes ¢ and h are sums:
g(u) ="g(u) +7g(u), (21a)

h(u) =" h(u) +2h(u) , (21b)
where 12g and 12k are given by a set of equations identical with eq. (15), except for the
superscripts ”1” and ”2”, which appear additionally at vk, ¢ and b'ik) (see Appendix 4).
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As regards the numerical aspects, the sums in egs. (15) and (21) converge rather well;
in general N = 33 sublayers (see eq. (12a)) are sufficient, N = 257 being necessary in
exceptional cases.

The waves may have lost some degree of coherence on their way between the two
intersections; in order to account for that, we introduce a coherence parameter £ < 1:

For complete coherence (k = 1.) the envelope of I(u) is given by Iniz(u) in eq. (16).
With no coherence at all, the scattered intensity will be the sum of the intensities from
both layers: M2 niz(u) = 1/(12g)2 + (12h)2 . So in general one has

Imiz (u) = Eg -9y - p(u) )

with (see egs. (8) and (16))

p(u) =k- \/(19 +29)° + (*h+2h)* + (1~ k) - (V(F0)2 + (h)2 + V(9)2 + ()2 ) . (22)

Thus in a curve-fitting procedure, the parameters for one K-space profile to fit are the
lateral thickness ¢4 = -ﬁ-, the displacement d, the degree of coherence k, the mode number
M, the size s of the center-layer and the relative amplitude A. From M the center-layer
wavelength A = Ax, = %’—:f- can be deduced, Uy, being the circumference of the center-layer.

Once the best fitting p(v) has been found, the absolute value of the ”line-integrated”
fluctuation level at this (2, K) can be derived in a straightforward manner:

ST Mbeam ) Jmi:(u) } A ,
NMmiz Jbeam(u) . m(u) Te* A

(23)

where { } means the average over u; but for a good fit this quotient should be rather
independent of u. Jmiz and Jpeam denote the detector output (in mV) due to the beat
power Ip,;, at frequency 1 and the probe beam power Ijeqm respectively (in mW), nmiz
and 7Npeam the corresponding sensitivities (for example, in mV /mW), and m(u) the "mixing
efficiency”,

m(u) = ezp(+u?) - p(u).
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4. Results

The CO, laser with Gaussian beam shape deposited a power of about 10W in the
plasma; the optics was characterized by zo = —192c¢m, wo = 0.135cm and f = 767 cm
(see Fig.1l and Fig.5). The detector system was a linear array of 9 photoconductive
Hg:Cd detectors followed by a 9 times 8 frequency channel electronic filter bank (with
AF =~ 0.1, see Fig.8).

wmiTroTs

CO, Laser

Detectors
W, = 0.0 cm

= hATie e
R e e T ] L
Ry e

mirror

D

Fig.5 FFS set-up at the WVII-A; vertical plane, axis of the torus to the right.
Distances:
from the coupling mirror M at the laser output to the focussing optics O: 735 cm,
from the focussing optics O to the beam waist wo at W: 615 cm,
from the beam waist at W to the Fourier lens at L: 767 cm,
from the Fourier lens at L to the detector plane at D: 767,
from the plasma center at P to the beam waist at W: 192 cm.
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Fig. 8 The frequency selection for each detector is done by a set of 8 active
filter channels in the range from 67 to 900 kHz; this is shown for one channel here:
After preamplification, the signal around F is preselected by a passive bandpass filter BP.
Then the content of this frequency channel is transformed to low frequencies
92—F~ (< 50 kHz) by mixing it with the center frequency F = Fi,....., Fg.
The result is passed through a lowpass filter LP to operational amplifiers and is rectified,
linearly within 3 orders of magnitude.
The oscillogramm shows the bandpass transmission profiles,
the linear output versus frequency ( 67, 90, 140, 200, 306, 440, 630, 900 kHz).

Equation (22) was taken to fit the data. The values of Ax and ¢ in egs. (12) and
(13) were derived from the elliptical configuration: poloidally periodic density structures
with wave fronts oriented towards the center of the ellipse (and a given radial distribution
of amplitudes) are irradiated by an EM beam that passes slightly off axis. The layer was
assumed to exist around an elliptical flux surface with A = 9. ¢cm and B = 5. ¢m in the
standard case (size s = 1 for the elliptical center-layer).

For the fits presented here, the lateral, i.e. radial profile of the density structures was
taken as Gaussian. But the fit result does not depend critically on the particular shape of
the radial amplitude profile, and could even be a multiply humped one (as in Fig. 13).

With our detector array we encountered some trouble. Eventually, of the original 9
detectors only 5 were still left in the array. In the following we present some data from
experimental series with two different types of W VII-A plasmas. While the data from the
type ”"without shear” were taken with 8 detectors, the data from the type "with shear”
were obtained with only 5. Since more than 5 u-values were required in these later series,
the profiles had to be constructed on a ”shot-to-shot” basis from a series of reproducible
discharges. We start with these data:

17




67. K2 0. -2 1£0. K12 J06. K2 £L0.KH

G
0.2

o
——
—
0.0
—~—
—_——
——
o
. \=-
4 ——
——
o o.
-
0=
o 0.

33

a8
= o

58

g

5

H

8g

k4

R

Q

i

0.0
u‘l
0.0 o
a
,‘;
0.0
ol
e
0.0 3
1 L 1
re
=

39
3%
0.4
—Dppt
-
3
an
0.4
35
CH
'3
g
33
a8
~e
A%

0.0 .
n 1

M. T

FFS data from the W VII-A ECH-heated plasma in sheared field geometry (2.5T)

for two different series, and best fit curves.

Within one row: the u-distribution (K-space profile) measured at five different
frequency channels and the curves from a least squares fit.

Above: A plasma with central ¢ = 0.44 at t = 28 ms, fit done with M = 11; d = —1.44cm,
Middle: A plasma with central ¢ = 0.50 at t = 28 ms, fit done with M = 9; d = +1.38 cm.
Below: and att = T7 ms, fit done with M = 9;d = 4+1.30e¢m.

A set of five detectors was used successively

in four different positions across the EM beam waist

during a series of 15 reproducible discharges.

The result is displayed in the ”light” of five frequencies.

Abscissa: normalized position w. Ordinate: intensity I,n;; in arb. units.

The associated parameters ¥, k, s and A are displayed in Fig. 8 and Fig. 9.
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Plasma in Magnetic Field Configuration with Radial Shear

Fig. 7 shows results from the last experimental period of the old Wendelstein stel-
larator. Its rotational transform ¢ is in general nearly independent of the minor radius;
this magnetic field is referred to as shearless. But the field configuration for these last
series of W VII-A was exceptional: in contrast to the standard configuration, there was a
shear of 5 to 10 % ( ” torsatron operation” /17/ ); the rotational transform increased with
radius. The plasma was maintained by RF power (at the electron cyclotron frequency
Y2 = 70GHz ,~"ECH” -, main magnetic field 2.5T ), deposited in the plasma core.

Fig. 7 exhibits profiles from two different series with different rotational transforms
t. The first horizontal sequence stems from a configuration with £ = 0.44 (in the plasma
center) at the time ¢ = 28 ms, the second and third sequence from another configuration
with £ = 0.50 (in the center) at two instants, t = 28 ms and ¢t = 77 ms respectively.

The K-space profiles within each row stay remarkably constant in shape, except for
the height. This visual impression is confirmed by the outcome of the fit procedure: The
best fit is attained with one center-layer wavelength A. common to all frequency channels.
This will be outlined in some detail:

The radial position of the plasma layer determines the associated mode number; hence
the size s and the mode number M are linked by A.. The least squares fit procedure /18/
was applied in the following way: At first all fit parameters except for the mode number
M were varied for each frequency of one series (one row in Fig. 7) with different mode
numbers; from that the most likely diplacement d was derived and the whole procedure
was repeated with d fixed at that value.

The ¢+ = 0.44 configuration:

This procedure delivered the dependence of the thickness ¥ and the coherence x on
frequency, as shown in Fig. 8a. This was done with data from the "torsatron” configu-
ration with central ¢ = 0.44 at t = 28 ms; d = —1.44 c¢m (first sequence in Fig. 7). In a
third run, in addition to d, the thickness ¥ and the coherence k were fixed at the values
of Fig. 8a and the remaining parameters, i. e. center-layer size s and relative amplitude
A, were obtained by best fitting to the results from this configuration. As an example, s
is plotted versus frequency F' for the mode numbers 9 and 11 in Fig. 8b ; there is a clear
grouping of mode numbers: at all frequencies (except of the last one at (0.44 M Hz, but
compare Fig. 7), a mode number 11 would originate from the same layer: s = 1.15; the
mode number 9 would stem from another layer further inside, etc. Layers d < 1.2 can be
ruled out because they would exist outside the limiter.

The plasma carried a toroidal electric current (up to 1kA, created externally by a
slight asymmetry in the ECH irradiation and driven internally by neoclassical diffusion in
the toroidal magnetic field configuration); this current enhanced the positive shear of ¢, as a
result of which a magnetic flux surface of the rotational transform ¢ = 5/11 = 0.4545... may
be expected near the plasma edge. The standing-wave pattern with M = 11 reminds one
that the magnetic field configuration at this "rational” surface tends to develop ”islands”
of poloidal periodicity 11 when some disturbance is active.

The amplitude distribution versus frequency for this configuration, M = 11, s = 1.15
and d = —1.44 ¢cm is shown in Fig. 8c.
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Fig. 8a: Thickness ¥ and coherence k versus frequency, for the ¢+ = 0.44 configuration.
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The & = 0.50 configuration:

Comparison of the middle and lower rows in Fig. 7 for the £ = 0.50 configuration
shows that there is very little dependence on time. At both instants, with slightly different
displacements d, the K-space profiles can be well fitted with a mode number M = 9 at all
five frequencies (Fig. 9c, which was obtained with ¢ and < from Fig. 9a), though not
as convincingly as in the other configuration. In this dicharge, £ = 5/9 = 0.555... might
be attained at the plasma edge. Does Fig. 9c indicate different positions s of the M =9
layer at different instants of time t?

The relative amplitude A versus frequency is diplayed in Fig. 9b, for { = 28 ms and
for t = 77 ms; it reveals a frequency band with a maximum at F' = 100kHz, and a high
frequency roll-off of -Aw—“’ ~ 1. at T7ms and of % ~ 1.5 at 28 ms.

The error bars represent standard deviations, i.e. with a probability of 67 % the best
estimate of the fit parameter will be found within that range.
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Fig. 9a: Coherence k and thickness ¥ versus frequency F
for the series with ¢+ = 0.50, both at t = TTms and at t = 28 ms.
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Fig. 9b: Amplitude A versus frequency Fig. 9c: The size s of the center-layer with
for the same series (as in Fig. 9a). mode number 9 versus frequency for £ = 0.50
at the times t = 28 ms and t = 77 ms.
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Plasma in Shearless Magnetic Field Configuration

This is a series run prior to that discussed in Fig. 7; the array was then still (nearly)
in order, and the 8 different u-values stem from 8 different detectors (Fig.12).

The plasma was again maintained by ECH deposition, this time at 2 - %22 = 70 GHz,
6 c¢m outside the magnetic axis, and the magnetic configuration was standard, i.e. nearly
shearless, with central + = 0.515. The main magnetic field was 1.3 T'.

Fig. 10 contains raw data of the points to fit in Fig. 12: the time response 2(t)
(voltage versus time, see eq.(23)) of the detector-amplifier system for three detectors (i.e.
three different values of u) at a selected frequency (140 kHz); in the first sequence the
superimpositioning of five reproducible discharges, in the second their mean, averaged in
a 3 ms time interval. The noise was not created by the shot noise of the beam power, as
it should be with a good detector system, but rather by electromagnetic pick-up noise of
unknown origin. This noise was sometimes strong enough to spoil the calibration system of
the electronic filter system (by saturation). In this series we therefore tentatively restored
the calibration a posteriori by an assumption: the fluctuation frequency spectrum at each
detector always gives a "smooth” curve with one maximum and not more than one point
of inflexion, and experimental points that deviate markedly do so because the calibration
becomes distorted, as revealed particularly in the 200 kH z channel; see example in Fig. 11.
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Fig. 10: An example of the raw data from three detectors at 140 kHz:
the response of three detectors versus time.

above: the traces of five reproducible discharges
below: averaged in a 3 ms time interval.

The central box below contains the line density for comparison (lower trace).
The evaluation of these data is shown in Fig. 12.
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Fig. 11: The frequency distribution 1
in one detector. - °
Circles: original
Crosses: ”smoothed” 1
as described in the text %_ — T —— T
FREQ/MHZ

The error bars in Fig. 12 were roughly estimated from the data in Fig. 10. Because
of the smoothing procedure they are somewhat arbitrary; but these uncertainties do not
sensitively affect the variances of the fit parameters in Fig. 13.
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Fig. 12: FFS data from the W VII-A ECE-heated plasma in shearless field geometry (1.3 T')
and u-distributions (K-space profiles) fitted to the "smoothed” data.

Central ¢ = 0.515 at t = 70 ms;

fit done with mode numbers M from 19 to 29, d = —0.25¢m.

Eight detectors across the EM beam waist

measure the beat signal in the ”light” of six frequencies.

Abscissa: normalized position u. Ordinate: intensity I, in arb. units.

The associated parameters ¥, &k, s, A and M are displayed in Fig. 13.
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The wave numbers in this shearless case are considerably larger than in the previous
one with shear. In Fig.12, there is no big variation of the profile shape with frequency
either, except at 67 kHz and 90 kHz. The most likely displacement is d = —0.25 em.
When the size s of the center-layer is evaluated with values of 4 and « shown in Fig.
13a and plotted versus channel frequency for different mode numbers in Fig. 13b, one
is led to choose a grouping of mode numbers in a layer around s = 1.23 as the best fit
to the data (Fig. 13d); the slope % at the low-frequency channels results in a velocity
of ~ 2.2 % On the one hand, this value is comparable to that of the velocity with
which the plasma rotates poloidally (as we know from the Doppler shift of impurity line
radiation); on the other hand, it is also of the order of the phase velocity that drift waves
would have with these wave numbers. (In CGS units this velocity is given by Wrerpi=
ckT [eBry; % = X(lnn.), — and with kT = 1.6 -10"erg (T. ~ 100eV), B =
1.3 - 10* Gauss and r, = 5cm one gets the result: wperp = 1.5 f—g";) The wave number
M = 29 in the plateau of Fig. 13d corresponds to K - p; = 0.4, when an ion gyro radius
of ~ 0.1 ¢m is chosen (Te ~ 50 eV'). In this magnetic configuration, a flux surface with
t= 15/29 =~ 0.517 may be expected to exist near the plasma edge. The associated relative
amplitudes versus frequency are presented in Fig. 13c.

Though the smoothing procedure of the raw data is somewhat questionable, the data
then fit surprisingly well with the model assumed in this paper, and the spatial structure
of density fluctuations deduced from them bear some plausibility. It should be pointed
out that many other (K,(1)-distributions can be obtained with a comparable goodness of
fit, but only if one allows for variations of the displacement d with frequency (eccentric
layers).

A concluding remark on the absolute fluctuation level:

The absolute fluctuation level according to eq. (23), integrated over all K,{-values,
can only be vaguely estimated. In both the torsatron and the stellarator configuration this
level is of the order of ', =~ (0.5 — 1) - 10'* ¢m™3. This corresponds to 2¢ ~ (0.5 — 1)

if referred to the plasma edge (determined by the limiter), and to %: ~ 0.05—0.2 if
referred to the radius of largest gradients (in plasma pressure). In both magnetic field
configurations investigated here, the fluctuation layers seem to be localized near the edge
rather than in the gradient region.
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5. Discussion

In the past, a previous C'O; laser scattering device at WV II — A /4] was designed
for FS with an external LO. The probing beam itself, having traversed the fluctuating
plasma, was attenuated and used as LO (in homodyning). It turned out that the LO was
thus "loaded” with information on small-angle forward scattering from long-wavelength
fluctuations (order of ¢m), which had been erroneously attributed to short wavelengths
(order of mm). Results obtained with a LO that by-passed the plasma indicated that
these fluctuations in the ¢m scale exceed that in the mm scale. We therefore modified
our FS system into a FFS system, instead of choosing the more reasonable approach, a
hybrid system, likewise suitable for performing FS and FFS, as somewhat later has been
done at the TEXTOR tokamak /19/. Because of this deficiency the data from 10 pm are
not directly comparable with those from microwave scattering /3/, that was done from
mm density wavelengths. As already mentioned before, we presume that mm fluctuations
prevail in the bulk plasma and em fluctuations at the edge.

We do not claim that the spatial distribution of fluctuations assumed here is the only
one which results in the kind of scattering signals observed; but at least the separation of
the maxima of the K-space profiles hints at wavelengths of 2 — 4 cm; and the essential
point is that the asymmetry can only be explained by anisotropy of the fluctuations. Other
models are conceivable since this one is not comprehensive either ; for instance, the case of
a spread also in mode number (for one (1) has not been treated here; this may be necessary
to postulate in order to account for the observed ) spread. ‘

The model presented here corresponds to a particular Schlieren effect, created by the
counter-propagation of two almost identical density waves with extended and nonparallel
fronts. The degree of asymmetry of the resulting scattering profile can be controlled by
— among other means — the amplitude ratio of the fields scattered from the two counter-
propagating waves. The WVII — A plasma cross-section is elliptical in shape, and
the probing beam intersects its axes at an angle of 45°. Whith finite lateral thickness
¥, the amplitude ratio of the scattered fields is determined by the amount d of off-axis
observation, and it is different from 1. even when a poloidally uniform fluctuation amplitude
distribution is assumed; this is because the scattered field amplitudes depend on the angle
of irradiation 1, which is different at the two intersections of the annular layer, ¥; and 1,
(see Appendix 5). One can also imagine a poloidally non-uniform distribution (top/bottom
asymmetry), and in the case of a circular plasma cross-section (like TOSCA), where 9,
and 9 are equal, this may be the only possible origin of unequal co-/counter-scattering
field amplitudes.

But it should be stressed that the picture of structures with non-parallel wave fronts is
essential. Moderate asymmetries like those in Fig. 7 middle/below or that reported from
TOSCA /9/ (Fig. 18 there) can be fitted by a simple model of counter-propagating density
waves, as has been demonstrated in /12/ (Fig. 4 there), but strong asymmetries like those
in Fig. 7 above cannot be fitted without ”spatial dispersion”. This is illustrated in
Fig. 14. Neither thin counter-propagating waves nor ones that are thick but have parallel
wave fronts result in appreciable asymmetries.

26




o~
-
= A
~
i
§ia
b Y e
5' 2
E = et
£ s
" A . . A
° HE T A |
- |
|
g T
° DMy ARL L i Sc,..
| [o] T T
dg ] It LS T 12 1 1] bty s PR e 0':’5 o Fum e =
il
= I
:
-
N
s =
5 "
? i
e
o =
.
i
s
il
o . r
: % ot st Yot A o f " 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.1
U

Fig. 14: The influence of the radial shape of the density profile (left: ax versus radius)
on the shape of the K-space profile (right: beat signal I,i, versus detector location u)
for FFS from poloidal fluctuations in an elliptical layer the axes of which are
intersected by the EM beam at 45°.

In this example A=9c¢m, B=5cm,d =1.05cm; M = 11(— A~ 4 cm), k = 1.0.

Above: a radially extended "multiple Gaussian” with § = 0.93.
Below: a practically thin layer with § = 0.05.

Note the difference in asymmetries.

For the investigation of density fluctuations in the e¢m scale length quite another
scattering method might be more appropriate, that has been developped and applied to
a tokamak plasma by H.Weisen /15/. It is a specific form of spatial filtering technique,
introduced 1935 by Zernike as an essential improvement of microscopy and since then
is called the phase contrast method. With this, the information contained in the EM
wave front (Weisen used a CO; laser) acquired by phase fluctuations is not recovered in
the far field of the probing beam (as with ordinary scattering) but in the near field, and
complicated wave patterns can thus be viewed directly in real space. But unfortunately,
the probing beam diameter should be at least equal to the structure size to investigate,
and the narrow access to stellarator plasmas excludes this phase contrast method.
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Some remarks with implications to FFS and FS in general can be done:

Small X: As we have shown, FFS scattering of 10um EM waves from anisotropic and
radially non-uniform fluctuations of ¢m scale lengths renders asymmetric scattering pro-
files, despite of a Raman-Nath parameter v < 1, because of a finite top/bottom coherence
of rotating modes.

Medium X: Scattering with larger EM wave lengths (fractions of 1mm) from the same
fluctuations moves the situation towards FS and more into the Bragg regime; as long as
the scattering angle « is smaller than ~ 5. degrees the ”slim beam” Kirchhoff-Fresnel
approximation is applicable to FS as well; the use of an external oscillator requires the
expression for the carrier field T in eq. (4) to be replaced by eq. (4a) in Appendix 2:
the u-dependence is (u & v)? instead of u®. In this medium X case, interference of the
top/bottom fields decreases because larger scattering angles make them locally separated,
but now the volume effect becomes operative: anisotropic fluctuations such as coherent
modes can generate asymmetric spectra by the finite lateral extent of their wave fronts.
The difference between the small A and the medium A cases is discussed in Appendix 5.

We discuss this intermediate or FS regime in more detail since wavelengths of some
fractions of 1mm might offer a reasonable compromise in scattering from density structures
in the ¢m region, at least when the access to the plasma is restricted:

In this situation, at larger values of K (>= 10. cm™!) deviations from isotropy such
as periodic fluctuations with extended wave fronts, will definitely create a volume effect,
and the width of the K and {1 spectra can serve as an indicator: these fluctuations will
yield narrow spectra; observation of broad spectra will probably rule out anisotropy.

At smaller values of K (<= 8. ¢m™!), this indicator can not be quite as helpful.
Commonly used beam widths wg then represent values of v = Kwp too small to give a
sufficient K-resolution (see Appendix 2).

But even at larger values of K, i.e. with a "K-apparatus profile” sufficiently narrow,
anisotropic fluctuations can yield broad K-spectra; this is illustrated at an example in
Fig. 15 b with |K| ~ 8. cm™1. There we demonstrate three criteria, useful in asking for
the degree of isotropy: In addition to

1) the width of the K, spectra
two other features are of importance:

2) the dependence on the angle of irradiation ¢ and

3) the ratio of amplitudes of the sidebands.
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Fig. 15: An example: Scattering of A = 0.012 ¢ waves in a beam with wg = 0.7 cm
by poloidal modes of center-wavelength A. ~ 0.8 ¢m at r = 10 ¢cm and by isotrop. flucts.
The radial profile a) of the fluctuation amplitudes is a "Multigaussian” with L = 4 cm.
The right sideband peak, Ipeqk in c), is plotted versus K,
which corresponds to different angles between the probing beam and the LO, in b).
This fluctuation structure is probed by the EM beam at various displacements d, see d).
c) and b) have been calculated with a diplacement of d = 6 cm.
In e) the maximum of the K-distribution, Ithaz,
is plotted versus the displacement d (thick trace)
and for comparison the result for scattering from
isotropic fluctuations in the same sheath is indicated (thin trace)
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In Fig. 15 scattering from isotropic fluctuations is compared with that from anisotropic
fluctuations, both being poloidally uniformly distributed in a circular layer of thickness
L = 4 ¢m and centered at 10cm radius, located in the waist (wo = 0.7 ¢m) of a probing EM
beam of A = 0.012 ¢m wavelength. It is assumed that this beam scans the layer in a varying
distance d from the magnetic axis of a hypothetical tokamak (Fig. 15d). The anisotropic
fluctuations are assumed to be poloidal modes of center-wavelength A = 0.8¢m (thickness
¥ = 5) and a radial amplitude profile as shown in Fig. 15a. The resulting K-space profile
under this condition is split in two asymmetric wings which are directly attributed to the
two sidebands of the scattered EM fields. These wings or sidebands are shown in Fig.
15c¢, for a displacement of d = 6cm. Both the peak amplitude Ipeqx of the sidebands and
its position #peq.x depend on the angle between the probing beam and the LO beam. A
variation of this scattering angle a corresponds to a variation of that K which dominates
the scattering. If an experimenter for instance concentrates on the right sideband and
measures its amplitude Ipeqx as a function of this wavevector K, he will as a result get
Fig. 15b, and, since from v = Kwg he exspects a K-resolution of 1/v = AK/K =~ 1/5.5
(see Appendix 2) ; the measured K-profile, however exhibits AK/K =~ 1/1.3, therefore
from the width of this K-spectrum he might deduce that the fluctuations are isotropic, their
amplitudes at wavevector K being proportional to I;ns2, the amplitude of the K-spectrum.
As demonstrated in this example however, a broad K-spectrum (AK/K = 1.) may as well
be generated by anisotropic fluctuations such as modes with ”spatial dispersion”.

Another displacement d implies another angle of irradiation ., which again yields
another K-profile with different K,nqz and Imaez. Fig. 15 e (thick trace) shows this
directional dependence, i.e. the dependence of I,,,; on d. However, this result could also
be produced by isotropic fluctuatios, provided their radial distribution of amplitudes has
the appropiate shape. Isotropic fluctuations, for instance, of constant amplitude in this
4cm wide circular layer will cause a d dependence plotted in Fig. 15e (thin trace; — in
this case the scattering amplitudes are simply proportional to the length of the interaction
region, which varies with d.)

So in this medium A case the only reliable criterium is the ratio of the sideband
amplitudes; asymmetry of them (Fig. 15c) clearly indicates anisotropy, while the width
of the K-spectrum and the dependence on the angle of irradiation do not.

Large A: Still larger EM wavelengths like microwaves scattered from c¢m scale lengths
enhances « still more and drastic volume effects are to be expected, as already has been
pointed out by v.Hellermann /8/. In addition, at these wavelengths gross refraction must
be accounted for. Precautions to avoid undue explanation of the results is more urgent. In
the 2mm scattering design at WV II— A /3/ observation of both sidebands was technically
not possible.
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Résumé:

The interpretation of scattering measurements is straightforward as long as the fluc-
tuations in the scattering volume are entirely isotropic; then for any scattering angle o
there will always be components that match the Bragg condition, and the local spectral
density derived will not depend on the angle of irradiation %. Although it is common
use to judge: broad spectra indicate isotropic turbulence, this should be done with some
reluctance. Truely,a significant feature of isotropic turbulence is a broad spectrum in both
wavenumber K and frequency 0 (42 ~ 1. and &% = 1.). But as we have shown, a broad
K-spectrum can also be obtained in scattering from anisotropic fluctuations.

Observation of asymmetries between both sidebands will at least be an indication of
anisotropy, though they might appear symmetric despite of anisotropic layers if accidentally
they are irradiated perpendicularly: . = 0. A control measurement of both sidebands
in FS may in many cases be feasible and is nearly indispensable. FFS schemes inevitably
detect the interaction of both, and so they are more sensitive detectors of deviations from
isotropic fluctuations.
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Appendix.
Al.

For a density wave propagating in a plane layer the wavelength within the layer is
constant: Ak is identical with A.. With the subscript ”¢” omitted, vy is identical with v,
eq. (13) reduces to

N,
pianesl’r £ thinst,r { E 2k . €$P(+i5§:k)) )

k=1 2

with 6{%) = £ (k — k) -Br299 6. ; and egs. (15) reduce to

N
1 ~ :
prawe ezp(-l—zvz) = exp(—(u — %)2) . E ay - sin(ey + 6_5_"))
k=1
. N,
+ezp(—(u+ —2—)2) + Y ag-sin(e— + 6&“) . (17a)
k=1
1 v L
BlEnA emp(+zvz) = ezp(—(u — —2-)2) . z ai - cos(ey + 6_5_"))
k=1
v i
—ezp(—(u + —2—)2) . Z ay - cos(e— + Sik)) : (17b)
k=1

Any distribution may be chosen for the amplitudes ax; with a Gaussian, egs. (17)
give the same result as eq. (9).

And in particular, for a triangular distribution withn =0 (N=3; k = —1,0,+1;
a1 =0,a =1, ay; =0), equations (17a) and (17b) lead to the description of a thin
layer, like egs. (7).

A2,

It is instructive to consider the effect of finite lateral thickness of a density wave in
terms of Fourier transform: A laterally infinitely extended plane wave is characterized by
a single K, i.e. the spatial spectrum S(K) of a density wave with large lateral extent is
narrow, scattering will occur constructively only near the ” Bragg condition” (see below).
On the other hand, a laterally "thin wave” - asymptotically approximated by a plane
phase screen as in egs. (1) and (2) - is Fourier composed by a broad spectrum S(K), and
scattering will therefore occur at nearly any angle of incidence ). (Raman-Nath scattering).

From egs. (7) and (8) follows: the sidebands of ***"p(u) have their maximum at
Umaz ~ *3, as is shown in the FFS curve (a) in Fig.A1.

The height of the maximum in FFS is governed by e:cp(—%:—) (eq. (8)). For v somewhat
larger than 2.5 the ”self-mixing” ceases to be efficient and the use of an external LO is
advisable (FS); in this case the carrier is:
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Tro =FEro- ezp(—%(u = 0)2(1 - 2§')) (40.)

(instead of eq. (4)). Equations analogous to (7) then indicate that in this case the sidebands
have their maxima at ¥mqz & £v. This is curve (b) in Fig.Al. (The ordinates I,,,, of
(a) and (b) are different in scaling.)
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Fig.A1l The sidebands for A = 0.875¢m, A, = 1.8¢m and . = 25°, the lateral profile of
the density wave front being a s Gaussian with L = 1.8 em. (The Bragg condition for the
right sidebands is satisfied with ¥ pragq = 14°). wo = 1.cm yields v = 3.85 (2 = 0.). For
L = 0. all sidebands would have I;;; = 1. (broken line); a): in FFS the absolute value is
so small that in practice an external LO will be added: FS, the result of which is shown
in b). Then the maximum shifts from umaz = :i:% to Umaz = Tv.

If we take the sideband maximum I, as a measure of its intensity, then we get
its dependence on 1., the angle of irradiation, by evaluating Imaz = Imiz(%maz) as a
function of 1., this dependence being the same for FS and FFS. The result is presented
in Fig.A2; parameter is the normalized thickness ¢4 = LTf“ One recognizes the meaning
of the condition Z ’“995&) = 0 in eq. (12): it determines the angle of maximum sideband
intensity in FFS, which reveals the ” Bragg condition” sinypragq = :i:—;—ﬁ

1.0
i

Fig.A2:

The maximum Iy, of the

right sidebands in Fig.Al

as a function of 1.,

the angle of irradiation

(both for FS and FFS);

parameter is the thickness

? =2,1,2;4,8:

Otherwise parameters as in Fig.Al.
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The angular dependence Ipnaz(1.) in Fig.A2 reflects the Fourier-transform-like be-
haviour of the lateral profile of the density wave front: the larger the extension L of the
wave front, the narrower is the K-spectrum and the more narrowly is the scattered power
concentrated around the Bragg angle ¥prqqg-

Whether or not a narrow "K-line” can be resolved by a scattering device, depends
on its "apparatus function”, in complete analogy to ordinary spectroscopy. Qualitatively,
the "resolving power” is given by the intersection volume of the incident and the scattered
beams, as indicated in Fig.A3. (A quantitative description of this has been given by
E.Holzhauer and J.H.Massig /20/.)

Fig.A3:

Qualitative demonstration
of the ”resolving power”
of the scattering device;

in this case

the "apparatus function”
is somewhat narrower than
the spectrum to detect.

k scall

—
kinﬂ'd'

If the lateral extension of the density wave does not ”fit” into the intersection volume
then the observed K-spectrum will be ”smeared out” by the poor resolving power, just
as in ordinary spectroscopy a 14 line would be smeared out by a spectroscope with a 54
resolution. ( So in case one would like to calibrate the resolution of a scattering device,
the waves serving as calibration source should have a lateral extension at least equal to
the length of the intersection volume.)

A3.

Tsukishima et al. /16/ scattered 35 GHz microwaves by ion-acoustic waves propagat-
ing in a low-density d.c. discharge along the axis of the cylindrical tube, and they measured
scattered signals as a function of the angle of irradiation 1., keeping K constant. Since
the angular dependence, Fig. A2, behaves as the Fourier-transform of the lateral profile
of the density wave front, from Appendix 2 it follows that, by varying ¢, the authors mea-
sured the lateral profile of the density wave. Assuming a Gaussian feature of their probing
beam, comparison of their data with our analysis, Fig. A4, shows close agreement when
we assume Gaussian lateral profiles for their density waves too, with ~ 2.8 ¢m full half
widths (the discharge tube having 5. cm and the exciting grid 3. cm diameter).
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0.5

Fig. Ad4:

The right sideband peak amplitude I,,,, as a function of the angle of irradiation 1.,
measured by scattering of A = 0.875 ¢m microwaves from ion acoustic waves

travelling axially in a cylindrical glow discharge, publ. 1973 by Tsukishima et al. /16/.
This is their fig.5, supplemented by a fitting curve of our model;

their angle « is related to our angle 1. by o = 9. — ¥)Bragg With ¥)Brag, the Bragg angle.
The data (left/right): f = 30/40 KHz; A = 2.25/1.80 cm; Bragg = 11°/14°.

Fitting with a thickness § = 1.2/1.6 amounts to a radial profile

of the density wave fronts that is gaussian in shape and L =~ 2.8 cn wide.

A4.
Equations (10) to (13) for one sheath are now replaced by

15(k) Z Bragga(k) (19a)

269 = Z (Breoss) + A ; (195)

here is

A A . .. 'l ;
LT = SE - (S2sin®(S8) F sin(tn)) - cos?(Mr) Pk, (200)

B k Ak Ao ag, 20 ;

"l mggﬁ( )) = (= ) 23m2(—2 - szn(z'gbk)) - cos?(2yx) -2 ik . (200)
(The reversed signs in the Bragg—phases in egs. (20) are due to the fact that both the sign
of the angle of incidence ¢ and the direction of K change.) In this tiresome procedure
of setting superscripts and subscripts do “Zay, 12v; and *274; of course have meanings
analogous to those in eq. (11):

2 L 2mwo

1,2 :
’ . th = .
zp - cos(12¢g) e cos(12k)

L2y = (Y2uy)
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The field amplitude of the incident beam (the ”carrier”) is written as
1,2 1, - 1,2
’ T=E’o-ezp(—-2—u (1—1 : s‘)) ;

with 12¢ = i:?" for the two layers respectively.

The amplitudes 2g and 2k now have the lengthy form:

N,
- 1 . 1
lg=+ ezp(—a(u2 + (u =" v)?)) - ag - szn(—ilg‘(uz — (u =" vg)?) +1 6_(|_k))
k=1
oL 1 1
-+ Z .e:r:;o(—a(u2 + (v +' vk)?)) - ak -.szln(—--z—lg‘(‘u,2 — (v +"ve)?) +1 Jﬁk)) -
k=1
28 1 1
29 =+ Z EIP(—E(MZ + (v =% ve)?)) - ag - sin(—izg(uz — (u -2 vk)z) +32 J_E_k))
k=1

N
~ 1 o1
e Z exp(—-z-(uz + (w42 v)?)) - ax - 8'”(‘§2s‘(u2 — (u +2 vg)?) +2 59)) \
k=1

N
n 1 1
lp =4 2 e:;,-g:)(—§(11.2 + (u -1 vk)z)) - ay cos(—-ilg(u2 — (v -1 vk)z) +1! 6_(:”)

k=1
N,
1 1
= z 5-”3?(—5(152 + (v 4+ ve)?)) - ax -cos(—Elg‘(uZ — (u+1 vg)?) +1 59‘)) ,
k=1
N,
n 1 1
2h =+ E e:r:p(—E(u.2 + (v =2 vk)?)) - ax - cc:s>'(~-§2g‘(u2 — (v =2 vg)?) +2 65_"))
k=1

N,
T ezp(— (u* + (v +7 vk)?)) - a - cos(—22¢(u? — (u+% ve)?) +2 %) .
k=1

(The profile shape ax has assumed to be the same at both intersections.)
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AS.

Two density waves of equal 2 and A propagate at different angles ¢ (and in opposite
directions) across an EM beam (the subscipts ”¢” being omitted). Two pairs of EM-field
sidebands are scattered from these two density waves. Finite lateral thickness ¢ a.ﬂ'ects the
result in two ways (Fig.Ab5):

a) If the scattering angle « is relatively large (FS) and if the two density waves are
locally separated, interference between the two pairs may then be neglected; the side-
bands within each pair are different in amplitude, the difference depending on the angle
of irradiance % on the respective wave (one wave/ ”volume effect”).

b) If the scattering angle « is very small (FFS), interference between the two pairs
must then be considered, the result depending on the phase difference between the two
density waves; in this case the sidebands within each of the two pairs are almost equal in
amplitude (unless ¥ largely exceeds the order of 1); but they differ between the two pairs
if the angles of irradiance %; and 1, are different. Thus even when the amplitudes of
both density waves are equal, the scattered field amplitudes are not (two waves/ ”counter-
propagation”).

Both effects cause an asymmetry of the resulting K-space profile: Fig.A5
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Fig. A5: The maxima of the two pairs of sidebands as functions of v, the angle of
irradiation, for scattering from two locally separated density waves of wavelength A
and of finite thickness ¥, with A = 1 ¢m, ¥ = 2 for each wave.
a) Probing wavelength A = 0.2 cm (— scattering angle a = 11.7°):

the amplitudes within each of the two pairs are different, the difference depending on
b) Probing wavelength A = .001 ¢cm (— scattering angle a = 0.06 °):

the amplitudes within each of the pairs are nearly equal

(the traces for the pair of sidebands coincide),

but they differ between both pairs if 1, and 19 are different.
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