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Abstract

We review random coeflicient (RC) models in linear regression and
propose a bias correction to the maximum likelihood (ML) estimator.
Asymptotic expansions of the ML equations are given when the bet-
ween individual variance is much larger or smaller than the variance
from within individual fluctuations. The standard model assumes all
but one covariate varies within each individual, (we denote the wi-
thin covariates by #). We consider random coefficient models where
some of the covariates do not vary in any single individual (we de-
note the between covariates by 7,). The regression coeflicients, ﬁk,
can only be estimated in the subspace X of X. Thus the number
of individuals necessary to estimate ﬁ and the covariance matrix A
of ﬁ increases significantly in the presence of more than one between
covariate. When the number of individuals is sufficient to estimate
E but not the entire matrix A, additional assumptions must be im-
posed on the structure of A. A simple reduced model is that the
between component of J is fixed and only the within component va-

ries randomly. This model fails because it is not invariant under linear




coordinate transformations and it can significantly overestimate the
variance of new observations. We propose a covariance structure for
A without these difficulties by first projecting the within covariates
onto the space perpendicular to the between covariates.

KEYWORDS:Random Coefficient Models, Special Covariance Struc-

tures, Mixed Models, Estimated Generalized Least Squares



. L. Introduction

We consider structured linear regressions of the form, y = ﬁ. -&, where the
data is divided into discrete subgroups which we term individuals. When
the data from a single individual contains variation in all covariate direc-
tions, an estimate for the regression coefficient vector can be constructed
purely from that individual. We denote the estimate arising from the kth
individual by }%. k-

In many physical, biological, and economic systems, the regression co-
efficients, ﬁk, vary from individual to individual. If the differences in the
parameter vectors, B.k, are due to many small differences in the individuals,
instead of one or two significant latent variables, a statistical treatment
is still possible. In these cases, the random coefficient (RC) model*~?,
introduced by Swamy, is applied. Swamy assumes that the parameter vec-

tors, ﬁk, are randomly distributed about a mean vector ﬁ-‘ More precisely,

Br = B + 6Pk, where E[65;] = 0, E[65:603L] = A, and E[63:65!] = 0, k # L.

The random coefficient matrix, A, is usually estimated from the residuals,

B.—8.

The random coefficient matrix, A, determines the error covariance ma-
trix of the individual observations, ¥ , as expressed by Eq. (3). The random
coefficient matrix, A, and the resulting covariance matrix X, serve three
main purposes. First, more efficient estimation of ﬁ is obtained using GLS
regression with ¥ specified by Eq. (4,6). Second, to test hypotheses for

additional variables, one must use £ ~! as the metric. Third, the RC matrix

enables one to estimate the variance of the mean of the 7, observations, In




the limit as the number of observations for a the kth individual tends to
infinity, this single individual variance reduces to fté% In general, hypo-
thesis testing requires the actual covariance structure of the errors to be
modeled to extremely high accuracy to be useful.

The original work of Swamy assumed that all the regression coefficients
can be determined in each individual. We consider situations where not
all the covariates can be varied in the individual ezxperiments. One such
problem is the extrapolation of performance parameters in controlled nu-

clear fusion experiments®~8,

A database consisting of a large number of
datapoints from eight fusion experiments has been collected. The energy
confinement time, a performance parameter, is assumed to be a log linear
function of certain bulk variables such as plasma current, magnetic field
and device size. However, several of these independent variables, namely
the device size and device shape, cannot be varied in the individual expe-
riments. We allow the variation of the covariates to be strongly correlated.

We call the covariates which are fixed for a given individual ”between
variables”, denoted by Z,. The covariates which vary in each individual are
called ”within variables”, denoted by &;. We consider the case where the
within regression parameters, ﬁl, can be reasonably accurately determined
for each individual. We assume that the variation in the within regression
coefficients can be treated with the Swamy random coefficient model.

We note that only ﬁo - T, and not the entire 5:, can be estimated for

a single individual. Thus substantially more individuals are necessary to

estimate 3 and A. Since o is not varied in a given individual, Ea can only



- be determined using an estimated general least squares (EGLS) estimate
on all individuals simultaneously. We concentrate on cases where the num-
ber of individuals is only slightly larger than m,, the number of regression
parameters which can only be determined by interindividual comparisons.
In this article, we propose a special covariance structure for the random
coefficient matriz A when only a submatriz, corresponding to the within
covariates, A, can accurately be determined using the standard RC wva-
riance estimators.

In predicting the variance of 7, we wish to choose the model of A which
minimizes the heteroscedasticity of A among models which fit the data
equally well. The within covariates can be reparametrised by an arbitrary
linear transformation of the form #| = #; + A%,. To minimise the known
heteroscedasticity, we choose A to enforce

TAZ = (F) — AT,) A (F1 — AT,) + o2 (1)

o

where A minimizes |5:'1 + 4 5:'g|2 averaged over the sample.

This covariance structure has the following desirable properties. First,
the variance structure is invariant under linear changes of variable. Second,
the predicted variance in the mean values of the distinct individuals is more
nearly homoscedastic, i.e. independent of the choice of individual. This
reduction in heteroscedasticity applies not only to the existing sample, but
also to future observations, provided that the new samples have the same
correlations in the & covariates as the existing data.

In section 2, we review the Swamy random coefficient model for the stan-
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dard case that all covariates are varied in all individuals. Two new results
are presented, a bias correction for the maximum likelihood (ML) estimator
and asymptotic expansions of the ML equations when A >> of X | X ;! or
A << g?X X' In section 3, we discuss the problems associated with
between covariates in the random coefficient model and a simple but flawed
solution is given. In section 4, we propose a particular RC structure, which
is defined by minimizing the average predicted heteroscedasticic variance,
(the first term of Eq. 1), with respect to the matrix A. We then discuss
the advantages of this covariance structure and of selecting the most ho-
moscedastic error structure. In appendix A, the invariance of our random
coefficient model under linear transformations is demonstrated.

The proposed error structure is degenerate with a nullspace of rank
m, — 1. When A >> ofX { X ', this leads to the inversion of illconditio-
ned matrices. Thus a biased estimation technique such as ridge regression
may be necessary. In appendix B, a number of standard results of ridge
regression are presented for the case of an arbitrary covariance matrix &

and perturbing ridge matrix P.

II. Random Coefficient Models: All Covariates varied in Each
Individual

We begin our review of Swamy’s random coefficient model'~® by esta-
blishing notation. Our dataset consists of N distinct individuals and the
kth individual has n; independent samples. We use the letters, & and [

to index individuals and the letters, : and j to index samples of a given



- individual. Thus the entire dataset can be identified with a double index,
{k,2}.

We assume the kth individual is a linear function of m covariates, 7.
The errors in the linear model for the kth individual are assumed to be

independent with a constant variance of. Thus the linear model for the

kth individual is

Uk =X iBr + €

where 9 and €} are (nx x 1) vectors and X j is the (n; x m) data matrix
€k is distributed E[e}, €] = 0}6ul,,. We denote the mean values of the
individuals as 7, and Z;. In practice, all covariates are usually centered
about § = 1/N ¥ 7,, and T = 1/N ¥ 7.

In the Swamy model, we assume that the regression coefficients for each

individual, fx have an apriori random distribution with E[ﬁk] = f and
E[(Bx — B)(Bi — B)'] = Abw (2)

where A is an m X m covariance matrix.
This random coefficient model implies that the covariance matrix for
the observation errors has a block structure. Furthermore, the error matrix

for the k-th block reduces to

Zr=o0;lr + XiAX} (3).

Given the covariance, A, the parameter vector ﬁ may be estimated using

the GLS estimator:




~

N
ﬁ=(«_’f__‘§_"£)“£‘§'lgz(Zéféf‘éf) YV XIE0 (@)
=1

Efficient GLS estimation requires an accurate and wellconditioned mo-

del for the the covariance structure of the errors. When A is unknown,
an estimate, é , of A can be used. In many estimated GLS schemes, the
estimates of E and A are iterated. To simplify these expressions we note

that Rao’s equality (Ref. [10], p. 33) generalizes to

(@’ L+XAX) ' =0 L -XEX|+XE(CE+A)EX" (5)

where ~ denotes the Moore-Penrose generalized inverse, E = (X *X )~ and

A, is the normalized projection of A onto the row space of X, A, =

P, AP,,.

A, N s =, -,
E (Z(Gi§k+ék)") S(REA+AY B =Y WE  (©)

k=1 =1 =1
where the weighting matrix, W, is defined as
N _1
W, = (LB + A7) (PR A) @,
=1
This formula is a slight generalization of Swamy’s! results by allowing the

individual covariance matrices X ;X ; to be singular.

Le
The variance in our estimate of the mean regression vector, § is given

by

2 = (Setes +gk)-)-l ®)

k=1



|
|

We refer the reader to several recent articles?~® for a thorough discussion
of the asymptotic sample properties of this estimator and the ﬁ estimator.

We now concentrate on estimating the random coefficient matrix A from
the residuals, E?' = Ei There are two competing methodologies for estimating
A. The first is to use a simple unbiased estimator introduced by Swamy
15, The second is to use the maximum likelihood (ML) estimator. The ML
estimator is asymptotically efficient, but can only be estimated numerically.
The ML estimator primarily differs from the Swamy’s unbiased estimator by
a matrix weighting. In this section, we also present several new estimators
which differ from the standard estimates by treating the uncertainty in ﬁ
explicitly. In particular, we give bias corrections for the ML estimator.

When the individual design matrices, X } X , are degenerate, the diffe-
ring number of degrees of freedom in the various parameter directions must

be accounted for 611

. To avoid this difficult problem, we now assume each
X . X ¢ is nondegenerate. All of the methods which we discuss below have
the difficulty that the estimate, _A_ , can have negative eigenvalues. The
standard solution to this problem is to set the negative eigenvalues to zero
using the singular value decomposition. This procedure results in a positive
bias in é :

Swamy’s unbiased estimator can be summarised as follows. Swamy uses
the ordinary least squares (OLS) estimate for the variance of [A;’. x- He esti-

mates the RC variance matrix, A, as the difference between the empirical

variance of the ¢ and the within individual variance. Thus Swamy’s esti-



mator for the within individual variance is

Q>

- § d
Yy P, Yk

2 = Tk Tk (9).
ne—m

P, i is the projection perpendicular to the column space of X ¢, Py =
I — Xk E X}

The empirical covariance of the regression coefficients is

Ei?

‘mlv
\-—/

B -

IIUJ
“Cblv

(10)

where ﬁ is the simple mean of the é.k, not the weighted mean of Eq. 6
which corresponds to the GLS estimate of E A
Swamy’s estimated dispersion matrix, é , is the difference between the
empirical covariance matrix, S; and the theoretically predicted value, cal-
culated under the assumption of identical regression coefficients:
A= s-Llyaxixa (11)
= N=—1=" . N& =g
As an alternative, we now present a new unbiased estimator of A based

on the GLS estimator of ﬁ From the representation of E as the weighted

sum of the individual f?'k Eq. (6), we calculate the variance of 6§ o
E((B.- ). - B)) = &+ IEx-2) (12)

From Eq. (12), an alternative estimator for _é follows from

N al N N
kZ_‘;(ﬂk BB - By =N (A &)+ kX_j GHXEX ) (13)

10



Using Eq. (13), é is iteratively calculated using the previous value of

A

A in @. The estimations of 3, and A are performed iteratively as well.
We believe this new estimator will be more efficient since we use a more
efficient estimate of #. We note that this modification is a 1/N effect.

The ML functional for the RC model® reduces to

N S i B @
> tnlowl-+in [(REx + &) |+(u—me)st /ot + (B, — B (7REs + A (B - £)
k=1
(14).
where the constant term has been ignored. Following [3], minimizing

the ML functional with respect to A yields:

S ((02Ee+ A (i - BB~ BY(@HEL + 80 ~ (B4 + A)) = 0
= (15).

We note that the ML estimates for o7 are considerably more complicated
than the OLS estimate of Eq. 9. Hybrid estimation schemes, which utilise
Egs. 9 and 15, are of considerable practicle interest.

Eq. 15 can reexpressed in terms of the matrix weighting of Eq. 6:

N . & %
S W, (G- B\G—F) - GIEx+&) Wi=0 (1)
k=1

Thus the ML estimate of A is nearly a variance weighted modification

of Swamy’s estimate. Our bias corrected ML estimate satisfies

N aition olad,, %
> W, ((ﬂk—ﬁ)(ﬁk—E)t—(aﬁﬂ__k-l-é—g)) W:=0 _ (17).
k=1

11



We note that if the between individual variation is much larger than the
within individual variance we can expand Eq. 15 in powers of aﬁé_lé Fe
To second order, the expansion yields the Swamy estimator of Eq. 11 with
N-1 replaced by N. In the opposite limit, when A << o E , the expansion

yields the weighted equation

. e
2N (=P~ B = 1R+ D) (GIENT =0 (19)

12



ITI. Extensions of Random Coefficient Models to Include Bet-
ween Covariates

We now consider the case where there are a number of between covaria-
tes, Tp, i.e. variables which are fixed in each individual. We partition the
m vector of covariates, &, into (7%, &%)’ where % is a mg vector of between
covariates and Z; is a m; vector of within covariates.

When there is only one between covariate, such as the intercept, its value
is uniquely determined in each individual and the standard random coeffi-
cient model may be applied. If there is more than one between covariate,
the values of the between regression coefficients, ﬁg are indeterminable wi-
thin a given individual. In this case, only 3, and fFo- To, can be determined
with a single individual. We note that the GLS estimator of i, obtained

with the Moore-Penrose inverse, simplifies to

2 CkTo
2,
B

where ¢, = (7}, — ﬁl’k - T1p)/ |Tok|?

Since each individual provides an estimate of a different projection of
ﬁo, the entire ﬁg can be estimated by combining the various individual
estimates of the projections of EU. We assume that the various individual
T,, span the space X, and that as the number of individuals increases,
every direction in X, space has a finite density. However, the distribution
of Z,, should not be considered homogenous. In many problems of practicle
interest, the distribution of 7, values is notably anisotropic with one or

two parameter directions accounting for most of the variation. In addition,

13



the between individual variation in the mean values of Z; may be strongly
correlated with Z,. In analyzing different fusion experiments, the author®~3
found that many covariates scaled with device size.

Eg may be estimated by a matrix weighting of the estimates of the
various projections from each individual using GLS regression on all indi-
viduals simultaneously, provided that the random coefficient matriz A, 18
known. The problem which we address is the determination/modeling of
the dispersion matriz, A. The submatrix of the covariance of ,[71, A, can be
estimated using Eqs. 10-17 with the within variables only. To complete the
specification of A, the mozmg dispersion matriz of the between covariates,
él and the mozm, cross covariance submatriz éo,l must be specified.

We now discuss the number of different individuals necessary to apply
the RC model. In the standard case of Sec. II, we estimate the m para-
meters of ﬁ plus the ﬂ";—"'ll free parameters of A. Thus the standard rule
of statistics is that the number of determinable components of Ek, mN,
should be at least several times larger than m + ﬂ’%ﬂ When A + 02E
is illconditioned, substantially more individuals may be necessary.

In our degenerate case when more than one covariate is fixed in each
individual, we have only one projection, Eo - &y, for each individual. Thus

a total of (m; + 1)N determinable components of ﬁk are available to esti-

mate mg + my + (m°+m1)(?°+m‘+u free parameters. The actual situation is
worse since the N projections, 5’0 - Zo, , need to be used to estimate the m,
parameters of B:, plus the ﬂ'—"z"il parameters of the covariance matrix,

A , of ﬁo, plus the mom; free parameters of the cross covariance of B; with

—0

14



G, éﬂ,l' We assume that the number of individuals, N, is large enough to
estimate El and _é__l, ie. Nmy >>mp + 1'—‘11“2—""—11

When the number of individuals, N, is sufficiently large, N >> mqo +
Tﬂ-’%‘-’ﬂi—moml, Ap and Ap; may be completely estimated from the various
projections ﬁo - Tp, using a modified version of Eqs. 11-17. Naturally all
matrices and vectors in eqs. 11-17 must be projected on the column space
of X . When Eq. 13 or Eq. 17 is used to correct for the uncertainty
in the estimate of ,(A;, our estimates of A remain unbiased. In contrast,
the simple Swamy estimator of Eq.11 generalises to several linear algebraic
equations to account for the varying number of degrees of freedom®. When
the distribution of 7 is anisotropic in X space or é + o} E is illconditioned,
substantially more individuals are necessary.

We now consider cases where the number of individuals is only slightly
larger than m,, the number of regression parameters which can only be
determined by interindividual comparisons. Thus determining A, and éﬂ,l
selfconsistently is illconditioned. Instead we must prescribe a simple func-

tional form for and A, | and estimate only E and A, .

B

For simplicity, we assume that the between individual covariates include
an overall constant and that the overall constant is indexed as the first 7,
component. As an introduction, we begin with the simple model where
4 = a%6;, and ém = 0. 026,,; corresponds to a random variance of the
overall constant. In this mixed model, the absolute constant is random
with variance o2, the parametric dependencies of ﬁo are fixed and f is

distributed about 3, with covariance matrix A;. Thus the total RC matrix

15




is

o6 0
e NG (19)
0 A

=1

An important difficulty with this mixed model is that the parameter
and error estimates depend on the choice of within variables. The within
plasma variables, ¥;, can be reparametrised using Zo, T1,4 = &1 + Ao
where A is an arbitrary m;zmo matrix. From a purely statistical point of
view, it is impossible to distinguish whether & or 1,4 is being varied in
a single individual. The models for the errors are not equivalent since we
have imposed an arbitrary requirement that the submatrices, Aj and A, |
of the random coefficient matrix A be zero. Thus transforming the within
individual variables to ¥ 4 changes the model.

In fact, for any linear transformation, A, we can specify a completion

of the dispersion matrix by

02,0 tADA A,
AA A

=1

[l

A, =

(20).

We note that féﬁ_% reduces to o2 + (5-,"'1 + é%g)‘él(?c—"'l + é_i,) -

has rank m; + 1 and the nullspace is spanned by the last m, — 1 columns
of(Lmyy —A")"-

The calculation of A involves only the variation of y;; and Z;jx about
7, and Ty. In forecasting the performance of new individuals, the quantity

Var(y, — [ffk) is of primary interest. When we use the RC model to infer

16



- the variance of 7, we find:

Var(gy, — A7k) = TH(A + 02E ) — )Tk (21).

Unfortunately, the actual empirical distribution of (7, — Efk) may differ
considerably from the predicted values when the model is incorrectly spe-
cified. In particular, if 5[?0‘1: -Zox and 6ﬁl'k . ':Ic“_'l'k are strongly anticorrelated,
setting the predicted value of Eﬁg,k to zero results in an overly pessimistic
predicted value of Var(y, — %k) In applying this covariance structure, we
have imposed an artificially strong heteroscedasticity of the error in fitting
the mean values of the individuals as given by Eq. (21). Since we are unable
to determine A, ,, we have no basis for assuming a parametric dependence

on Var(y, — BZx). Thus statistical phenomenology instructs us to choose

a homoscedastic or nearly homoscedastic model for the errors.

IV. An Invariant Random Coeflicient Model

We now present an alternative dispersion matrix A which is a) invariant
under linear changes of variable, b) significantly more homoscedastic in the
predicted uncertainty of the mean values of the individuals. We restrict
our attention to linear RC models of the form A, given by Eq.20. Both
o, and A are to be determined by fitting the data. We assume that the
data is insufficient to determine the m;zm, matrix A. Thus we specify A

by minimizing the weighted heteroscedasticity of the predicted values, Ty,

17




given A .

N
ming Y (T — é:%o,k)t_é._l(%l,k —ATo4) (22)
k=1

where )\, are unspecified weights. We denote the solution of this minimi-
sation problem by L. Since we focus on the mean values of the individuals,
the relevant data matrix is X = (X ,,X,), which X is a N x m matrix
with rows 7. We define the Nz N diagonal matrix A to have the weights
Ar as its diagonal elements.

The weighted minimisation of Eq. (22) corresponds to m; separate
weighted LS regression of each of the z; covariates versus the between

covariates. In matrix notation, the solution is

L'=~(XAXo0) " XoAX, (23)

Thus for R.C. models of the form given by Eq. 20, the solution, A =
L, is the most homoscedastic in the sense that A = L minimizes the
parametric variance, averaged over all individuals as expressed by Eq. 22.
We note that the solution matrix L is independent of A, and corresponds
to a weighted linear regression of 7, by To.

Since the reparametrisation matrix, A = L, is specified during model
selection phase and not the statistical testing phase, the choice of weights,
A, is essentially arbitrary. The weights Ay may be chosen to correspond
to some subjective importance of the datapoints or to the uncertainty in

~

the predicted values, Var(y, — E . T ). If the measurement error in the

18



- T variables is significant, the relative measurement errors can be used for
Az'. A final method to choose the weights is discussed in the next section.
If no convincing reason for nonuniform weights exists, Ay = 1 is usually
preferred.

As demonstrated in appendix A, the estimated uncertainty for a new
observation is invariant under linear coordinate transformations: 4 =
T+ AT .

To estimate the RC matrix parameters, A, and ,, we can either use
a simple unbiased Swamy estimator or an asymptotically efficient ML esti-
mator. For the Swamy estimator, we apply Eq. 11 to the within individual
regression parameters to estimate A . o, can then be estimate by summing

Eq. 21 over individuals:

No} = f:('gk - E%k)z — iv: T1,LkA, T1,Lk — i fi(aiék - Q)7 (24).
k=1 k=1 k=1
where 21 = @) + L7o . The dependence of £ on o, can be easily
included by solving Egs. 6, 24 and 11 or 13 iteratively.
To apply the maximum likelihood estimates of Sec. II, we first make
the linear change of variables to &y, = 71 + L&, . The m? + 1 equations
for A, and o, are given by the (1,1) and (mo + k,m,+3), 1 < j,bk <my

components of Eq. 15. The estimates of ﬁ and A and o, are again iterated.

V. Discussion

The choice of covariance structure to model correlated errors is an im-

19




portant and usually neglected area of statistics. Statistics research on co-
variance structures concentrates on a) asymptotic distributions of the esti-
mators of ﬁ, A, and y(&) and b) model testing for acceptance of simpler
imbedded covariance structures.

We have focused on the case where the residual fit errors probably pos-
sess many more parametric dependencies than can be modeled with the gi-
ven dataset. A pessimist would remark that this is the standard situation.
To supplement our lack of data, we have appealed to statistical phenomeno-
logy. The general principle which we have used is ”Given a class of models
which equally well describe the data, choose the most homoscedastic error
structure.”

Homoscedascity is especially important when the covariates, &, are cor-
related. In this case, strongly heteroscedastic models can seriously misre-
present the data. This can occur when the accepted model underestimates
the variance of § — E - £ by neglecting the anticorrelations of 6BoTo with
631%1. It can also occur when the model assumes large variances of ﬁ in
the principal component directions of X ‘X which are poorly determined.

For a given dataset with between covariates, other models for the error
correlation matrix may be more appropriate than the RC model described
in Sec. IV. Our model suffers from the disadvantage that it is not uniformly
more homoscedastic than other choices of the matrix A. In determining A
by minimising Eq. 22, we are more homoscedastic on average than other
RC models in the same class. However the transformation to ¥ amplifies

the predicted heteroscedastic variance when & ;A 7] | > F1A 7]. We can

20



determine the direction of ¥ which has the largest predicted value of the
heteroscedastic variance for a given metric, G on X. Mathematically we
maximize Z} } A &} 1, subject to the constraint: ]G #] = 1. The solution is
the eigenvector corresponding to the largest eigenvalue of A —0,6;; — AG.

The key step in reducing the average predicted heteroscedasticity has
been the linear transformation &; « & + L #,. This orthogonalises 7, and
Z; on average and thereby reduces problems associated with interdependent
covariates. To account for the between individual variation in 51, we are
forced to use a RC structure containing A as a submatrix. Within the class
of RC matrices which include A, and are represented in 71, coordinates,
4, is the simplest. As the dataset grows, the order of the model for the
randomness should be increased until the full RC matrix is reached. The
choice of intermediate models will usually depends greatly on the specific
nature of the dataset.

In reality, many datasets contain covariates which vary little within an
individual. These covariates are almost but not quite between covariates.
Since it is unstable to treat these covariates as within variables, one usually
forces these covariates to be between covariates. The backroom procedure
is to set the values of these covariates to their mean value, 7). and then to
correct y; for the variation Z; — Ty. Naturally, the correction depends on
E and must therefore be performed iteratively.

Since the uncertainty in forecasting Var(y — ,2_3.5:') is often of primary
interest, validation of Eq. 21 is important. The constant variance, o2, is

to determine to insure Eq. 21 is true on average within the database. Ho-
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wever the parametric dependencies Var(y — ﬁr'c') may be incorrect. Thus
the residuals, (7, — ,f%’k)ﬂ — f‘;(é +02E . — )4, should be examined gra-
phically. The weights, A\x, can sometimes be used to reduce the parametric
dependencies of the residuals. In otherwords, our covariance structure is

really A, (A) and A may be used to achieve a better fit.
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Appendix A: Proof of Invariance of A, under Linear Transforma-
tions

We consider a general linear transformation of the form:

— — —
$0=gfg, Ty =£$1+_A_fo

where C' is a nonsingular m,zm, matrix, B is a nonsingular m;zm, matrix,
and C is a general miam, matrix.

The transformation is rewritten in terms of the data matrices as

P
b
Il
b
(=]
2
Pt
Il
[[>=

’1£t+£0ét-

The regression coefficients transform to

-

By = gt'—lﬁl ) = Qt'_lﬁo + é*ét"lﬁl

-
O‘-l'

and the dispersion, A, transforms to é‘; = B4l AB e

The crucial regression matrix, L, transforms to

LY = - (CXIAXoC) ™ CXUA (X1B!+XoA) =C (LB - 4Y).

Since 7'} + L ¥y transforms to B (:F:'l +L :E'g), the variance,

variant.

Appendix B: Weighted Ridge Regression

23




The generalized least squares estimator yields the estimate of E with
the minimum variance within the class of linear unbiased estimators. Ridge

13 is a widely used technique to further reduce the variance in

regression
the estimate of 4 at the cost of introducing bias.

In this appendix, we present a number of the standard results of Hoerl
and Kennard for the general case of an arbitrary covariance matrix ¥ and
ridge matrix P. We are most interested in the case where ¥ is generated
by a random coefficient model and P is the projection perpendicular to
the space spanned by the overall constant i.e. we do not contract the mean
value of our estimates, ;.

We let M denote the generalized design matrix, X‘'E ~' X ,and U denote
X'E Y. We denote the generalized ridge inverse by Ry = (X'Z'X +
6P ).

The generalized least square estimate is

A
—

B, = (X'E X ) X BT = foi=tRp=oU.

The generalised ridge estimator is defined as ﬁg = RpU and is related
to the least squares estimator by Ea = Zgﬁ where Zy = RgM =1 — 6R,P.
To calculate the total mean squared error, we separate the error into a

its random and bias components:

—ﬁ=zeﬁ—ﬁ=ze(§" 3) + (Zof8 — B).

Ql>

The error in the generalised ridge estimator satisfies

E(B, - B) = E((B - B)'2i20(B — B)) + (2o — B)?
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= Trace(M "' Z}Z;) + +6*(B' P R2P )
= Trace(Ry — ORyRoP) + +6*(3'P R2P ).

The first term is the variance of the estimate and the second term is the
bias. Unfortunately, this estimate requires the knowledge of the true value
of ﬁ . We may replace ﬁ by its ridge estimate, ﬁg.

Similarly, the variance of the biased estimate fy is

E((Bo — B)(Bs ~ BY) = ReM.Fo + 6*(Ro2 FF'E Ry).
Finally the generalised residual sum of squares is
SSP=(Y - X A2~ (Y — X o)
=Y'S7'Y — UY(Rs+ 6RePRy)U.

For the random coefficient error structure, the first term satisfies
~ -1
Y=Y = YV (ol + XiAXE) T Vi
k

Y P Y = ~ —
=3 (—“—-l—"——" + BB, + A)‘lm) .
k

o
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