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Abstract

A general statistical approach to the parameterisation and analysis of tokamak profiles
is presented. The modelling of the profile dependence on both the radius and the
plasma parameters is discussed, and pertinent, classical as well as robust, methods of
estimation are reviewed. Special attention is given to statistical tests for discriminating
between the various models, and to the construction of confidence intervals for the
parameterised profiles and the associated global quantities. The statistical approach
is shown to provide a rigorous approach to the empirical testing of plasma profile

invariance.
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1. SUMMARY AND INTRODUCTION

Since the advent of active beam methods, such as laser induced Thomson scattering to
determine the electron density and temperature and neutral beam CX spectroscopy to
determine the ion temperature, direct measurements of relevant plasma parameters at
discrete radial positions, without the need of Abel inversion, have become available, and
plasma physicists have been interested in ‘smoothing’ these profiles in order to use them
in interpretation codes or to compare them with theoretical predictions. As the density
and temperature profiles contain vital information on the confinement properties of the
plasma, accurate empirical representation of the profile dependence on the basic plasma
parameters is an important intermediate step in the understanding and controlling of
confinement. As individual profile measurements exhibit often considerable scatter,
and basic transport properties depend on the radial derivatives of these profiles, it is
of importance to express clearly the statistical accuracy that is obtained from a series
of profile measurements. Recently, some work has been performed on such a statistical
analysis of plasma profiles [1], (2], and local transport coefficients [3], [4]. In this article,
we extend this work by giving a thorough overview and discussion of the statistical

techniques to analyse tokamak profiles and their associated global quantities.

In section 2, we describe the analysis of a single sample of n unsmoothed profiles, for
a fixed value of the plasma variables I, By, etc., by standard multivariate statistical
analysis. In this approach, each empirical profile, consisting of temperature or density

measurements at p different radial locations, is considered as one observation in IRP.

In section 3, we consider various continuous representations for the true underlying

profile, and we discuss a number of relevant error structures.

In section 4, the influence of plasma variables, such as Iy, By, etc. on the profiles is

modelled, and a mathematical definition of profile invariance is given.

In section 5, various methods of estimating the free parameters in the models of

sections 3 and 4 are reviewed and discussed.

In section 6, several statistical tests for discriminating between different concrete
profile representations are given, paying attention the the mean value structure as well

as the error structure.

In section 7, confidence and prediction bands for the underlying profiles are con-
structed, as well as confidence intervals for the derived volume-averaged quantities.

To indicate the context of our investigation, we start to give an idealised view of
tokamak operation as an input-output system. For each datapoint, a set of bulk plasma




parameters has been selected, on different time scales, by the Tokamak design group, by

the committee setting the campaign period goals, and finally by the experiment leader.

All these parameters we call input variables, and denote them by z = (z1,...,Zuw)-
For Ohmic discharges, the input variables are: the toroidal magnetic field By, the safety
factor gy, the total current I, (for a fixed geometry, any two of these three variables
determine the third one, in fact, using the units T, MA and m, g;y; = 5%%), and
the line-averaged density 7; the minor horizontal radius a, the minor vertical radius
b, the major radius R, and the vacuum field magnetic ripple; the plasma cross-section
shape, typically characterised by discrete variables, such as the configuration type (lim-
iter, single null divertor, double null divertor), well as by continuous variables such
as ellipticity, triangularity, and the distance between the separatrix and the wall; the
ion species mixture, and the wall conditioning (carbonisation, boronisation, gettering,
etc.). For neutral beam heating, additional variables must be included such as the input
power, angle of injection, energy per injected particle, species of injected particle. Radio
frequency heating requires the specification of input power, the location and shielding
of the antenna and the spectra of the injected waves. If pellet injection is used to refuel
the plasma, additional variables are the size, frequency, angle of injection, species and

velocity of the pellet.

The output variables that we will be principally interested in are the temperature and
density (and hence pressure) profiles, as well as the derived local transport coefficients.
Other output variables are the profiles of current, impurity density and radiation, the
loop voltage, or, equivalently, bulk resistance, the toroidal rotation, the (poloidal or
toroidal) plasma beta, the energy confinement time, the Shafranov shift as well as other
moments of the magnetic field, and the characteristics of ELM activity (frequency,

amplitude) and sawteeth (frequency, amplitude, and inversion radius).

2. DISCRETE PROFILE REPRESENTATIONS

In this and the next section, we consider data at single point in plasma parameter
space, consisting of n separate observations of a plasma profile, such as temperature,
at p distinct radial points, TJ-(r;) with 1 <j<nand1<1[!<p. Let the variable Y
denote the logarithm of the profile variable (density or temperature). The n observed

profiles can be represented by the basic data matrix:




Y1 (!"1) e Yl(rp)
: "o : (1)
Ya(r1) ... Ya(rp)

All variables depend on time. We will restrict, however, our attention to steady
state plasmas and assume that the final state is independent of the past history of the
discharge. We further note that in a stationary phase all plasma profiles evolve more or
less periodically, the periodicity being dictated by the sawtooth crashes. Our data will

consist of n distinct time points.

Each profile measurement has essentially three sources of deviations from the ‘ideal
profile’: 1) deterministic (systematic) errors, 2) random errors due to measurement
noise, 3) fluctuations due to variations in the plasma. Systematic errors arise either
from overlooking some physical effect, or from idealisation of the measuring process.
For Thomson scattering experiments, these assumptions typically include perfectly col-
limated measurement devices, physical localization of the scattering, neglect of other
nonresonant scattering mechanisms, and the assumption that the electron velocity dis-
tribution is Maxwellian. Often the size of such errors can be roughly estimated, but it
is usually very difficult to determine them more precisely, so that the resulting bias can
only rarely be corrected for. (In fact, the ‘easier’ types of systematic errors are already
accounted for in the standard evaluation of the diagnostic.) The random errors due to

measurement noise may often be estimated by an error-propagation analysis.

A special difficulty is our inability to characterise the condition of the wall. Aside
from discrete categories such as gettered/ungettered and wall carbonisation, it is clear
that the immediate past history of the device influences impurity recycling from the
wall. Only to a rough approximation one may assume that the influence of the wall on

the plasma can be parameterised by a single variable such as Z, ff

In Ohmic discharges, the primary source of the intrinsic plasma variation is the m=1
sawtooth activity. The perturbations about the mean profile from sawteeth are highly
correlated in space, since the profiles are flatter immediately after a sawtooth crash.
This spatial correlation of the fluctuations should be taken into account in a careful

profile analysis.

The profile fluctuations are generally temporally as well as radially correlated. The
profiles of the ASDEX Thomson scattering experiments are sampled with a fixed 60
Hz frequency. We assume that this frequency is incommensurable with the sawtooth

period, and hence that the sampling times are quasi-randomly distributed with respect



to the sawtooth phase —t—_—;‘ﬁm This assumption of quasi-randomness with respect to

the sawtooth phase allows us to neglect, for simplicity, the temporal correlation.

The spatial correlation is conveniently described by viewing the jth profile measure-
ment Y ; = (Y;(r1) ... Y;(rp)) as one (random) vector of observations with mean y and
covariance matrix £. Assuming also normality, which can sometimes, if necessary, be

relaxed somewhat, we write:
K,‘~Np(g,2__), §la=slg I, (2)

Note that the systematic errors are not described by the covariance matrix ¥ . One can

formally decompose
L =Zoise t+ Eplasmavar. (3)

The number of free parameters is p for the x and p(p+1)/2 for . If the total number
of observations, np is sufficiently large, (at least several times the number of free param-
eters) these parameters may be estimated by using the standard maximum likelihood

estimators of 4 and X :

Y; f=is=1y(,-a);-a) (1)

The matrix S is sometimes called ‘the matrix of residual sums of squares and sums of
cross products’, which we shall abbreviate by ‘the residual SSCP matrix’. I pismavar.
can only be estimated if one has an independent estimate of X, s, from the error-
propagation analysis. A reasonable assumption for the ASDEX Thomson scattering
experiment is that X, ;.. is diagonal.

A special feature of the ASDEX YAG diagnostic is that 10 of the 16 channels are lo-
cated symmetrically with respect to the horizontal midplane. This affords the following
possibility to test for up-down asymmetry for circular plasmas with z=0. Radial mea-
surement positions that have no symmetrical counterpart are dropped from the analysis.
The remaining spatial locations are divided into two groups, corresponding to the up-
per and lower part of the plasma. The temperature measurement vector is partitioned
accordingly: (u t = (w1, 2)!), and the null-hypothesis to be tested is u1 = po. If the
profiles are up-down symmetric, then 4; — 4, has a multivariate normal distribution,
whose covariance matrix is easily derived from the partitioned covariance matrix of Y .

Inserting the usual estimate for this covariance matrix, we find that

T=(f,-0,)" (811 —-S12—S21+82) (@, —4,) (5)




is distributed as p/(m — p) times the Fpm—p distribution. (Here, S 1; stands for the
residual SSCP matrix correspondingto Y 1, S 12 for the residual SSCP matrix ‘between’
Y 1 and Y o, and so forth.)

Physically one expects that the electron temperature is constant on flux surfaces.
Hence, for symmetric plasma discharges, the true, underlying radial profile should be
up-down symmetric and an observed asymmetry should be due to an asymmetry in
the measuring process. Supposing that the two types of asymmetry (‘physical’, and
‘measurement error’) are additive, the physical asymmetry of the density profile may
be estimated under the assumption that the density and the temperature profile exhibit

the same total amount of asymmetry from measurement error.

3. CONTINUOUS PROFILE REPRESENTATIONS

To obtain a physically meaningful continuous profile representation, a preliminary map-
ping of the physical measurement points ri to the corresponding flux radii, r; must be
performed. For low beta, large aspect-ratio devices, a simple calculation based on the
Shafranov shift is sufficient. For smaller aspect ratios, a nonlinear correction based on
function parameterisation can be used (5], [6]. We will not consider such corrections

here, nor the possible errors associated with the flux-surface mapping.

For a complete specification of a statistical model for plasma profiles, we must specify
both its mean-value structure (i.e., give a description of how the mean values of the
profiles depend on the input variables) and its covariance structure (i.e., present a

stochastic model for the errors in the observations).
3.1 Mean value structures

For every discrete set of profile measurements, {T'(r;), | = 1,...,p}, we seek a con-
tinuous representation of the profile. This has several advantages. The profile may be
described by a relatively small number of coefficients. Furthermore, it facilitates com-
parison between profiles that are measured at different sets of radial points. Finally,

smoothness is imposed in the belief that the profiles are in diffusive equilibrium.

Various transformations of the plasma profile may be considered. A natural trans-
formation is to take logarithms of the temperature, density and pressure profiles. Min-

imising the error in the fit on logarithmic scale corresponds to minimising the relative



error as opposed to the absolute error. If the relative error is more nearly constant
over the database then the absolute error, then on logarithmic scale, in regressing the
response variable (temperature, etc.) against the input variables, one can apply simple
unweighted regression. (Often, however, the absolute error in the experimental mea-
surements increases whereas the relative error decreases with increasing value of the
response variable. In that case, a weighted regression is needed on either scale.) A
logarithmic fit has the advantage that no restriction on the regression parameters is
needed to ensure that the fitted temperature and density profiles are always positive.
Furthermore, after logarithmic transformation, the concept of profile consistency can be
defined as additivity of the radial dependence and the plasma-parameter dependence of
the profiles. (The notion of ‘additivity’ or ‘non-interaction’ is a well-known and heavily
investigated concept in statistics.) Some additional conveniences in using a logarithmic
scale come into effect when a power-law type scaling can be postulated. Firstly, a power-
law scaling is transformed into a linear regression model. This facilitates the estimation
procedure. Furthermore, taking logarithms makes the scaling law dimensionless: The
usual transition from dimensional variables to dimensionless variables (see e.g. [7]), by
taking products and quotients, corresponds to a linear transformation on logarithmic
scale, possibly with reduction of the dimensionality by linear constraints. Finally, since
on logarithmic scale the pressure is just the sum of the density and the temperature,
one can easily obtain the full regression information by multivariate regression of only

two of these three variables against the plasma parameters.

We restrict our attention to models with parametric dependencies of the form:

pl

p(r) = 3_ apfa(r), (6)
h=1
where f1(r),..., fp(r) are basis functions. For p radial measurement positions ry...rp,
we can write

B = .éradg’ (7)

where p = (u(r1),... i(rp))t, a = (ag,... ,apn)t is a vector of regression coefficients,
and
Fi(r1)" 20 fp(n1)
X : .. -

Lyad =

: gt i (8)
filrp) o-o - Jor(rp)
is the radial design matrix. We now consider three possible sets of basis functions for

continuous representations of the plasma profiles.




3.1.1 Polynomials

Clearly polynomials constitute a simple representation. Assuming symmetry and ana-
lyticity of the plasma profiles, we expand in even polynomials in r. Expanding the

logarithm of the temperature, the representation is

T(r) = Toexp( 2 anrzn) (9)

The basis functions (1,72,r%,7%,...) have the roperty that the higher order polynomials
P

are essentially localised near the outer edge of the plasma. Only a few terms are fitted in
practice. It should be noted that these simple basis functions are highly non-orthogonal
and hence their estimated coefficients are rather ill-determined and have relatively large
standard deviations. This need not be a strong inconvenience if the emphasis is on
predicting the profiles, and one is not especially interested in the regression coefficients
themselves. The estimated coefficients of orthogonal polynomials are close to being
statistically independent, at least if the radial positions are not too unwisely chosen,
and the measurement errors are independent and radially uniform.

3.1.2 Perturbation Ezpansion

We write T'(r) as the product of a gaussian and a polynomial expansion. Allowing for
asymmetry,

T(r) = Toexp(—dor?) (1 + i bnr“) ; (10)
n=1

Such a representation may work conveniently whenever the plasma profiles differ little
from gaussians, in which case one hopes for a rapid convergence. Another possibility is
to express the expansion by Hermite polynomials.

n=1

Tir)=T, exp(—corz) (1 + i aan’co(r)) X (11)

where Hy, ¢, = ecor’ (—d/dr)e—cor”,

For each ¢y we have a complete set of basis functions. The choice of co affects
how many terms are needed. A convenient procedure is to estimate cg by fitting a
gaussian function to the temperature profile, and subsequently estimate the polynomial
coefficients ay,ag,.... for fixed ¢y. Both steps can be carried out by applying linear

regression. For any fixed number of coefficients aj,...,am, an optimal value of ¢g can be




determined by minimising the residual sum of squares with respect to ¢g. The correlation
between the estimated polynomial coefficients will be reduced if the polynomials are
orthogonalised on the finite interval [0,1], i.e when generalised Hermite polynomials are
used. (Whether this orthogonalisation will be worth the effort in practice, is another

question.)

For any fixed value of ¢q, the coefficients a1, a3, ... are linearly related to the moments
Mp = / r"T(r)dr, n=i2, . L (12)

of the temperature distribution, see Appendix. The profiles are symmetric if the odd
coefficients of the Hermite expansion, or equivalently, the odd temperature moments are
zero. As the number of radial measurement positions is limited, only the lower moments
can be tested. A convenient way is to test, e.g., a; = a3 = a5 = 0, directly from the
asymptotic normal distribution of the fitted regression coefficients.

The kurtosis, Ky, is the normalised fourth central radial moment of the plasma profile.
For a symmetric profile (for which m; = 0), it is defined [8] as

1y = A1 T

(mg/mq)?’ (13

The kurtosis, which is 3 for a Gaussian profile, is a sensible measure of the the ‘broad-

ness’ of a profile with respect to to a Gaussian. Expressed in the Hermitian regression

coefficients, one has K, — &:_4“322_ The kurtosis can be used in scaling studies of
4::0
density profile effects on energy confinement.

3.1.8 Splines

The physical domain is subdivided into a number of regions and low order polynomials
are used to represent the the profile, i.e. the logarithm of the temperature, density or

pressure, in each region. As a general spline representation, we consider

( $o(r) for 0 < r < r; (Inner Region)
do(r) + ¢1(r) for r; <r < ry (‘1-2’ Region)
u(r) = o do(r) + d1(r) + 2(r) for ro <r < rz (‘2-3’ Region) (14)

(do(r) + &1(r) + d2(r) +...¢)(r) for r; <r <1 (Outer Region),

where ¢o(r) = p(0) + (~1)aor + bor? + cor® and ¢;(r) = bj(r —r;)% + ¢j(r — r;)® for
bEds2yeirals




The representation is understood to be on the interval [0, 1], after the negative radial
positions have been reflected. The linear term on ¢g(r) is intended to describe a possible,
simple asymmetry. Hence s = 0 for, say, the positive radial positions and s = +1 for
the negative radial positions. Clearly, ij represents the jump of the second derivative,
and 6¢; the jump of the third derivative at the 7t knot. If the spline is supposed
to be twice continuously differentiable, then the coefficients b; are constrained to be
zero. We will call this a ‘second order spline’. For a so-called Hermitian spline, the
coefficients b; are arbitrary. The order of continuity imposed at a knot position will be
called the ‘continuity index’ of the knot, and the regions between the knots (‘0-1°, ‘1-2’,
etc.) will be called the ‘knot regions’. Note that the spline coefficients 1(0), ag, d;,¢;
for 7 = 1,2,...,l occur as linear parameters in this representation, which permits a
simple direct estimation. The spline model is intended to represent only the global
radial profile behaviour. Hence, the discrepancies between the observed and predicted
smooth profile are to be attributed to model misspecification, experimental error and
plasma profile fluctuations. The above model is quite general. Decisions have to be
made about four (interrelated) aspects of a further model specification.

(1) Choosing the number of knots,

(2) choosing the continuity indices of the knots,

(3) choosing the polynomial degrees in the knot regions,

(4) choosing the knot positions.

We use the following notation (which reflects the first 3 aspects). A 2.3.2 spline model
has two knots, continuity up to the first derivative at these knots, and a 2"%, a 3"% and
a 2nd degree polynomial in the 3 regions, respectively. A second order spline with the
same number of knots and the same polynomial degrees, but second order continuity,
is denoted by 2:3:2, etc. Note that requiring a continuity index of k for a knot between
two polynomials of degree less or equal to k, corresponds to removal of the knot.

(1) The choice of the number of knots is influenced by the number of available radial
measurement positions, the noise level, and the number of profiles available. Knots
are needed where sudden changes in the second derivative of the profile are expected.
Usually, one should have at least one measurement position between two knots to avoid
collinearity problems. The lower the noise level, and, more or less equivalent, the larger
the number of profiles that are simultaneously fitted, the larger the number of knots that
can be used. The maximal number of knots is fixed by the requirement that the number
of fitted parameters should not exceed the total number of distinct radial positions. For
the 16 channel ASDEX YAG-laser measurements, 2 to 5 knot spline models have been
extensively investigated [9].

(2) If one believes that diffusion must make the profiles twice differentiable, one can
impose second order splines. We note that given the sharp discontinuity of the profiles



after a sawtooth crash, one should probably not assume a high degree of smoothness near
the sawtooth inversion layer. Hence, requiring first order continuity near the sawtooth
inversion radius, and second order continuity away from the inversion radius seems to

be a plausible choice.

(3) Traditionally, one uses third degree polynomials. For regularisation, i.e. to avoid
‘unphysical’ wild behaviour, a boundary condition at the edge (for instance, u'(1) = 0)
may be imposed. This reduces the effective degree in the outer region by 1. Second
order splines with this boundary condition are historically called ‘natural splines’. The
foliowing interrelationship between the various aspects of model specification is noted. If
one wants to keep the same flexibility, then increasing a continuity constraint should be
accompanied by increasing a near-by polynomial degree or the number of knots. If, for
example, a 2.3.2 model is considered to more or less adequate, except for its discontinuity
of the second derivative, then natural alternatives would be ‘natural’ 3:4:2, or 3:3:3:2,
or 2:3:3:3:2 splines. Obviously, increasing the number of knots complicates the problem
of finding the most suitable knot positions.

(4) A physical approach is to divide the tokamak into three regions, a sawtooth
region, a “good confinement” region and an edge region. A natural choice would be to
choose ry near the sawtooth inversion radius. The exact sawtooth inversion radius, a
regressed approximation, or the simple empirical relation r;,, = 1/ dcyt may be used.
The other knot positions may be chosen such that the measurement positions are roughly
equally distributed in the various regions. This ‘natural choice’ is, however, open to the
objection that the ‘built-in’ correlation with gy may complicate the task of determining
the full dependence of the profile shape on gcyl- Another approach is to consider knot
positions ry,rp,... as (nonlinear) free parameters which are estimated by numerically
minimising the residual sum of squares. We have some preference for manually varying
the knot positions, using the physical considerations mentioned above, and examining
the sensitivity of the fit on the choice of the knots, by investigating the residuals (in

particular the residual sum of squares) for various alternative fits.

An elaboration of the 2.3.2 Hermitian spline model, applied to ASDEX profile anal-
ysis, was given in [2]. In [9] more extensive investigations are made using up to 5 knot,
second order splines. As we shall see in section 6, one can formally apply an F statistic
to test, on the basis of n experimental profiles, whether the addition of an extra knot
or, more generally, decreasing the continuity index at some radial position(s), leads to a
statistically significant reduction of the residual sum of squares. The significance level
of such an F test, as well as the precise fit of the final model, depend, however, on the
assumed error structure.

10




3.2 Error structures

Combining the the mean value structure, described by (7) with the assumption of a

multivariate normal distribution of the deviations, as described by (2), we write
KJ.=-£(_—radg—+—E—J.’ i=1...,m, (15)

where E ; ~ Np (0,X) and X, is given by (8). We will consider the following models

with respect to the error structure:

Model I: £ = 0?1

. i =2 t
Model IL £ =W, + X A X0 4
where W , is a known diagonal matrix, and A is an arbitrary p' X p’ covariance matrix,

Model III: £ arbitrary.

Model I is the simplest case, and corresponds to the usual assumption made in justifying
the use of ordinary least-squares regression. This simple model for the error structure

may not be a good approximation to reality, however.

Model III is the most general of the above three models. It has %p(p + 1) + p' free
parameters, which may be a rather large number to estimate in practice. Hence, there

is some need for a realistic model of the error structure, but with less degrees of freedom
than model III.

Model II may be such a model with %p’ (p' +1) + 1 + p’ free parameters. It has
the following physical interpretation: azld represents the independent measurement
errors (arising from detector noise, etc.), whose relative magnitude can sometimes be
estimated (independently from the profile data) by analysing the propagation of errors
of the measurement process. The second term in Model II represents global variations of
the plasma profile, which, by energy and particle conservation, cannot be independent.
It is noted that II may looked upon as a random coefficient model, which can be written

as

Y. =

] T =rad

A+E;, j=1,...,m, (16)

where A ~ Ny (e,A), and E; ~ Np (Q,azld). So, correlated large-scale plasma
variations are modelled by assuming that the underlying profiles vary globally, on a
suitable timescale, according to an arbitrary multivariate normal distribution of the

regression parameters.

11



Models I, II, and III are special cases of the covariance structure

f
Z =) 0,Gi (17)
i=1

Estimation theory for model (14) with covariance structure (16) has been developed in
(10].

The flux surface mappings, and hence the radial design matrices X, are not precisely
the same for the various profiles. Hence, a refinement of (15) is

Y;=X 4etEj j=1...,m (18)

As we will see in the next section, this model formulation is also suitable to describe

the more general situation where the plasma profiles depend on the plasma variables.

The above described models of random errors are primarily adequate for describing
statistical measurement noise. With some stretch of their original function, they may,
however, also be used to describe quasi-random measurements, such as those associated
with sawtooth activity. To see this, we present a simple model for the sawtooth activity
inside the sawtooth inversion radius r;,,. We assume that the temperature is flat
just after the sawtooth crash and grows linearly between the crashes. Thus T(r,t) =
T(0) + az(r?,, — r?)(%) for r < r;,,. Assuming that the time sampling frequency is
incommensurate with the sawtooth period, we have the random coefficient model

T(r,t) = T(0) + Ag(rZ,, — r?), (19)

where Ay ~ U(0,a3), i.e. Ay is uniformly distributed on the interval (0,a3). Clearly,
2As, which can be interpreted as the random curvature, has mean ay and standard
deviation ag/ v/3. (The average curvature ay has the interpretation of being sawtooth
amplitude in the center divided by rfnv.) Note that this sawtooth model assumes a
(simple) spline for the temperature itself, instead of for the logarithm. Furthermore,
the spline coefficient has a uniform instead of a normal distribution. The practical
implications of these differences are likely to be small. It is noted that the sawtooth
activity is confined to the inner region of the plasma. If this activity is the dominant
source of plasma variation, then the matrix L in the above discussed models will be
nearly singular. In model II this is modelled by a small contribution of azi 4 and zero
elements for A, except for the row(s) and column(s) corresponding to the regression

coefficient of u'(r1), where 71 is near the sawtooth inversion radius.

12




4. PROFILE DEPENDENCE ON PLASMA PARAMETERS

4.1 Mean value and error structures

In principle, the profile shapes can be determined separately for each value of the plasma
parameters z. However, we are interested in parametric dependencies of the profile
shapes in an entire domain of the plasma parameters. Initial statistical analyses should
concentrate on relatively small domains of parameter space where one physical phe-
nomenon is expected to be dominant. Such domains may be experimentally delineated.
One speaks, for instance, of the runaway electron regime, the neo-Alcator regime, the
density rollover regime, and the ELM-free H-mode regime. Theoretical parameter do-
mains may be characterised by local instability boundaries for the n; and ballooning
modes. After these ‘single phenomenon’ regions have been understood, the transition

regions may be more easily explored. One example of a general scaling is Goldston’s

2
,ohm

the auxilary heating regime.

expression 1'52 =T1g + ré,zaux for the energy confinement for both the Ohmic and

We now formulate approaches to determine the dependencies of the profiles on the
plasma variables. Assuming that the coefficients e, in (6) are functions of the plasma
variables z, we represent the profiles by Y (r,z) = u(r,z) + E(r,z ), where

! U
p P w
ulrz) = 3 en(z)fulr) = 30 3 onpgr(z) fa(r), (20)
h=1 h=1k=0

and E(r,z) describes the measurement errors and plasma fluctuations. A simple, but
natural choice for the plasma basis functions, at least in a single domain of parameter
space where the sawtooth averaged profiles are expected to vary smoothly with the
plasma parameters is go(z) = 1 and gi(z) = In(z/z}), where T} is a typical value of
zr in the database of interest (k = 1,...,w). In a more extensive investigation one can,
just as for the radial dependence, consider polynomial or spline models in In(zy/ L)

Given m profile measurements at p radial positions, the discrete analogue of (20) can
be written as

Y =X X +E, (21)

—— =rad===cov

where Y is a p x m data matrix, E is a p X m error matrix, and a is the p’ X w matrix
of regression coefficients. Note that f},(r) is represented by the At? column of the radial

design matrix X, and gx(z) by the k*h row of the ‘covariate design matrix’ X .
Alternatively, the regression model can be written as

ZJ' = éjQ—’. e Eja Jj=1...,m (22)
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Here, Y, is the p X 1 vector for the jth profile, o is the vector of regression coefficients
(obtained by vertical concatination of the columns of a ), and X S X i.ov’ i ®X 4 is the

tensor product of the transpose of the 7tk column of X, op With X . (_X_ﬁ o contains

typically the logarithms of plasma variables for the jth profile. By definition, for any
matrices A and B, (A ® B); ; = 4;,B.)

With respect to the errors, we assume that £ ,...,E m are independent and Ej ~
NP(O,QJ-). In the simplest caseonehas £, = ... =X = I where L satisfies model I, II,
or III of the previous section. For models I and III, this assumption of ‘homoskedasticity’
can be tested using Bartlett’s modification of the likelihood ratio test (see [10], Ch. 10).

The reader will have noticed that formula (22) has the same structure as formula (17),
which described the situation with fixed plasma parameters, but different radial design
matrices. Hence, the same techniques of estimation, testing and confidence intervals

can be applied. The covariance structure may also depend on the plasma
4.2 Profile invariance

The concept of profile invariance can be formulated as follows. A family of plasma
profiles is invariant with respect to some plasma variable if the profile shape, i.e.
L™ Y(r,z) = 8/0ru(r,z), is independent of that plasma variable. From (20), with
go(z) = f1(r) = 1, it follows that

L7l re) = Y epofn(r)+ 2o enkfi(r)ar(z). (23)
h>1 h>1,k>0

Profile invariance holds for all plasma variables if the second term in this expression is

0, i.e. if all elements of a in (21), except those of the first row and the first column,
vanish.

Similarly, one can consider the more general situation of profile invariance, with

respect to some plasma variable (say, qcyl), on an interval (*,in, 'maz) C [0,1]. Now, the

condition is ):f:)l ap kf1,(r) = 0 for all r € (*ymin,Tmaz) and for all k’s that correspond
to that plasma variable (e.g. g1(z) = logg.y1, 92(z) = (log qcyt)z, etc.). When a cubic
spline model for p(r,z) is used, this condition can be translated into the requirement
that ¢ + 2 linear combinations of ag g, ..., 0y i are zero if + knot regions are needed to
cover the interval (7,,;n, "maz). Such a hypothesis can statistically by tested as soon as
the distribution of the estimate of o has been derived. This route will be undertaken in
sections 5 and 6. Alternatively, the hypothesis can conveniently be tested from a global
confidence band for the derivative of L~1(r,z) with respect to gyl See section 7.
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5. ESTIMATION OF REGRESSION COEFFICIENTS
5.1 Least squares and maximum likelihood

Initially, we consider only estimates for the model ¥ ; = X a+ E 5 g = Loty
where X, is a fized p x p' radial design matrix, and E j ~ Np(0,X) satisfies one of
the error structures I, II, III, described in section 3. Then, we make some remarks on
estimates for the more general situation, described in section 4, of different radial design

matrices.

Let g = m~1 2.;Y; denote the empirical average of the m profiles. It can easily
be derived that for any p X p non-singular matrix, G such that gadg X, .q is also

non-singular,

a=Q4p, (24)
with
- -1 -1
Q = (X1.C X 0y)  XiouC (25)

is a normally distributed, linear, unbiased (i.e. E(&) = a) estimator for a. The covari-

ance matrix of & is
= m.._=_... *

Such estimators for a are called generalised least squares estimators. Notice that the
choice G = cI corresponds to ordinary least squares regression, and G diagonal to
weighted least squares regression, the weights being inversely proportional to the diag-
onal elements of G. Equations (24) and (25) can, for symmetric and positive definite
G, be interpreted by the fact that the vector é = X ;& is the projection of & on the
linear subspace generated by the columns of X, 4> using the inner product defined by
G.

If £ is known, then among all possible matrices G, the optimal choice is G =%,
since it gives the estimator that maximises the likelihood and has minimal covariance
matrix among all unbiased estimators for a. The variance of this estimator reduces to

V(&)= . (X‘adg i) d)“. (27)

m"_--r =r

In practice, &

is unknown and must be estimated as well. The ‘best’ estimator for P

and the simplest way to calculate this estimator depend on the assumed error structure.
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Model I, corresponding to ordinary least squares regression, is the simplest case.

Estimates for 02 are based on the residual sum of squares,

" 1 & 5 A
6% = ——— Z(Y - — X daI)t(Kj — X dQI) (28)

being the minimum variance unbiased estimator for o2, which is distributed as o?/(mp—

p') times xmp o

In model III an iterative procedure might seem to be needed, to solve simultaneously
1 i ¢
v _ZI(KJ' — X 04@) (X — X, 040 (29)
J.‘:

and (24-25), starting for example with the unweigthed least squares estimate for o.
It can be proven, however, see e.g. [11] [12], that one gets directly the ML estimate
&gyr by inserting for G in (25) the estimated variance in the unsmoothed model, i.e.
; = m‘lé as given by (4). The adjusted ML estimate of £ in the smoothed model is
then obtained by inserting &y into (29). (Adjusted, because in the denominator m —1
has been used instead of m.)

An elegant generalisation exists for the situation with covariates, as expressed by
(21). As shown in [11] [13], among others,

~ -1+t 1yt -1 t t -
L ( a.d— X ad) X YXcov(Xcougcov) (30)
with
£ =W - XLy (Koo Xion) X)L (31)

and f = m —w —1— (p— p), is in that case the maximum likelihood estimator
(the constant f was chosen to simplify the next formula). An unbiased estimate of its
covariance matrix is given by [13]

V(&)= (X, X)X LX) m—w—2)/(m-—w—-2-(p-7), (32)

where o is the vertical concatination of the columns of ¢, and ® denotes the tensor
product.

The maximum likelihood estimates are asymptotically (i.e., as m — oo) normal and
efficient. It is noted that g may deviate considerably from I, if the total number, mp,
of observations is not much larger than the total number of free parameters (% p(p+1)+p
in the unsmoothed model). This leads, then, to an inefficient estimate for o which is, in
addition, not normally distributed. In such a case, it may be wise to use a model with

fewer parameters.
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We now consider model II in the simple case of a fixed design matrix with no covari-
ates. If its special covariance structure is inserted for G, one can derive (14,15, 16, 17]
that (24-26) reduce to

frr = (X W3 X, 0g) Xl (33)

Zrad

and
R 1 -1
V(@) = — (0F (Kol Xrad) +4). (34)

Note that the estimator &j; does not depend at all on the parameters A and o2, Of
course, the covariance matrix of &;; depends on these parameters, but it does so in a
simple way. Equation (33) requires the inversion of a sometimes considerably smaller
matrix than in the matrix G in (24) and (25).

In Model II, (33) was constructed to be the minimum variance unbiased estimator
for a. We now have to find an estimator for its variance ¥ (&yr). It can be derived (see
e.g. [18,19] that, if W, is known,

>

L= Z X, (¥ ;- X, hé10) (35)

is the minimum variance unbiased estimator for X . Inserting g 77 and

t 1 t —1
Q= (XWX, 0) X3, (36)
into (26), one gets the minimum variance unbiased estimator for V (&yr), which will be
denoted by i (&rr)-

A particularly nice feature is that &y can be looked upon as the sample mean of the
estimated regression coefficients of the individual profile fits, and that g(g r7) can be
rewritten as the empirical covariance matrix of this sample mean, i.e.,

arr = — E &;11, (37)

and

<>

(&r1) = ( Z( 11 — 1) (8511 — amr)’, (38)
where QJ'II e .Q_IIKJ.'

Notice that one can construct separate estimators for o2 and A . The usual estimator
for 02 equals the weighted sample average of the squared residuals from the fitted
individual profiles, with a correction for the fact that mp' parameters are estimated, i.e.
1 m

A2 n Ary x
ey — ! Z (Z- Ier =-—X-radgjf I )tid (-}—’ 7= éradgjf I ) (39)
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Subsequently, A may be estimated by the relation

—d Z=rad

. _ -1, 2 5 0 a
8% (X W7 X, 00) +A =mV(am), (40)

which follows directly from (34). This estimator for A has the disadvantage that,
because of the subtraction, it may not be positive definite. If this occurs, one can
consider (1) to reformulate the model, assuming that at least some elements of A are
non-random, and (2) to estimate A and o2 numerically by maximum likelihood. It is
stressed that in order for (33) and (38) to be sensible estimators, the weights associated
with W, must be known, or at least be independently estimable.

Being the UMVU estimate in a linear model, &y has the property that for every f(r),
Q} 1f(r) is the minimum variance unbiased estimate for ot ¥ (r). This property is useful
for predicting future profiles, see section 7. If g i g wdq 1__&_ raq 18 Tather close to a
singular matrix, the restriction to unbiasedness leads to large variances, however, and
one may be inclined to allow for some bias in order to get a substantial reduction in
variance. Procedures to do this are ridge regression, which replaces Q v by Q w + R for
some positive definite B (frequently, R = AI), and latent root regression [20] which
discards small principal components of @ that are, in addition, uninformative for the
regression. In the context of model II, e—mpirical Bayes estimates have been developed
[21], see also [22], that minimise the mean squared error of prediction (i.e. the variance
plus the square of the bias), summed over the profiles in the data base. Here, we will
restrict attention to ML and UMVU estimates, which is reasonable as long as the matrix
Q w is rather well conditioned.

Now we will discuss estimation procedures for the general case of unequal design

matrices, where

Zj:'é’gi‘ﬁj"jzl’---’m’ (41)

and E;-’;l ~ Np(g,gj). For any set of non-singular matrices G 1,...,G m, such that
o3 é;g;léj is invertible, an unbiased estimator for « is given by
g t 1 1 t 1
1= J

This property holds independent of the error structure of E ;, the only condition being

that E; has expectation zero for j = 1,...,m. Note that, although each ;jgf; ;
may be singular, & can formally be regarded as a weighted average of the individual

least squares estimates &q,...,&,,, where each &; is weighted according to é;g;l X it

For known £ 1,...,Z m, the choice G N z ; leads to the minimum variance unbiased
estimator, which in this case coincides with the maximum likelihood (ML) estimator.
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Furthermore, in that case, g};;—lé 1 equals the inverse of the covariance matrix of &;,

and

L@ = CX5L)™ (43)

In the random coefficient model, i.e. if éj = g2 +_—X,§‘é£j! insertion of gj &= éj in (42)
leads to

arr = (O H) T Y Hid), (44)
j

where & = (X4W71X.) ™ XtW 7Y, and H:' = A + (X4W'X,) " o2. Obviously,
now, V (&rr) = (Ejéj)_l- Note that for A = 0, the individual estimates &;) are
averaged with weights __X,_j_W___;lé o whereas for A — co they are averaged with equal
weights. For equal design matrices (44) reduces to (37) for any A. In general, d;;
depends on A and another equation is needed to estimate A. One possibility is to

consider
..2 -1 N 2y A A ~ t
Z (xXiw, éj) +mA = (&1 — &) (811 — &)’ (45)
J

which is the analogue of (40). Obviously, o2 is estimated from the residual sum of
squares from the individual regressions. Iterative solution of (44) and (45), starting
e.g. with A = 0, gives consistent estimates of both @ and A. These estimates can
relatively easily be calculated, but they may not be ‘efficient’, i.e. they may not have

asymptotically minimal variance, as A is not estimated by maximum likelihood.

We will discuss the method of maximum likelihood in a more general formulation,
which contains the random coefficient model as special case. We assume that the covari-
ance matrices are parameterised by a finite dimensional parameter @, and for brevity we
write (0) for (£1(8),...,Em(6)). The log likelihood of the observations ¥ y,...,Y m
is

m

I(g,é(ﬂ))z'S(m,p)—-%(z log |z ,|+E Y, - X;e)E; (Y - X0)  (46)

The likelihood equations are

(8/02,8/80) I(a, £(0)) = (0,0). (47)

The maximum likelihood estimates are those values of o and § that maximise (46).
If the maximum does not occur at the boundary of the parameter region, then (47)
constitutes a necessary condition. If the log-likelihood is a (strictly) concave function

of (e, 8), then (47) is a sufficient condition for the (unique) maximum. Concavity is not
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always easy to demonstrate in practice, however. For a large number of parameters, it

pays to look for an efficient computational algorithm (23,24, 25].

As an example, we present the computational equations for the still rather general

. for j = 1,...,m. The derivative of (o, X ())

special case that each éj = ):!:1 GiG-J

with respect to a gives

2 X5 Y, - Xa) =0, (48)
J

whose solution corresponds precisely to (29) with G ;=X Derivation with respect to
0; gives [25,19]
m
E trg_;lgij('[ _é‘;lgjg}) =0, 1= 1:"'sf1 (49)
7=1

where X, = E;-f:l 0,G;; and e; = Y; — X a. Equations (48) and (49) are to be
solved iteratively. The covariance matrix of the ML estimator (&,f) is estimated by
the negative of the inverse of the matrix of second derivatives of the log likelihood at

the maximum likelihood solution (&, § )

The maximum likelihood estimator tends to be rather sensitive to the validity of
the distributional assumption (multivariate normality) for the errors. Sometimes, it is
more robust to iterate the likelihood equations only a few times using the ordinary least
squares estimates as starting values. In [25] three algorithms are discussed to solve (48)
and (49) numerically. They are implemented in the program BMDP5V [26]. Under
certain conditions, asymptotic normality and consistency has been proven [19], even for
estimators obtained by the first few iteration steps of (48) and (49).

5.2 Robust estimation

The idea of robust statistics is to use estimators and test procedures that are insensitive
to (moderately large) deviations from the probabilistic assumptions. They tend to give
better fits to the bulk of the data than classical procedures do, and hence robust methods
are also suitable for outlier detection. Here, we restrict attention to robust estimation
of the mean value structure (i.e., the parameter o), under the assumption X1 =+-+ =
Zm = X(8). where X (8) is assumed either to be known, or independently estimable.
We will discuss the multivariate situation of outlying profiles from the regression on the
plasma parameters, rather than the somewhat simpler univariate case of single outlying

measurement points (channels) from individual profile fits.
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Generalised least squares estimation minimises —I(a, G ) from (46) as a function of o
for some (symmetric, positive definite) matrix G. In practice, one has to insert some
sensible estimate of L (¢) for G. A generalisation of this procedure (see e.g. [27], [28])
is to estimate o by minimising

fj p (Y- X.0)'G 1Y, - X @) (50)

= =1 = =5 V1 =7
for some suitable, non-decreasing function p, and symmetric, positive definite matrices
G1,...,Gm. Such estimates are called M-estimates (from ‘Minimisation’/‘Maximisa-
tion’).

Remarks: (1) Note that (50) permits arbitrarily weighted regression. Choosing G 7
w j§ l;, with W ’ diagonal and positive, corresponds to assigning the diagonal elements
of ij as weights for the jth profile, in addition to the weighting imposed by L,)=
1,...,m. These weights can be used to used to robustify the estimation procedure,
at the cost of some loss of efficiency in case the multivariate normal error distribution
happens to be a good approximation. (2) Equation (50) can be viewed as a log likelihood
equation for a very specific probability distribution. More importantly, it has been
derived (see [27,29]), that for symmetric error distributions, in a number of situations,

solution of (50) yields consistent and asymptotically normal parameter estimates.

The quantity D; = (Y; — X J-Q_)tg ;I(ZJ- 7 & J-Q) can be interpreted as a squared
residual, i.e. the squared distance between the observed and the fitted ;t% profile, in the
metric defined by G ;- A large value of D; indicates an outlying profile. (If m profiles
are tested simultaneously, the cutt-off point for outlier detection should be based on
the distribution function of Ina.x-f’,-‘:1 D, rather than on that of DJ-.) An outlying profile
is a candidate for a bad measurement, and should be checked on physical grounds. A
weak point of least squares is that large actual residuals (i.e. deviations from the actual
postulated model) that are, in addition, influential (i.e. have a large influence on the
regression fit, because they are in plasma parameter space far away from the bulk of
the datset), can distort the regression fit in such a way, that the corresponding fitted
residuals are quite moderate. Hence, such points go undetected as outliers. One way
out is to calculate the jth residual from a dataset from which just the j** datapoint
has been excluded. (This can efficiently be done, see e.g. [30].) Outlier detection is an
important part in practical regression. Justified deletion of outliers is an important step
in robustifying a least squares regression fit. Another expedient is to use robust (e.g.
M-type) estimates that automatically downweight influential data points [28].

Least squares corresponds to p(u) = u, and is rather sensitive to outliers, as the resid-

uals from the fit are squared. In robust regression, sensitivity to outliers is diminished
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by using functions for p that grow less strongly than linearly for large values of the
residual. We present some common examples. The mean absolute deviation (MAD)
estimator corresponds to p(u) = y/u. To avoid uniqueness problems, the absolute devi-
ation norm may be replaced by p(u) = ||u||" for some 0.5 < r < 0.7, say. The ‘Huber
estimator’ is defined by ¥(u) = p'(u) = \/Eu.) for u < cst and ¢(u) = \/fcst) for u > est.
For cst between 0 and oo, it ranges between the mean absolute deviation and the least
squares estimator. It turns out that this estimator is ‘optimally robust’ from two points
of view, see [28], Ch. 2.6 and 2.7, under the assumption that only the response variable is
contaminated with outliers. A problem is the choice of ¢st. The optimal choice depends
on the (unkown) amount of contamination. For practical purposes, it seems sensible to
choose cst near x%p_p,);o_os Jm which is the classical cut-off from normal least squares.
Finally, one can apply iteratively reweighted least squares, downweighting the profiles
with large values of D; (by choosing e.g. the weights lj = w;I, with w; inversely
proportional to DJ-). It is easily shown that these are, in fact, M-estimates in a slightly
disguised form [28].

The need of robust statistics depends on the quality of the dataset, and on the amount
of effort one is willing to spend on residual analysis. Broadly speaking, for ‘high quality’
datasets, standard least squares is all right. For ‘medium quality’ datasets, standard
least squares is only justified if one spends considerable effort to detect and repair
(wherever justified) any outlying data. Robust estimation may then be useful for better
pinpointing these outliers. For ‘low quality’ datasets, robust estimation is indispensible
for fitting the bulk of the data and for outlier identification. In general, solution of
the estimating equations and determination of the covariance matrix of the regression
estimates is more difficult for robust estimation than it is for least squares. The reader
is referred to [28] for a comprehensive survey of the available methods, and for reference
to some computer programs.

6. MODEL TESTING

We present some statistical tests for testing the null-hypothesis that a given model for
the observations is correct. The general procedure may heuristically be described as
follows. First, the parameters for the model to be tested, say Mj, are estimated, as
are the parameters for a more comprehensive, competing, model M;, which contains
model M; as a special case. Then the distance between these two sets of parameters,
suitably normed, is calculated. Under the null-hypothesis that model My holds, this
distance has some probability distribution. The characteristics of this distribution,

22




or of an asymptotic approximation thereof, are determined. If the observed value of
this distance is in the tail of the distribution, then the null-hypothesis is considered to
be implausible. If one rejects at the 5% level, then the probability to reject the null-
hypothesis incorrectly (when in fact it is true) is at most 5%. The probability to make an
error of the second kind, i.e. to accept the null-hypothesis when in fact it is false, depends
of course on how much the true underlying model differs from the hypothesised model
M;. Let us denote this probability by 3(a12), where a3 € Vi denote the parameters
in model M; in excess of those of model Mj, i.e. the parameterisation is such that
the origin of the space Vg corresponds to model Mjy. Broadly speaking, the tests to
be discussed have the property that in comparison with other tests 3(a;2) is relatively
low in every direction of the parameter space Vj. Statistically, the corresponding
optimality criterion, which constitutes a practical compromise, is called ‘asymptotically
most stringent, against unrestricted alternatives’ [31,32,33]. In the following, M; and
Mj are identifiers that indicate in each situation the more comprehensive model and
the more restricted model, respectively. Which specific models are chosen for them,
changes with the context.

6.1 Discrete versus continuous profile representations

As in section 3, we assume that, for fixed values of the plasma parameters, the available
data consist of a single sample of m profile measurements Y 1,...,Y ,, each at p radial
positions. For simplicity we assume that the radial positions correspond to constant
flux-surface radii. As null-hypothesis we consider a continuous (e.g. spline) model with
p' free, linear regression parameters and with a general p X p covariance matrix L (i.e.,
(14) with covariance model III in section 3). The more comprehensive model Mj is the
unsmoothed model Y 5= Np (#,Z), where p denotes the unknown underlying profile
vector. Let £ be the ML estimator of the covariance matrix under model Mj, see (4),
and £ 771 the ML estimator under model My, see (29). The statistical test is based on
the following result, see e.g. [12] and [34], Ch.5.3, A.2.3: If the null-hypothesis holds,
and m > p — p/, then

X |—|2
_ 2712l _ /a4 P LR B A
Ty = & = (& - X, 48111) £71 (2 — X, oqérir) (51)
is distributed as
/
p—p ! /
e p o P PPy mEp ) (52)

For large values of T; the continuous model will be rejected. The test statistic 77 can
be interpreted in two ways:
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(a) The right-hand side gives the distance, in p—dimensional space, between the esti-
mated underlying profile under model M; and under model My, in the metric defined by
the (estimated) residual covariance matrix under the more comprehensive model M;.

(b) The determinant of a covariance matrix is a scalar measure of the total residual
variation associated with a given model. (This determinant is sometimes called the
generalised variance.) Hence, the statistic T' estimates the fractional increase in gener-

alised variance in going from M; to model Mj.

6.2 Different covariance structures

If a given smoothed profile model with general covariance matrix ¥ is not rejected
using the previous test, then we can proceed to test the more parsimonious covariance
structure II within the smoothed model, i.e. My : & = L, is tested against My : & =
Z;rr- One can do this by applying a large-sample likelihood ratio test. The likelihood
ratio statistic is

max 1 L( ;,

where L(.,.) stands for the likelihood function, which has to be maximised under model

Tz =—2In

i {lie4

max o L(e,

M; and My, respectively. By writing down the multivariate normal densities, one derives
that

_21nL(QIII,§1H) =m(In 12’”21111 +7), (54)

where &y and 2 711 are the ML estimates under Model 2, see (29). For the smoothed
model Mj, the likelihood has to be maximised numerically, using e.g. the program
BMDP5V. Assuming that some regularity conditions are satisfied, it follows from general
theory developed by Wilks [35] and Wald [31] (see e.g. [36], Ch. 4 and [37], Ch. 6e¢) that,
asymptotically,

2
27 XLp(p+1)- 40! (p'+1) -1 (55)

In practice, it is convenient to apply an asymptotically equivalent version of Ty, which

is obtained by inserting the UMVU instead of the ML estimates of L into the likelihood
ratio (53). In that case, we get, after some simplification,

|§H|

T'g =mln
Sirr

(56)

where S, = mgI” and §;; = (m — l)gn, see (35). For large m, Ty has the same

distribution as T5. As in (51), a computationally more convenient form of the ratio of
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the generalised variances is

=1+ m(&yr — &117) X 0 iST11 X 0q(&r1 — &111)- (57)

It should be mentioned that test statistics based on other combinations of the eigenvalues
of S;r and S, than those implied by (56) are in use, see e.g. [38], Ch.5. For reasonable
sample sizes, the practical differences between these multivariate test statistics tend to
be small. Special care is required if the (unconstrained) ML estimates of the parameters
under Model 2 lead to an estimate of ¥ which is not positive definite [17, 39, 40].

6.3 Different continuous profile representations

Although the theory presented holds for general linear profile representations, we will,
for concreteness, orient the discussion towards spline representations. Suppose, we have
a Hermitian spline model with p’ free parameters for the mean value structure and with
one of the errors structures I, II, III. We want to test the null-hypothesis that a spline
sub-model holds. A spline sub-model is defined as a spline model where, with respect
to the original model, the continuity index (see section 3.1.3) of some of the knots
has been increased. (Recall that imposing third order continuity for a third degree
spline amounts to removing the knot.) To test such a null-hypothesis, which can be
stated as linear restrictions on the parameters, there exist standard F-tests, especially
in the case of the error structures I and III, see e.g. [41,34,37]. Here, we will directly
discuss the more relevant and interesting case of error structure II. We consider the
general model My : Y ; = X A+ E ;, where E ; ~ Np(0, ‘72=W—.d) and A ~ Npr(g,él)
have a multivariate normal distribution. Within this model, we test the sub-model
Mz : A~ Npn (RB,DAsD?) for some p' x p' matrix D.

We again use the likelihoood ratio as an asymptotic test statistic. Consider the

random variable

where S 112 and S .1 aTe the the residual SSCP matrices for the restricted model and
for the general model, respectively. If the null-hypothesis holds, then asymptotically

(i.e. as m — o0),

Iy~ (59)

2
X%p'(p’+1)+p’~%p"(p”+1)—-p" .
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If the observed value of T3 is the tail of this x? distribution, then the null-hypothesis
has to be rejected. Similar to formula (51), the ratio of the generalised variances can
be rewritten as

S 60
=JI2 — Dﬁ
I ) | =1+ m(aII - DﬂII) SIIIX ad(a” U)‘ ( )

|§II,1‘
As a concrete example, we consider testing the null-hypothesis that the underlying
profiles can be described by gaussian functions (with random coefficients) against the
alternative that a general Hermitian spline model (also with random coefficients) holds,
see (13). For the gaussian model we have g = (1(0),bp), the random gaussian coeffi-
cients B satisfying B ~ N (8 ’A_—.z)’ with A, a general 2 X 2 covariance matrix. For the
general spline model we have a = (1(0), ag, bo, co, b1, €1, b2, €2, - - J)t, and A ~ N(a,A,)-

Obviously,
Qt:(l 000 .. 0)_ (61)
- 0::0 1 Ocine ..
The gaussian model has the simple design matrix
é—radg:éradgz(lz 12 ];! 12) (62)
’ r{, .13 78 i;-i oTp

Using the methods described section V, one can estimate, within each of the random
coefficient models, & and B (the estimates are denoted by &jy and é 71> Tespectively) as
well as the residual SSCP matrices from both fits (denoted by S; 11 and S; I,2)' Hence,
one can calculate the test statistic 75 from either side of (60). (The left-hand side may
computationally be somewhat more cumbersome for large matrices.) Note that for the
gaussian model, D Xtad_SJI 1X, 44D in (60) can be rewritten as lf‘ad,ggI_Il,l_-)—grad,g’
which is readily calculated and can be interpreted as a constant times the estimated
covariance matrix for the regression coefficients é I provided the covariance matrix of

the p profile measurements is estimated from the residual SSCP matrix of the full spline
model M.

6.4 Profile invariance

We consider the model with covariates and error structure III, i.e.,

Y=X .2X.,,1tE, (63)

=raa==cov

with the columns of E independently Ny (0,X) distributed, see (21). As argued in
section 4.2, the hypothesis of (full) profile invariance means that all elements of &
except for the first row and the first column are zero. This can be expressed as

Hy:CaM =0, (64)



where C and M are diagonal matrices with 0 on the (1,1) position and unity on all other
diagonal elements. The hypothesis is tested by a similar criterion as in the previous

cases, namely

: (65)

where S;;, denotes the SSCP matrix under Hy and the S;;, the SSCP matrix under

the less restricted model. Now, we have

§II 2 O (Xrad(f—sj-) IXra.d) )gt’ (66)

with f = m —w — 1 — (p — p/). The expression for S 1.1 is slightly more complicated.
It can be written as [13] S;;, + 5 j, With

Siyp=CaM)M'RM)(CaM), (67) |
where
=Q+/7eX,  Y'E I -Lg)XX,,Q (68)
with Q (Kcov—.}g:ou)_ and
t ~1yt §-1
gg -X‘-r (X -_=rad) X dg (69)

Note that gﬁ is the projection operator with respect to the inner product defined by

lIeg

.Fori=m—(w+1)—(p—p') — §(rc —rm + 1), where r; and r,,, denote the rank
of C and M, respectively, Ty is approximately distributed as a x? variate with rcrm
degrees of freedom.

The hypothesis of partial profile invariance (for instance, with respect to Qeyl, but
only for r > 0.6), can also be expressed as Hy : CaM =0, for suitable matrices C and |
M , and hence be tested by the just described procedure.

7. CONFIDENCE BANDS AND PREDICTION

The presentation of just a single, smoothed profile estimate gives no information on
which other profiles would also be plausible for the true underlying profile or for a new
experimentally determined profile. Such information is given by confidence, and pre-

diction bands, respectively. Although confidence bands can be considered as a limiting
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case of prediction bands, we shall discuss them consecutively, as the construction of

prediction bands is more complicated.

It will be useful to make a distinction between ‘local’ and ‘global’ confidence bands.
A local confidence band for an underlying unknown profile p(r) is defined as the region

between two random boundaries ”‘g)c (r), and ,u.(h)(r) such that, for any r € [0,1],

loc
P{u(r) € (Mg (), (1)} =1 - o (70)

i.e., for any r € [0, 1], the probability that the random interval (p,g,)c (r), pgfc) (r)) includes
u(r) equals 1 — a. A global confidence band for u(r) is defined by

P{u(r) € (ufg(r),uffj (r)) forall re[0,1]} =1— e (71)

The quantity 1 — « is called the confidence coefficient of the band, which is frequently
chosen to be 67% or 95%. The null-hypothesis that the ‘true’ plasma profile equals
some predescribed profile u,(r) is not rejected at the 100a% level if and only if po(r) is
everywhere contained in a global confidence band with confidence coefficient 1 — a.
Remark: For each confidence band with confidence coefficient 1 — «, there exists a
statistical test rejecting at level a. Usually, one tries to select tests, and confidence bands
with some ‘optimality criterion’, for instance, to confidence bands with minimal area.
As, under our model assumptions, the estimates for p(r) are symmetrically distributed
and (usually) unbiased, we will consider only symmetrical confidence bands that can
be written as A(r) & §jo.(r), and fi(r) + 64(r), and that correspond to well-known and
rather efficient (two-sided) statistical tests.

We will discuss now the construction of confidence bands for fixed plasma parameters
and error structures I and II. The methods are easily adapted to error structure III, how-
ever. As in section III, we have the following model for the m stochastically independent
profiles Y y,...,Y y at p radial positions: _lij =X A+ E;, with A either determin-
istically equal to a (model I) or A ~ Ny (a,A) (model II) and E j ~ Np (Q,azid), for
= -

7.1 Local confidence bands

A local confidence band for u(r) = 7 ;1 ap, fr(r) is constructed by calculating for each
r € [0,1] a confidence interval for the linear combination of f(r) of the regression param-
eters, where @ = (ay,...,ay) and f(r) = (fi(r), f2(r), ... , [ (r))? From the fact that
& has a multivariate normal distribution it follows that &' f(r) is normally distributed
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with expectation of f(r) and variance f*(r)V (&)f(r). By studentising (i.e. by taking
into account the effect that the estimated instead of the true variance of & is inserted)

we get
&1 (r) £ (£ (N (&1) £ () tomp—ptsasa (72)

& 1 -1 .
where V (&5) = m~1 (Xtadld 1__X_md) & with é given by (28), as the required confi-

Ly
dence interval under model I, and

& £(r) + (£ (@) £(r) 2t 1i/25 (73)

where i (&yr) is given by (38), as the corresponding confidence interval under model II.
As usual, ¢ stands for the Student distribution with f degrees of freedom. Note that the
unbiased estimation of the covariance structure in model II costs a considerable number
of degrees of freedom. This does not always matter in practice, as for f > 20 and usual

confidence levels, the Student distribution is very close to the standard normal.
7.2 Global confidence bands

A global confidence band for the unknown profile is derived from a k-dimensional con-

fidence ellipse for a, which consists of all values ¢, such that
(20— 8) V(&) (a0 — &) < c(m,p,7;0), (74)

m—1
,mp—p';a for model I and e

(Asymptotically, both expressions tend to xg,, o) The extreme values of ol f(r) under

where ¢(m, p,p'; @) equals Fpr 24 Fp’,m—p';a for model II.

the restriction (74) are found to be (using e.g. the method of Lagrange multipliers)

&1 (r) £ (£ (&) £ ()2 (c(m,p, p'; ). (75)

Evidently, a global band is wider than a local band with the same confidence coefficient.
Notice from (72-73) and (75) that in this case the bands are ‘proportional’,i.e. a global

band with coefficient 1 — a corresponds to a local band with coefficient 1 — o/ > 1 — a.

Under model I, similar formulae can be derived for local and global bands for unequal
design matrices, and in particular for the regression model (20-22) that includes plasma
variables as covariates. (In that case one may be particularly interested in a band that is
global with respect to r, but local with respect to the plasma variables.) Under model II
one has then to be satisfied with asymptotic confidence bands, based on some maximum
likelihood estimate of V (&fy).
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A practical application of confidence band construction is the following. As indi-
cated in section 4.2, profile invariance is expressed by the requirement that the profile
shape L™1(r,z) = 8/dru(r,z) does not depend on the plasma parameters z. For a
graphical evaluation, it is useful to plot dgi(z )L~1(r,z), which is the mixed derivative
of fi(r,z), as a function of r, for gi(z) = InIp, g2(z) = Ing,y, etc. The hypothesis
of profile invariance is not rejected for those plasma variables, and for those radii, for
which the plotted mixed derivative of i(r,z) does not ‘significantly’ differ from zero.
For each given plasma variable, this can directly by tested once a global confidence
band for this mixed derivative is constructed. Under the assumption that it is sufficient
to the expand u(r,z) only up to the first powers in the logarithms of the plasma pa-
rameters, 8/3gy(z)8/0ru(r,z) = ):p':l apfp(r) for k=1,...w (see (20)), and hence
precisely the type of gobal confidence band as discussed above can be used. A practical
elaboration of this for ohmic ASDEX shots is found in [9].

7.3 Prediction bands

We now turn to the somewhat more complicated case of prediction bands. The discus-
sion will be tuned to error model II, where we have random measurement noise and in-
trinsic plasma variations. We start by defining a fairly general construct, which contains
several useful special cases. Let (Y)m,(r,t) be the average of mg hypothetical, new mea-
surements (on logarithmic scale) at time t and at some normalised flux-surface radius r.
Similarly, let (Y )mg,m;(r,t) = mfl E?-_—l1(Y)mo (r, tj), where ty,...,tm, are equidistant
timepoints over the time interval (¢t — §At,t + 3At). In other words, (Y )mq,m; (r) ‘esti-
mates’ a time-averaged profile over the just mentioned time interval on the basis of my
hypothetical, repeated measurements at each of m; equidistant timepoints. We assume
At to be so large that, for m; — 00, (Y)mg,my(r;t) — n(r). (The assumed model
implies that, for each fixed r, (Y )m,(r,t) is a stationary stochastic process. Hence, the
right-hand side is independent of time.)

A prediction band for (Y )mg,m,(r,t) is based on the the variance of the difference
between (Y )mg,m; (r,t) and its estimate &5 f(r):

V(Y ) mo,my (r,8) = &1£(r) = V(¥ )mo,my (r,8) — () + V (&1 — @)*£(r)

R I 2
= (o t ) (L (AL () + (76)
(et ) (Kol Krad) L)

see (34). (To understand this formula, it may be useful to consider first the various
special cases: m; = 1,my — oo0; my = 1, mq arbitrary, etc.) Note that, because of the
stationarity assumption, the right-hand side of (76) is independent of time.
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For brevity, we denote the variance in (76) by V. In practice, the quantities ¥ (&),
0%, and A are unknown, and have to be estimated, for instance from (38)-(40), and
inserted into (76). From the resulting estimate ff, asymptotic prediction bands for
{Y)mg,my (r,t) are constructed (with some radial interpolation assumption for the first
term if the variance is not assumed to be constant for the p measurement channels).
Asymptotically (i.e. if m and p sufficiently large), a local mg, m; prediction band with
confidence coefficient 1 — o is given by Q‘H f(r) £ v/ % /2- For mg — oo, we have
a confidence band for the underlying profile at a certain time ¢ (if m; = 1), or of the
time-averaged profile (if m; — c0). An asymptotic global confidence band is obtained
by replacing u,, /2 by (x?),;a)l/ 2 and letting mg — oo. Studentised confidence bands,
which take into account the error in estimating V', are constructed by replacing u, /2 by
tp—plia/2) and X;ﬁ';a by p'Fyt o ptia

Although somewhat more complicated, performing predictions from the covariate
model goes along similar lines. Such an analysis is well worth the effort, as it enables
one to make predictions for any value (within a reasonable range) of the plasma param-
eters z, and because the accuracy in the prediction will be increased due to the extra

information contained in the additional density and temperature profiles.

7.4 Confidence intervals for global plasma variables

There may be special interest in estimating volume-averaged profiles, instead of the

profiles themselves. In particular, we consider

< ne >= '/(;1 ne(r)h(r)dr, < pe>= /(;1 ne(r)Te(r)h(r)dr, <T.>=<pe> /< n.>,

(77)
where r denotes the flux-surface radius and h(r) is some weight function arising from
the transformation from geometrical radius to flux surface radius. For concreteness, we
give the discussion for < ne >. For < p, > the calculations are completely analogous,
and as will be explained in the end, an approximate confidence interval for < T, >
can be constructed from those for < p, > and < n, >. For simplicity of notation, we
suppose, as in section III, that Inn.(r) = u(r) = Ef—-—l apfr(r) = ot f(r). The formulae
are, however, analogous in the physically more general case u(r) = ¥ Tk fa(r)gr(z)-
We assume that we have unbiased and approximately normally distributed estimators

for & and pu(r), which are denoted by & and /i(r), respectively. We introduce

A=), and  <he>= [ FOn(rar (78)
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It is assumed that < n, > is accurately approximated (say, within 1 %) by a numerical
integration routine, so that the difference between < fie > and its numerical estimate is
negligible with respect to both the variance and the bias in < fie >. It can be derived,

see Appendix, that
var <o >= [ [1 € UHE) )y (@)1 ( BB drar  (19)

To estimate this variance, estimators for @ and V (&) have to be inserted in this expres-
sion (see section V), and the integration has to be carried out either analytically (which

may be rather complicated) or numerically.

As (78) is a non-linear transformation, an unbiased estimate 2(r) will not lead to
an unbiased estimate for < n, >. In fact, as derived in the Appendix, the bias is

approximately

bias < e >=3 [ @10 (AL @1()h(r)er. (80)

To determine < fi, >, bias < fi, >, and var < fi, > numerically, the same type of in-
tegration routine is required. If x(r) is approximated by splines, a low-order integration
routine should be used to cope with the third derivative discontinuities. As, otherwise,
the smoothed profiles behave very neatly, and only a relatively low accuracy is needed,

the numerical integration should present no problem.

In practice, it may turn out that bias? < f. > is negligible with respect to var <
fie >. In that case, an approximately 95% confidence interval for < n, > is given by
< fig > +2 varl/? < fie >. If this is not the case, one can correct for the bias (which
should be small anyhow), and assume that the variance is only negligibly influenced by

this operation.

Finally, we discuss how to obtain a confidence interval for the density weigthed
volume-averaged temperature. We assume that we fit the density and the tempera-

ture profiles on logarithmic scale, so that we have
at A at
fe(r) = e8nlal) Ty (r) = oBrirl),

where &, and &g both have a multivariate normal distribution. For some reason, one
might prefer in practice another set of basis functions for the density fit than for the

temperature fit, so for generality we do not suppose that f_(r) = fr(r).

Under the above model assumption,

1 . 2 1 .
<pe>= [ LML Oh(r)ar, < o >= [ B LaOn(r)ar,
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and we consider the estimate < T, >=< p > / < fie >, which, for var(&}, f,[r) <1
and var(&%f5(r)) < 1, has approximately zero bias and variance
2
: < pe > A < pe > . .

——var < Pe > +—————var < fig > —2———5cov (< fig >, < Pe >).

< ne >2 AR | ¢ < ne >2 (S22 f52)
(If necessary, the bias can be estimated. We will concentrate on the variance.) Each
term in this expression, except for cov(< fie >,< pe >), can be estimated according to

the formulas derived above. For the cross term we have

1 r1
cov(< fig >, < Pe >) = jo /; cov(fie(r), Pe(r))R(r)h(r")drdr,
with

cov(fie(r), Be(r')) = ne(r)pe (r') (£, (N (8n) £,(r") + £1, ()L (én, &7) £7.()).

Here, V_ (&, &7) denotes the matrix of covariances between &, and &7. Obviously, this
is zero if the temperature and the density measurements are independent, which is for
instance not the case for the Nd:YAG laser experiments, where V. (&,,ar) has to be
estimated from a simultaneous regression of the temperature and density profiles. For
volume-averaged profiles up to flux-surface radius rg, all of the above formulae hold if

only the upper integration limit is changed from 1 to rg.

The important point to see is that although the expressions look somewhat com-
plicated, their derivation and structure is quite straightforward. Given some tools for

numerical integration, practical implementation is not a tremendous task.

It should be noted that the best (i.e. minimum variance) unbiased predictor for
the local profile is not the best unbiased predictor for the volume averaged profile. In
the latter case, because of the typical behaviour of rn(r), the profile has to be known
with a higher precision in the middle region (say .25 < r < 0.75) than at both ends
of the interval [0,1]. On the other hand, an optimised profile fit with respect to MSE
(< e >) may locally be bad, and for instance over- or underestimate the central density
considerably. In a larger profile study, where the profiles are used for various purposes
and where it is useful to have the estimates of the volume averages consistent with the
fitted profiles, we prefer therefore local profile fits with good overall properties, such as
those discussed in section 5, and allow for the fact that the estimates for the volume

averages do not have minimal variance.
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8. DISCUSSION AND CONCLUSIONS

In this article, we have presented a systematic approach to the parameterisation of
temperature and density profile shapes. Our approach is to treat profile shape param-
eterisation as a problem in statistical regression. The profiles are expanded in a double
series of radial and plasma-parameter basis functions. Each product basis function is a
covariate and the corresponding regression coefficients have to be estimated. The ‘best’
method of estimation, depends on the postulated error structure. Partly motivated by
the ASDEX YAG measurements, the simplifying assumption was made that the mea-
surement variations at a certain channel are uncorrelated in time. On the other hand,

the deviations from an ideal profile fit may be radially correlated.

In Secs. 2, 3, and 4, we have presented a variety of different representations for
the plasma profiles and the error covariance, L. These statistical models often form
a hierarchy with the simple models embedded in the complex models as special cases.
The more realistic models have more free parameters and therefore require more data.
In a sense, the discrete point model of Sec. 2 constitutes the most accurate radial
representation. However, a spline model with roughly equal numbers of measurement
channels between radial knots yields a more effective representation for many datasets.
The random coefficient model of £, where the spline coefficients vary randomly in
addition to statistical noise, is expected to be a realistic model of the spatial correlations

of the fluctuations.

In Sec. 5, three methods to estimate the spline coefficients are presented. Firstly, by
generalised least squares. Direct and elegant solutions are possible for relatively simple
covariance structures, and even for the random coefficient model in the simple situation

that one has a dataset of profiles for fixed values of the plasma parameters.

Secondly, by maximum likelihood, which, in simple situations and for normally dis-
tributed errors, coincides with least squares. In more complex situations, differentiation
of the log likelihood with respect to the mean value and the covariance parameters, gives
two coupled sets of equations, which have to be solved iteratively. In such a case, least
squares can be considered as one such iteration step which maximises the likelihood
with respect to the mean value parameters for a fixed (known or sensibly estimated)

covariance matrix.

Finally, a discussion has been given of robust regression. The so-called M-estimators
can be viewed as a generalisation of maximum likelihood estimators, in as far as they
minimise some general function of the residuals, which may have nothing to do with the

actual likelihood function. For relatively simple covariance structures, the asymptotic
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distribution of general M-estimators has been rigorously derived [28]. The purpose is to
diminish the influence of erroneous, outlying datapoints on the regression estimates, by
downweighting large residuals. As a robust regression fits closely the bulk of the data,

it also suitable for clearly detecting outlying (i.e. suspicious) datapoints.

Sec. 6 presents a number of statistical tests to check if a simplification of the model,
i.e. either of the profile representation or of the model for X, produces significantly
more than the expected increase in the residual error. As a special application, the

empirical testing of profile invariance is considered.

Sec. 7 describes the construction of local and global confidence bands for the true pro-

file shapes, and of prediction bands for observing new profiles. Furthermore, estimates
and confidence intervals are given for corresponding volume-averaged quantities.
A parameterised representation provides a compact summary of an experimental in-
vestigation: a table of spline coefficients is much more usable than a large database
of all discharges. Knowledge of the dependence of profiles on the plasma parameters
may lead to new physical insight. In view of the considerable experimental variation
in individual profile measurements, it is, however, essential to express clearly at least
the statistical uncertainties associated with fitting a set of carefully measured profiles.
Such parameterised profiles are then in a form suitable to be input into transport and
stability simulations.

9. APPENDIX
9.1 Profile representations by perturbation expansion

We consider the Hermite polynomial representation given by (11). For any fixed value
of ¢g, the coefficients aq,as,... are linearly related to the moments of the temperature

distribution. To see this, we write (11) as

T(r) = Z( )rand™ () with ¢ (r) = (d/dr)ne0", (81)

n=0

with ag = 1. From this it follows that the two-sided Laplace transform equals

fT (r}e " dr = Tg 1/2 4"0 Z Ry (82)
n=0

35




Since the Laplace transform generates the moments of the temperature profile, we get,
by expanding (13) as a power series in s,

712 bl 15 e Ny J2k 83
To(co) (az2k + 4cq 1 +k!(4c0)k) (2k)! Sy

A similar expression holds for the odd moments. Hence, for each fixed value of ¢y one
can, from the fitted regression coefficients ay,as,... (and their estimated covariance
matrix), easily calculate the moments m;,my,... (and their covariance matrix). Re-
versely, by estimating the moments by some method, one could derive the corresponding
estimates for the polynomial coefficients.

Remark. Note that for symmetric profiles, the Fourier transform of (11) is a gaussian
function times a power series with coefficients ay, ag, ..., i.e. assumes the form (10). In

this sense, the representations given by (10) and (11) are dual.
9.2 Variance and bias for volume-averaged global quantities

It is recalled that, by definition,
MSE(< fig >) = E(< fie > — < ne >)2 =var < fig > +bias? < fie >, (84)

where var < i, >= E(< #ie > —E(< fie >))?, and bias (< fie >) = E(< fie >)— <
ne >, and E(X) denotes the mathematical expectation of a random variable X. The

variance and the bias of < #i > depend in a simple manner on the covariance function
cov(ia(r), (r')) = E (a(r) — E(a(r)) (A (r') — E(a(r)).
By Taylor expansion, it is derived that, for var i(r) < 1 and var 4(r') < 1,
cov(i(r),a(r")) = n(r)n(r)cov(i(r), A(r"). (85)
Because of the linear structure of our linear model for p(r), we have
cov(a(r),a(r")) = (L (&) £ (). (86)

As < fie >= [ #i(r)h(r)dr, it is easily derived that the variance of < fi¢ > is obtained by
integrating cov(#(r),7(r')) over h(r)dr and h(r')dr'. Hence, the full expression is given
by (79).

The bias of < fi > can clearly be written as fol bias#i(r)h(r)dr. Again by Taylor
expansion, it is derived that, for var (r) < 1,

biasni(r) =~ —;-var i(r),
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where var #i(r) = cov(#(r),7(r)) can be estimated from (85). Hence, the full formula is
given by (80).
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