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Abstract

A database of high density (.3 < 75/10m~2 < .8), low ¢, (1.9 < ¢4 < 3.4),
Ohmic discharges from the ASDEX experiment is analysed statistically [1] . Bulk
parameter scalings and parameterised temperature and density profile shapes are pre-
sented. The total plasma kinetic energy, assuming T; = T, scales as 7, S hmer ) p‘goi'w
and is independent of B;. The electron temperature profile peaking factor scales as
<—§°:7I:—>— = .94(4.04)g, %74 in close agreement with the assumption of classical re-
sistive equilibrium. In the inner half of the plasma, the inverse fall-off length for both
temperature and density has a strong dependence on g,, with the temperature depen-
dence being more pronounced. Outside the half radius the g, dependence disappears
but the density profile broadens near the edge with increasing plasma current. A second

database of moderate density, moderate g, discharges is presented for comparison.




1. INTRODUCTION

In most high magnetic field tokamaks, the experimental Ohmic energy confinement
time increases roughly linearly with plasma density over a large range of densities. In
general, moderate field devices observe a similar but weaker increase in confinement
time at small to moderate densities. Unfortunately, the Ohmic energy confinement time
saturates at higher values of the Murakami parameter 7.R/B: [2] . This phenomenon
is termed density roll-over and, under usual operating conditions in ASDEX, occurs at
line-averaged densities around .25 x 102°m~2 and magnetic fields on the order of two
Tesla. (Pellet fuelled discharges and the recently discovered Improved Ohmic Confine-
ment regime on ASDEX [3] are not considered here.) We present a statistical analysis
of the bulk parameter scalings and profile shapes in this saturated high density regime.
For a detailed discussion of the theoretical aspects of profile shape determination, the
reader is referred to [1], which we abbreviate as KRML.

The high density database consists of 105 pairs of temporally compressed experi-
mental electron temperature and density profiles from 50 ASDEX deuterium discharges
with a corresponding set of bulk plasma parameters and equilibrium flux surface infor-
mation. Each compressed profile typically consists of the time average of 12 consecutive

‘raw’ profiles sampled at 17 msec intervals using the ASDEX Nd:YAG (‘YAG’) Thom-

son scattering system [4].

All profiles are measured during the current flat-top Ohmic phase of the discharge.
Apart from making the data analysis more manageable, the preliminary compression
had the effect of strongly reducing profile fluctuations due to sawteeth. Such averag-
ing is free from bias as long as the sawtooth period (~ 10msec) is incommensurate
with the sampling period. Some typical parameter values for this database are the
line-averaged electron density 7, = .4 x 102°m~3, the plasma current I, = 400kA,
and the cylindrical edge ¢, = 2.5. ASDEX discharges have a fixed circular geome-
try with Rplasma = 1.65m and @minor = .40m. Table I(a) presents a more detailed
summary of the database. All datapoints consist of double-null divertor discharges in
deuterium from three consecutive shot days (404 to 406) spanning a one week period
in February 1986 during which titanium gettering was extensively used (about every
third discharge). One of the experimental goals for these shot days was a density limit
investigation, resulting in the presence of a density ramp of .2 to .4 x 102°m~3s~! for
10 out the 50 discharges, which accounted for ~ 50% of the datapoints. In selecting
the discharges, care was taken to cover as wide a range in ASDEX control parameter
operating space as possible. The main toroidal field is relatively seldom varied, how-

ever, and two thirds of the datapoints are clustered at toroidal magnetic field values
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of 1.8T or 2.2T . Nevertheless, the distinction between g, and plasma current scal-
ing will be quite apparent. Bolometric measurements showed that radiation losses for
these discharges (10% < Prqd/Pormic < 40% , increasing with density) were strongly

localised at the plasma edge.

For comparison, we present a complementary analysis of a second database (38
datapoints from 38 deuterium discharges) of moderate density (7, =~ .3 x 102°m~3),
moderate ¢, (g = 3.1), non-gettered, Ohmic discharges which is summarised in Ta-
ble I(b) and includes discharges with densities centred around the transition to the
roll-over regime. These discharges were made over a six month period spanning 64
shot days from August 1985 to February 1986 and were selected from days where the
vacuum vessel was in a nominally normal state (no gettering, stainless steel walls). At
other times within this period, however, the experiment was run under a variety of
conditions including carbonised walls and three days of operating with He as working
gas. In addition, the vessel was open for several weeks in December 1985. The YAG
system was calibrated using Raman scattering from hydrogen gas on two occasions
during this period. Our database contains no data quantifying the resulting changes
or residual effects of these operating periods on the wall condition and, in particular,
the condition of the YAG diagnostic window itself. Hence we expect the residual error
to the fits to these experimental data to be larger. For these reasons, the scalings of
the second database are included largely for purposes of comparison. The distribution

of datapoints for each dataset is displayed in the combined Hugill plot (Fig. 1).

The two databases differ in three parameters, 7¢, ¢q, and wall condition (gettered vs.
non-gettered). Thus the combined database is largely clustered in two cells of the eight
possible combinations. Furthermore, some scaling differences between the two sets of
data were visually apparent in preliminary efforts at fitting the combined dataset. By
analysing each database separately, we are able to estimate secondary, weaker effects
that are not immediately apparent in a joint analysis. In our case, these effects are
weak current and density dependencies of the outer section of the normalised density
profiles. If the two data sets were combined, these weaker effects would be obscured

by artificial secondary scalings arising from the clustering mentioned above.

As is typical of single machine databases, geometric parameters such as the plasma
position and cross-sectional area vary very little (about 1%) and, once the channel
positions have been mapped onto the normalised flux surface coordinate (0 < r < 1),
these variables are ignored in the analysis. We assume that the macroscopic plasma
state is essentially determined by the line-averaged density 7., the total plasma current
I, and either g, or the toroidal magnetic field B;. These parameters represent the
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major control parameters which the experimentalist utilises to vary the plasma state

in an Ohmic plasma.

The condition of the plasma wall may significantly influence plasma performance. In
an effort to include these effects, an additional plasma variable such as the effective ion
charge Z.yy, or the total Ohmic power Pq is sometimes used as an extra independent
variable. Both Z.ss and the loop voltage Ujoop depend on the control parameters
7te, I, and g, , and therefore are not purely measures of the condition of the plasma

wall.

To examine the extent to which the Ohmic power and Z.ss vary independently of
the control parameters 7., Ip and g, , we carry out a principal component analysis
(PCA) [5]: The correlation matrix of the logarithms of 7, Ip, ¢a, Zess, and Pn
is calculated and diagonalised (see Table II). Each eigenvalue is interpreted as the
sample variance of its corresponding principal component over the database, and a
small eigenvalue indicates a near collinearity between the original variables. Since
the principal components, by construction, are statistically uncorrelated, the sum of
a subset of eigenvalues gives the cumulative variance explained by the corresponding
subset of principal components. We find that, for both databases, over 97% of the
data variance can be explained by the first three components. The residual 3% of the
total variance is ascribed to noise in the temperature measurements which affects Z ¢y
and noise in Vjoop which affects both Z.;y and Py . Hence, we discard the principal

components having the two smallest eigenvalues.

The remaining eigenvectors span a three-dimensional subspace. This subspace can
be spanned by any set of three well-conditioned linear functions of the five variables.
That 7z, I, and ¢, in fact constitute such a well-conditioned set is checked by re-doing
the PCA for these three alone. The eigenvalues of the 3 x 3 correlation matrix, also
listed in Table II, are all of the same order of magnitude, indicating that, unlike the

larger set, no near collinearity exists between them.

For scalings of the bulk parameters, we preferred to use the logarithms of ne, Bt,
and I, because the correlation between I, and B; was less than that of either variable
with g,. The dominance of ¢, in determining plasma profile shapes motivated us to

replace B; with g, for the profile shape analysis.

2. BULK SCALINGS

In this analysis, we use the Spitzer value for the effective ion charge Z.ss , which

is calculated from the electron temperature profile assuming resistive equilibrium (well
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satisfied for the current flat-top profiles selected) and Spitzer conductivity. We note that
it cannot be used as an independent parameter in the temperature profile regressions
below. Recent Bremstrahlung measurements on ASDEX (6] show that for the saturated
Ohmic confinement regime (to which our high density database belongs), Z.sy is very
flat over most of the plasma radius, though tending to rise strongly near the boundary.
We adopt the conventional assumption of zero radial dependence here. The ion density
is calculated with the assumption that the sole impurity is oxygen. The plasma kinetic
energy, Wpiin = 5 [ (neTe + niT;)dv, is calculated by assuming the ion temperature
is equal to the electron temperature, T; = T,. This assumption is justified when the
electron-ion energy exchange time is much shorter than the energy confinement time.
In the high density database, the typical values are 7.; = 5 msec and 75 = 75 msec . In

some of the moderate density discharges, this condition is at best marginally satisfied.

As an independent measure of the plasma energy content we also make use of the
diamagnetic flux measurement on ASDEX whose interpretation is not affected by the
uncertainty in 7 and is further simplified, in the case of Ohmic plasmas, by the absence
of pressure anisotropy. The extreme sensitivity of the measurement (% ~ 107%)
to such factors as slight mechanical displacements of the diamagnetic loop means,
however, that the typical error associated with the derived value for beta poloidal is
6(Bp(dia)) = £.05 . For By(dia) = 0.3 (the lower limit in each database) this implies
an error of some +15% in the diamagnetic energy and confinement time. For these
databases, the diagmagnetic energy is systematically greater than the kinetic energy

with an energy-independent offset ~ 6 £ 2 kJ.

The models considered are of the form y = Zi a;z; + € where y and z denote the
logarithms of the dependent and independent bulk plasma variables respectively. The
root mean square error (RMSE) of the fit is \/ Z?;l(y,- — 9:)2/(N — p) where p is the

number of independent variables (including the intercept) and §; is the fitted value

of y;. As our response variables are natural logarithms, the RMSE corresponds to a
relative error in the physical variable. We also quote the squared multiple correlation
coefficient R2, which represents the fraction of total variance about the mean accounted

for by the fit: R = .(§i — )%/ >_;(vi —¥)? . In the bulk scaling results that follow,

all plasma variables are expressed in the units of Table I.
Total Plasma Energy Scaling

The plasma energy content from kinetic data for the high density database satisfies
Wpy,, = 133(1+6)7s .54&:.01Ip.so:b.04Bt.06ﬂ:.o4 RMSE = .04 R2 — .965

Similarly, the scaling law based on the moderate density database is
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kain =l 128(:t6)'ﬁ-': .53:l:.031'p.80:!:.05Bt.13:i:.05 RMSE = .04 R2 — 059

The plasma energy content inferred from the diagmagnetic signal for the high density

database is described by

Wpy;, = 130(+6)7; .40:};.01Ip.ssi.o4Bt.13i.o4 RMSE = .04 R2? = .043
whereas the moderate density database gave a poorer fit:

Wpy;, = 83(+10)7; .213.:.05Ip.77;|;.07Bt.3ai.os RMSE — 06 R? = .878

The significance of each regressor in the least squares model can be interpreted in
terms of &/&(&) , the ratio of the fitted coefficient to its standard error estimate. Under
standard least squares assumptions, including (a) the correctness of the regression
model and (b) normally distributed errors in the dependent variable, the ratio &;/6(&;)
has a Student’s ¢ distribution under the null hypothesis that a; = 0 . When the
probability of ¢ exceeding this ratio is less than some small specified significance level:

o (Ll s} <<

then the null hypothesis is rejected and the regressor is considered significant. For many
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degrees of freedom, as in the present case, Student’s ¢ can be well approximated by the
normal distribution. Using € = .05 i.e. a 5% rejection level, we then have tc=.05 = 2.0
and hence a significance criterion of |&/&(&)| > 2.0 . This result is no longer exact,
though still approximate, for mild violations of the normality assumption. A seriously
deficient model can, however, invalidate this interpretation of the coefficient standard

€rrors.

It is often useful to have an estimate of the contribution to the overall R? from each
independent variable. If the regressors are (approximately) uncorrelated, we have the

following useful relationship (see Appendix A):

t2
A(R?); = 'ﬁf_—p(l -R7), (2)
where the LHS denotes the decrease in R? if the j** regressor is removed from the

model.

Using these criteria we see, for instance, that the B scaling for Wp is insignificant
for the high density database, while in the moderate density case it is marginally
significant. In both cases, its omission scarcely affects the goodness of fit (eq. (2) gives
A(R?) =~ .001, .007 respectively).




Volume Averaged Electron Temperature

Both databases are in rough agreement with the Pfeiffer-Waltz (7] and JET Ohmic
scalings [8] . The high density database satisfies

< T, >= 0.639(+0.03)7; —-52+.01 9T+.04p —.04+.04, 'RMOE = 04 R2 = .947
Similarly, the moderate density database satisfies

€ T, = 0:605(10.06)ps ~-01H04 SIR00 5 QLL0T " RMSE = 105" R?="013

Here, B; is insignificant for both databases and its omission has a very small (~ .001)
effect on R? . We do not present regressions of the temperature versus the Spitzer
Zef g, since the latter quantity is derived from the temperature profile:

3

(Ti)areavloop (3)

Less X
o IpRplu.s

(neglecting variations in the Coulomb logarithm).
Temperature Profile Peaking Factor

The lack of electron temperature profile variation with respect to changes in plasma
parameters is an active research topic. In its purest form (9], profile consistency postu-

lates a Gaussian shape (for consistency with [9] we use a dimensioned radial coordinate

here):
T,(r) ~ T.(0)exp(~ 2b55) 0

Making the classical resistive equilibrium ansatz n| o« T~3/2 , except for weak radial
variations (due, in our case for example, to a possible Z.ss dependence on the radius),

the current density profile then obeys

2

Jj(r) = J(0)exp(—b>5) (5)

a?
The constraint [ J(r)27rdr = I, the plasma current, together with the relations
do = ?—’Lﬁ:—?%u and go = 2Bte= then leads to the approximation b =~ ga/go (Where
exp(—¢a/go) < 1 is assumed). The local shape parameter Lil = %InTe(r) =
4¢q7/3goa? for this model is accordingly predicted to be proportional to both r and,
at any fixed r, to ¢, (assuming fixed go for sawtoothing profiles). As will be clear later
from the profile parameterisation results, both these predictions are in disagreement

with ASDEX Ohmic electron temperature profiles, the second one grossly so. Instead
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of assuming the particular profile shape (4), we consider the following more general

relationship between the temperature and the q profile,

_ 7 Bior _ 271'1’2Btor _ 2Bior
RBpoi(r) woRI(r) woR < J >,

q(r) (6)

where < J >,= f:,zo J(r')2nr'dr’ . Assuming classical resistive equilibrium, we
immediately have
< T3/2 >1‘1 Sz Qrg

< TS/Z >T3 id Qr;

(7)

where the inexactitude reflects the radial variations already mentioned. Note that no

assumptions are made here about the functional form of the temperature profile.

Apart from the edge safety factor g, the only other independent information on the

g profile is the assumption that, since all profiles are sawtoothing, ¢(r < rq=1) ~ o ,

a constant for all profiles with a value close to unity. Thus, with the sole assumption

of resistive equilibrium, we would expect the peaking ratio (7) evaluated at r ~ 0 and
r = a to scale as

e > re0 dr=a

< T4/3 Zr=a % Gre0

= ga/q0 (8)

and to be independent of other bulk parameters. Since the YAG channel closest to the
magnetic axis lies typically on the 14% flux surface, T} is essentially an extrapolated
quantity. We present, therefore, scaling results for the LHS of expression (8) at both
r = 0 and r = .2a where the latter radius satisfies the double requirement of being
safely inside the inversion radius for all profiles as well as lying in the data region. Due
to the averaging procedure, however, it is also affected somewhat by the extrapolated
section of the profile. For the high density database we obtained

T3/2

<T3/gz> - — 1.02(:*:06)?17; .03:!:.02Ip.11:t.09qa1.13:*:.06 RMSE — .06 R2 — -874

<<T;;22>>=_.2 _ .99(:‘:.04)?1‘; .03:!:.0151P.07:I:.06qa1.07:1:.04 RMSE = .04 R2 = 031

while the moderate density database yielded

T3/2

b = 96(£.17)R; 1SEIIL, 71520, 107214 RMSE = .10 R? =.795

3/2

T — —_— . i —.07+.10 _ : — —
iwg%ﬂa = 1.09(£.10)7, 13+07], 104,:95+.09 RMSE = .06 R? = .883

Since for all four regressions, the #; and I, coefficients are at best marginally sig-
nificant at the 95% level, the results indeed strongly indicate that the peaking factor

(8) is determined solely by ¢, . We now assume a sole ¢, dependence and re-do the
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regressions to get a closer confidence interval for the constant factor and the exponent.
For the high density database we get

T3/2
<T3/3>,._,

ST 2rmaa = 93(+.03)q, 10303 RMSE=.04 R?=.925

= .94(+£.04)g,}°"+%4 RMSE = .06 R?=.866

while the moderate density database yielded
T3/2

SO ;| | [N,

<T3/2>,=,

ﬁ—wf;f?;:u = .97(+.07)g, %7 RMSE = .07 R?2 = .870

= .85(+.11)g,1'13+1© RMSE =.10 R?=.780

In none of the four cases can the null hypothesis that the g, exponent is unity
be rejected at the 95% confidence level. The second regression yields the narrowest
95% confidence interval: .97 < g, exponent < 1.09 . The constant factors similarly
are not inconsistent with a value of unity (with the marginal exception of the second
regression: .87 < const < .99). These results are consistent with, but more specific
than the inequality

g2/3 < T(0)

< 9
_<T>_Qa. ()

derived by Waltz et al [10] also using classical resistivity plus sawtoothing. Since
we are working with < T%/2 > rather than < T >%/2 as well as with sawtooth-
averaged profiles, the upper and lower bounds of the inequality converge in our case.
For completeness, we regressed the ratio of the two alternative normalising quantities

on ¢, to obtain, for the combined database,

<SPS,

<T >?-/=24

= 1.01(£.005)g, 1°%%%5 RMSE =.01 R?=.699

The use of < T >3/2 as normalising factor in the peaking factor regressions would
accordingly have added =~ .10 to each g, exponent. It is interesting to note that, for
the more accurate high density database regressions, the use of this, in our opinion less
appropriate, normalising factor would have lead to the rejection of the null hypothesis
of a g, exponent equal to unity and hence to inconsistency with (8). We believe these
results constitute striking evidence that the resistive equilibrium ansatz is sufficient
to explain quantitatively the peaking factor, that is the global shape parameter, for
ASDEX Ohmic temperature profiles. In later sections of this paper we investigate how

the bulk parameter dependence of Lil, the local shape parameter, varies radially.




Loop Voltage/Ohmic Power

We present the loop voltage scalings. The Ohmic power scalings differ from these by
exactly one power of I,. For the high density database, the loop voltage scales as

Vieop = 2.38(0.1)m; 36+:02,-12£.05 g, = 27204 RMSE = .04 R? = .864
Similarly, the moderate density database satisfies
Woop - 240(:|:0,1)ﬁ; .30:{:.02Ip.lgi.OSBt—.31:i:‘03 RMSE = .03 RZ — .8906

Due to the additional factor of I, on both sides, we get necessarily higher R? values
(.935 and .984) for the Ohmic power regressions.

Spitzer Z effective
For the high density database, the Spitzer Z.ys scales as

Zegs = 2.90(+0.18)m; —.48:1:.02Ip.ﬁ?i.oth—.u;{:.os RMSE = 0.05 R2 = .893
Regressing the impurity contribution to Z.ss gives an entirely different scaling:

Zosr — 1= 2.21(+0.33)7; —1.14:[:.04Ipl.51:t.12Bt—-.81:|:.12 RMSE = .18 R2 = .844
For moderate densities, the Spitzer Z.s scales as

Zess = 2.67(+0.58)m; —-69+ 08 0411 p —22%13 RMSE =.09 R?=.7T14
The impurity scaling yields

Zess — 1 = 1.83(£0.71)7; ~1-10%:14 1.07£:19p, ~ 4321 RMSE = .16 R? =.709

Using the relation ny,p = ne — )_; niZ; (i-summation over impurity species only),

Zsr=Y. i ZJ.2 /. (j-summation over all species) can be re-expressed as

Zi ni(z? - Zf) (10)

Ne

Zeff =1+

With this representation, we see that the 7i; exponents in the impurity scalings plausibly
suggest an impurity density (almost) independent of the line density. The strong I,

and B; scalings are not so readily interpretable.
Energy Confinement Time

The I, and 7 dependencies of the total plasma energy and the Ohmic power ap-
proximately cancel to give a relatively weak dependence in 7g. This makes the energy
confinement scalings less pronounced. The high density database yielded the following

scaling for the kinetic 7g :

TEkin = 56(:]:5)?&-; .18:|:.03Ip—.21:{:.OSBt.34:E.08 RMSE = 07 R2 — .392
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The moderate density database fit yielded

TEkin = 53(:':6)?’:6- .23i.051—p-—-.39:h.063t.44:1:.07 RMSE - -05 R2 iy '709

The equal and opposite tendency of the I, and B; coefficients, especially for the mod-
erate density database, suggests a 7; I, g, or a @iy B ¢, representation. We show the

former:
TBkin:= 12(18)%, .18:};.03Ip.12:t.11qa,34¢_o7 (High density database)
TEkin = 14(16)7¢ '22:':‘05Ip‘osi'osqa‘“i'm (Moderate density database)

The confinement time derived from the diagmagnetic measurement of the energy con-

tent for the high density database scales as
TBdia = T3(£4)n; O1EO0Z[ 1709, 41206 RMSE =.06 R? = .406
The moderate density database fit yielded

TEdia = 55(£5)7g-10£-05 2310, .65+.08 RMSE = 06 R? =.704

3. PROFILE SHAPE ANALYSIS

The temperature and density measurements are obtained using the ASDEX sixteen
channel YAG Thomson scattering diagnostic [4] with a sampling rate of 60 Hz. This
system consists of sixteen spatial channels located in the vertical planeat R =1.63 m .
They are spaced at approximately 4 cm intervals from Z = .200 m to Z = —.394 m.
We did not use the 16*® channel which lies very close to or on the separatrix, as the
measurement failed for the majority of profiles in this database. The radius (averaged
over all profiles) of the flux surface passing through each channel is presented in column

2 of Tables III and V for the high and moderate density databases respectively.
3.1. Radial Representations

In this section, we discuss continuous radial representations of the plasma profiles.
We consider data consisting of n separate ‘compressed profiles’ of a spatially varying
plasma variable such as temperature or density, at p distinct radial points. Each
‘compressed profile’ is the average of about m = 12 consecutive measurements taken
at 17 msec intervals. We do, however, make use of the uncompressed profiles for the
purpose of estimating the channel-by-channel raw measurement fluctuations within
each discharge. Thus our temperature data can be described by T;;(r]), where ¢ =
1,...,m labels the uncompressed timepoint, 7 = 1,...,n is the compressed profile index,

and | = 1,...,p denotes the radial channel number. A preliminary transformation of
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the physical measurement locations 7] to the corresponding flux surface radii ry, is

performed.

Continuous representations have the following characteristics: a) A large number
of dependent variables, represented by point data, is replaced by a reasonably small
number of coefficients which nevertheless will be sufficient to represent all the principal
features of the profiles. b) Profiles measured at two different sets of radial locations
may be compared. This is relevant, e.g., where we wish to compare YAG temperature
measurements with electron cyclotron emission (ECE) data measured at different spa-
tial locations. c) Smoothness is imposed in the belief that the profiles are in diffusive

equilibrium.

Instead of fitting the profile itself, we choose to fit its natural logarithm Y . Min-
imising the residual of the logarithm of the plasma profile corresponds to minimising
the relative rather than the absolute error. Preliminary comparisons with low order
spline or polynomial fits to the actual profiles revealed that the logarithmic fit tended
to have not only smaller residual errors on the logarithmic scale but also on the usual
physical scale. This indicates that the ‘exponentiated form’ of the logarithmic fit is
a better approximation to the actual plasma profiles than a comparable low order fit
to the linear profile. We note that the difference between logarithmic and linear fits
decreases as more fit parameters (either spline knots or higher order polynomial terms)
are added. Logarithmic fits have several other advantages. Firstly, the predicted profile
can never be negative. Secondly, well-known power law-type scalings reduce to linear
models. Finally, if the noise level is proportional to the absolute value of the measure-
ment (an admittedly idealised situation), then, on the logarithmic scale, unweighted

least squares may be used.

Spline representations, which we employ here for profile parameterisation, give flex-
ibility in choosing between local resolution and compact global representation. In ad-
dition, the parametric dependencies of the spline coefficients are less prone to influence
by non-local features than polynomial representations. The profile parameterisations
presented in this article are based on a twice continuously differentiable spline with
selectable knot count v , which is forced to be parabolic inside the first knot. The
radius is decomposed into v + 1 regions with knots at ry, r2, . .., r, . This profile

may be parameterised explicitly by:
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(p(r1) + 1" (0)(r* —r3)/2 for 0 < r < r; (Inner Region)
p(r1) + @ (0)(r?2 = r?)/2 + c1(r —r1)® for r1 <r < ry ( Region 1)

p(r1) +p"(0)(r? —r3)/2 + ea1(r — r1)®
u(r) =<1 +ea(r —rq)d) for ro < r < r3 (Region 2)

-----------------------------------------------------------------

p(r1) +p"(0)(r? = r3)/2 + ca(r — r1)3
L 4ea(r—r2)®)+... +eu(r—r,)® forr, <r <1 (Outer Region)

(11)
In more compact fashion, we express the spline u(r) as
v+2
u(r) = Y axH(re)ex(r) (12)
k=1
where v is the number of knots used, aj represent the spline parameters:
wu(r1),u"(0),e1,¢2, - . . ¢y ; wk(r) are the polynomials: ©1(r) = 1, p2(r) =

(r* = 73)/2, pa(r) = (r —7r1)% . . . puta(r) = (r —1.)% and

0 forr<rg

H(re) = { (13

1 forr>rg

is the Heaviside unit stepfunction (rx = 0,0,ry,72,. .. 7,) . As well as the parabolic
restriction near the axis, a ‘natural’ spline boundary condition, u”(1) = 0, can be

imposed. This boundary condition is implemented in the SAS REG procedure using
the RESTRICT statement [11] .

3.2. Parametric Dependencies of Plasma Profiles

Since the plasma profile shapes depend on the bulk plasma variables such as gq, the
spline coefficients will be functions of these bulk plasma variables. Since our database is
not expected to contain sharp transitions in behaviour in parameter space, a low order
parametric representation will be adequate. Therefore we approximate the smooth
parametric dependencies of the profile shape by linear or possibly quadratic polynomials
in the logarithms of the bulk variables.
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Let Z be the vector consisting of the bulk plasma variables 7g, ¢a, Ip, and let z; be
any component. We define the linear basis functions go(Z) = 1 (intercept), g;(Z) =
;f is a representative value of the variable z; in the database
of interest. For ease of comparison, we choose for both databases the same normalising
values of ¢ = 2.5, Bf = 20 T, I; = .4 MA and n, * = 4 x 102°m~3, although

these do not constitute a typical parameter set for the moderate density database. By

In(:z:_.,-/:z;f), 7 =1,3; where z

normalising the bulk variables to :z:;f, the value of the response variable at the intercept

in the regression becomes the predicted value at £ = z*.

To estimate the parametric dependencies of the profiles, we represent them as

Y(r,2) =) o, (Z)H (k) ek (r) (14)

k,j

Higher order terms can be represented, if necessary, by extending the set of possible

basis functions: g;,1(Z) = In(z;/z})In(zi/z]).
3.3. Error Structures:

We distinguish between several categories of random profile variations. By time point
to time point variations, we denote those processes which fluctuate on a time scale at
least as fast as that of the diagnostic sampling rate. These include statistical noise
from the measuring process and plasma fluctuations arising, in particular, from the
m = 1 sawtooth instability. Discharge to discharge variations are changes in the plasma
profiles not observed within a single discharge. These discharge variations include
effects such as impurity accumulation on the diagnostic windows and the condition of
the plasma wall. These impurity and plasma wall effects tend to vary to an even larger
extent from one experimental operating period to the next. In addition, discharges
separated by a recalibration of the YAG system can exhibit systematic differences in

the measured profiles.

As discussed in appendix B, this hierarchy of temporal scales for plasma variation
generates a compound error structure which can be treated statistically. For simplicity,
we analyse the time averaged data and neglect the compound error structure. Since
the profiles in our database are already averaged over twelve consecutive time samples
(see introduction), they no longer possess the same variance as the original uncom-
pressed observations. For time averaged datapoints, Y (r,Z) = L5, Yi(r,Z), the
total unexplained variance can be decomposed into:

A2
2 Oint ~2
N6,y = n—"% + NgigOg;s (15)
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where 6;y,: is an estimate for the standard deviation of the within-discharge or ‘internal’
fluctuations, m is the number of time points in the compressed profile (in our case m =
12 ), n is the number of compressed datapoints, Ng;, is the number of distinct discharges

and &7;, is an estimate for the variance due to discharge-to-discharge changes.

2

To estimate the within-discharge variance 67, , we analysed the original uncom-
pressed data and, for each channel, calculated the empirical variance for each 12-point
set separately. We estimated 62, by regressing the set of n (compressed) datapoints
for each individual measurement channel against the bulk variables and noting the un-
explained variance. The difference, as given by the third term in (13), is an estimate
of the discharge-to-discharge variance (63;, is calculated for the high density database,

for instance, using n = 105 and Ngis = 50 ) . Columns 3 and 4 of Tables III(b)-VI(b)
display 6int/4/12 and 640t -

3.4. Coeflicient Estimation

The weighted least squares formulation of the problem is the determination of that

vector of coefficients @ which minimises the expression:

b (Yj,obs(ﬂ) 5 Yf,fit(fh.a.)) 2W("l) (16)

3l

where W (r;), | = 1,...,15 are appropriately chosen weights for each of the 15 YAG
channels. We investigated two approaches for determining W (r;) . In the first method,
we rely on the total unexplained variance for each channel (as discussed in the previous
subsection) as a measure of the channel weighting: W (r;) = &;,2(r;). A second approach
to the selection of the regression weights, is the iterative estimation of the residual

variance of the spline fit at each channel:

8tntn)(r) = %Z(}?,aba(n) — Y5 tit(n) (0, 2) — 57(?‘1)) (17)

F,

[*P measurement channel which

where 6Y (r;) is a possible systematic bias in fitting the
can be estimated by including an indicator dummy variable for each of the 15 channels
in the regression. The inclusion of this term prevents undue downweighting of channels
where the parameterised profile may consistently fail to match the observed data. For
the first iteration, the variances &(21)(1-;), are initialised to one (equal weights). The
iteration is terminated after the third iteration. We then have W (r;) = 6(_,3 ot 5t e,,_)(rz).

If the regression model and the assumed error structure is correct, this is a likely to be
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a consistent and efficient estimate (see e.g. [12]). Nevertheless, we regard 6,2 (r;) as a
more robust estimate than &(_Ifst «;ter.)(”'f) since it depends only on the bulk variables
whereas the latter estimate also depends on the spline model and has the additional
problem of the strong (anti)correlation of outer channel residuals. Therefore we prefer
to use W(r;) = 652(r;) . The dominant effect of this reweighting is to decrease the

influence of the channels near the plasma boundary where the relative error is largest.
3.5. Criteria for Additional Free Parameters

Some relevant statistical tests for the significance of an additional variable are dis-
cussed in KRML. In the case of independent errors, these criteria are given by the F
test [1] and Mallows C, statistic [11] . Mallows C, statistic is the sum of the total bias
in the regression and the total variance of the predicted values. As more free parame-
ters are added, the bias decreases but the variance increases. To determine whether to

add another parameter, one can minimise the C, statistic or apply the F test.

In practice, these statistical approaches often either under- or overestimate the
significance of the additional variables due to the fact that correlations in the errors are
neglected. In addition, these tests neglect systematic errors and assume that the ideal
data, without measurement errors, is exactly describable by the regression equation
under consideration. Thus many spurious dependencies may be included and real

dependencies missed by unthoughtful or automated use of these methods.

4. PROFILE PARAMETERISATION TECHNIQUES

In this section, we present a number of techniques to improve the representation of
profile shapes. Logarithmic representations are employed for the reasons outlined in

section IIL
4.1. Exponential Form for Low Order Representations

Initial efforts concentrated on fitting polynomial representations of the form:
T(r) = Toexp(ar® + br* + cr®) (18)

This model was successful in reproducing the general properties of the ASDEX profiles,
but not detailed features. Sharp gradients and local flattenings, perhaps due to mag-
netic islands, were poorly modelled. A disadvantage of the above model, exacerbated
by the addition of even higher order polynomial terms, is the insensitivity of the inner
region to r* and higher powers as well as the high degree of stiffness of these polyno-
mials. To enable us to fit each region of the profile in moderate powers of the radial
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coordinate, albeit at the price of limited continuity at knot boundaries, we turned to

spline representations.
4.2. Once and Twice Continuously Differentiable Cubic Splines

Following [13] , we first used a five parameter, two knot Hermitian spline, i.e. one
with no continuity requirement on the second derivative. This turned out to be signifi-
cantly better in parameterising steep gradients and abrupt spatial transitions in profile
shape than the polynomial model. By experimentation, we found that a total of four
knots, requiring seven regression parameters, gave a practical balance between fitting

accuracy and significance of the spline coefficients.

A serious disadvantage to the Hermitian spline emerged, however. By allowing dis-
continuous second derivatives at the knots, continuous transitions in plasma behaviour
were modelled as sharp transitions across the knot boundary. This effect was especially
prominent in the slope of the inverse fall-off length as a function of g,. After some in-
vestigation, we opted instead for the twice differentiable spline model (11) described in

section 3.1 above.
4.3. Spline Knot Locations and Boundary Conditions

The knot positions are chosen such that the measuring channels are distributed
roughly equally in the various regions between and outside of the knot positions. Too
many knots result in spuriously oscillatory fits. The knot locations were varied manually
to achieve a near ‘optimal’ fit as determined by the balance between goodness of fit

and significance of the fit coefficients.

The innermost channel is typically located at r = .14 and the outermost channel at
r = .89 (Table III column 2). When third degree polynomials were used in the innermost
and outermost regions, the extrapolated curves (to r = 0 and r = 1 respectively) had
unphysical oscillations. These oscillations were eliminated by reducing the number
of free parameters for these regions. Near the origin, the profile was forced to be
parabolic. The natural boundary condition, /(1) = 0, was applied at r = 1, but
only to the bulk parameter—-dependent spline coefficients. Imposing it on the intercept
coefficients causes a strong increase in the overall regression RMSE. We settled on
the following 5-knot set: 7knot = .2,.3,.4,.5,.65. This yields a model with seven
spline coefficients per bulk parameter basis function used in the fit, plus boundary
conditions. The profile parameterisations presented later were carried out using the
linear basis functions g;(Z); 7 = 0,3 only. Some quadratic and cross terms were very
significant in preliminary regressions involving both databases simultaneously. For

reasons given in the introduction, however, the results we present come from separate
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profile shape analyses for each database. For these regressions, second order terms
were rarely significant and the goodness of fit was scarcely affected by the restriction
to linear terms. Using the three bulk parameters 7., I, and ¢, , we have a regression
model with a total of (intercept + 3 bulk parameters) x7 — 3 restrictions, i.e. 25
degrees of freedom to fit 15 x 105 = 1575 individual temperature (or density) data.
With the foregoing boundary conditions, this spline representation tended to be rather
stable in extrapolating profile behaviour into regions where there were no measurement

channels.
4.4. Normalisation

The goal of our profile analysis is to determine the radial parametric behaviour of
the scale-independent local shape parameters L;cl = Tled%-Te and L,,‘lel = n—led%ne . This
is accomplished by first parameterising the logarithmic profiles themselves. This brings
up the problem of fitting the profile magnitude. We found that unless we normalised
the profiles before parameterisation, the residual sum of squares was dominated by the

uncertainty in predicting this nuisance parameter.

Originally, we normalised each profile by its line-average, calculated from the spline
fit. This normalisation greatly reduces but does not minimise the residual error in the
profile parameterisation since the line-average is itself a function of the profile shape.
Instead, we estimated the profile size parameters, using the SAS procedure GLM [11] ,
by treating the profile index as an indicator variable. This yielded as normalising
factor the only radially independent parameter in our spline repesentation, i.e. u(r1),
the profile value at the first knot which is sited at r = .2. Normalisation has the effect
of reducing by one the number of degrees of freedom for a given spline model. This led
to the number of degrees of freedom for the model consisting of a 5-knot spline with
coefficients dependent on 3 bulk parameters described in the previous subsection being

reduced from 25 to 21 for normalised profiles.
4.5. Operating Period Indicator Variable

In the course of determining 62,,(r;) for each YAG channel, plots of residuals versus
shot number revealed that the moderate density database residuals, whose discharges
spanned a period of over six months in contrast to the one week span of the high density
database, fell into four distinct groupings which we ascribe to four distinct experimental
operating periods (see introduction). This 4-cluster formation was observed for all 15
channels, although the pattern formed by the clusters differed for each regression. To
remove this operating period contribution to the overall unexplained channel variances
for this database, and hence to enable a comparison to be made between the two

databases, separate indicator variables for each operating period were added in the
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individual channel regressions used to determine 62, . These indicator variables were
not, however, included in the spline parameterising regressions. To do so would have
required an additional 60 independent variables (4 for each channel) which, in our

judgement, would have led to overfitting of the profiles.
4.6. Examination of Outliers

Apart from the operating period effects mentioned above, plots of raw versus fit-
ted data for the same channel by channel regressions revealed that a small number
of individual channel measurements from both databases produced strongly outlying
residuals (the worst case was one of 8.5 standard deviations). To arrive at a quan-
titative criterion for identifying suspect data, we analysed the Studentised residuals.
A Studentised residual is the error in the fitted value normalised to the RMSE. For
normally distributed errors, they have approximately a standard normal distribution.

If we consider a single Studentised residual, the probability that it lies outside +c is
1

€,wheree~1— (27)73 [ j-: e T dz . Considering now n uncorrelated residuals to-
gether, we have that the probability of all n lying inside +c is (1 — €)™. Hence the
probability of at least one among n Studentised residuals lying outside ¢ is given by
1—(1—¢€™ = p, say. Provided the correct model is used to fit the data, we sus-
pect any outlier whose Studentised residual exceeds +cg for a suitably small B (using
e=1—(1—p)» ~fB/nfor f << 1, we invert the probability integral to determine cg)-
We chose # = 1% which, for n = 105 and n = 38 , yields ¢ = 3.90 and ¢ = 3.64 for the
high and moderate density databases respectively. Using this criterion, we identified
6 suspect outliers from the high density database and 18 from the moderate density,

corresponding to 0.2% and 1.5% of the data respectively.

Profiles containing any suspect observations were now examined individually. In
most cases it was visually obvious that the affected channel was inconsistent with the
rest of the profile, and such observations were considered to be bad data. One discharge
accounted for the majority of the suspect data in the moderate density database. On
inspection, it was clear that the quality of the profile data for this discharge was so
poor that it was excluded entirely from the subsequent analysis, thereby reducing
the number of discharges from 38 to 37 for this database. On the other hand, several
suspect observations from a single profile in the high density database were not visually
inconsistent with the rest of that profile’s data. On investigating further, it turned out
that this discharge had the highest B; value (2.73 T) in the database. This highlights
the need to examine all suspect outliers individually, since the influential position of this
data suggests an inadequacy in the model used to fit the data rather than in the data

itself, and its rejection would be quite unjustified. The small number of observations
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deemed to be faulty were deleted and replaced by their respective predicted values to

maintain the block structure of the design matrix.
4.7. Measurement Asymmetries

Ten of the fifteen YAG channels in ASDEX are located in nearly symmetric positions
with respect to the horizontal midplane. By examining the residual errors for each
channel separately, an up-down asymmetry was found in the density profile (up-down
difference ~ 7%) The asymmetry was nearly uniform on all five pairs of measurement
channels and was independent of plasma parameters. No significant asymmetry was

found in the temperature profiles.

A possible explanation for this asymmetry is a spatially nonuniform distribution of
impurities on the diagnostic window. Assuming that for the range of scattered laser
light detected by the system (.8um < Agcatt < 1.06pum), the impurity accumulation
causes a spectrally uniform reduction in transmission, then the electron temperature,
which is calculated from the ratio of the scattering signals of two spectral channels at
the same spatial location, is relatively insensitive to such asymmetries and only the

density is affected.

To estimate and correct for this asymmetry, we expanded the set of bulk parameter
dependent radial basis functions to include a single asymmetry indicator variable which
takes the value of one for the channels above the midplane and minus one below the
midplane. The final regression model, the results of which are presented in the next

section, accordingly increases by one degree of freedom to give a total of 22.

5. EXPERIMENTAL RESULTS

5.1, Temperature

Table ITI(a) presents the descriptive statistics of the temperature profile for the high
density database on a channel by channel basis. Table V(a) displays the equivalent in-
formation for the moderate density database. The channels are numbered according to
their vertical position with channel 1 at Z = .200 m, channel 6 at Z = 0 m and channel
15 at Z = —.353 m. For each channel, the mean normalised flux radius is presented,
followed by the mean temperature and the spread in keV. The spread (this term is

chosen to avoid any confusion with ‘standard deviation’ in the sense of ‘regression er-

ror’) is just the ‘standard deviation from the mean’: spread = \/ (N—l—ﬂ Zf\;l (v — 9)%,
where 7 is the sample mean. Recall that before the regression, the profiles were nor-

malised by the size parameter from the GLM procedure, i.e. T (r = .2) obtained from
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fitting each profile individually. Columns 5 and 6 present the mean and spread of these
normalised profiles. Channels 5 and 8 have very small spreads since they lie closest to

the normalisation radius.

As we are fitting on the natural logarithmic scale, it is of particular interest to tab-
ulate the logarithmic or relative spread of the normalised profiles as a measure of the
total variation of the data for each channel. This quantity, together with the noise level
estimates and the results of our parameterisation of ASDEX Ohmic temperature pro-
files for the high density database is presented in Table III(b) (or V(b) for the moderate
density database). &;n¢/v/12 , the magnitude of the internal, within-discharge, relative
fluctuations scaled for the time averaged database profiles, is displayed in column 3.

Column 4 tabulates 6;0¢ , the total fluctuation level on the relative scale.

The ratio of the two noise estimates lies in the range .7 < &int/6t0t < 1 indicating
that the inferred discharge to discharge variance will be smaller than &;,: . Using the
RMS values for all 15 channels we find from eq. (15) that

Gais(rms) = /(6% (rms) — 62 ,(rms)) - n/Na;s = 1/(.0282 — .0252) - 105/50 = .018

int
For the moderate density database, .5 < &int/6t0t < .9 and, usingeq. (15), 64is(rms) =~
.030 so that, in contrast to the high density database, the total unexplained variance
here is dominated by &4;s . This result holds, despite having used operating period
indicator variables (in determining &: ) to remove the variance contribution due to
the four operating periods spanned by the moderate density database (see section
4.5 ). Table III(b) column 5 shows the (relative) RMSE calculated for each individual
channel from the parameterised spline fit to the profiles. The generally close agreement
with column 4 (65i:(rms) = .031; 6t0t(rms) = .028) indicates the adequacy of 5-knot
spline model. For the moderate density database, in contrast, the fitting errors are,
in general, much larger than the noise levels (6:t(rms) = .063; &10t(rms) = .039 ).
This is explained by the fact that, unlike the 61,; channel-by-channel regressions, we
did not use operating period indicator variables in the spline parameterisation of the
moderate density database profiles (section 4.5). The average channel regression errors
on absolute scale for the normalised profiles may be calculated by multiplying column
5 by the appropriate elements in Table III(a) (or V(a)) column 6. The RMSE values
for all 15 channels on the absolute scale are .024 and .042 for the high and moderate

density databases respectively.

In Figs. 2 and 3 we present reference profiles and parametric dependencies of the
minor radius-normalised (negative) inverse fall-off length (IFOL) as a function of ra-
dius. Dashed curves indicate local 95% confidence bands (see KRML for the calculation

procedure as well as a discussion on local and global confidence bands). By reference
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profile we mean the evaluation of the parameterised spline fit at the representative set of
parameter values Z = Z* as discussed in section 3.2. Since the vector of basis functions
§(@) = (1,In(z1/2}),In(z2/x3), In(z3/z3)) reduces in this case to §(Z*) = (1,0,0,0),
the reference profile is just that described by the set of intercept spline coefficients. The
parametric radial dependencies of the IFOL are obtained by differentiating the parame-
terised spline representation for the normalised profiles both spatially and with respect
to the basis function of the desired parameter. Fig. 2(b), for instance, shows the radial
behaviour of the g, dependence which, using eq. (14) (with ¢1(Z) = In(ga) — In(g3) )s
is given by:

o(—L=1 2y (r. 2
;lnf:)) N “33};1((';1'_) - —% %:ak,lﬂ("k)‘pk(r) (19)

We see that at r ~ .35, where the profile shape is most sensitive to ¢, a unit change
in In(g,) causes a change of ~ 5 in the negative IFOL, corresponding to 12.5 m~!
for an ASDEX minor radius of .4 m. Parametric dependencies of ‘experimental’ point

values are also displayed. These are calculated by differencing the measurement values
(Tig1—Ti)

S(Tia1 +T)(riv1—ri)

set of n observations on 7g, I and ¢, . Such a point value has the advantage that it is

of pairs of neighbouring channels: Lt-—1 = and regressing each such
more local than the continuous function represented by eq. (19), but the disadvantage
that the signal to noise ratio will be lower. The mean value will also be particularly

affected by systematic errors in one or both of the adjacent channels.

The minimum, reference, and maximum g, IFOL profiles displayed in Fig. 2(a) show
that the temperature profile shape for the high density database is remarkably invariant
outside r = .6 . This behaviour is broadly similar for the profiles of the moderate
density database. The larger error bands of the latter, reflecting the substantially higher
regression error for this database, are due in large measure to the already discussed
problem of multiple operating periods for this database. The parametric dependencies
of the IFOL profiles are detailed in the remaining sub-figures. The g, dependence of the
inverse fall-off length of both databases increases rapidly and reaches a maximum near
r = .35. The strength of this g, dependence then decreases rapidly, and outside r = .6
the profile shape is independent of g,. Between .15 < r < .25 the point estimates for the
‘experimental’ IFOL differences suggest a radially uniform g, dependence. However,
the large error bars allow for a slope between, say, -10 and 10 on the scale of the
plot. Inside the first knot, our radial spline model consists of a parabola with 7§ =0 .
This requires the IFOL as well as each individual parameter dependency to describe a
straight line through the origin in this region. The I, and 7, dependencies are much
weaker, although over some portions of the radius they marginally avoid rejection at
the 5% level.
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Figs. 4 and 5 show reference profiles and parametric radial dependencies for the
normalised profiles In(T.(r)) (where To(r) = Te(r)/Te(r = .2)). These are equivalent
to the integrals of Figs. 2 and 3, with an integration constant chosen to give T,(r =
.2) = 1. The invariance of the profile shape outside r = .6 is reflected here by the fact
that all profiles are parallel in this region and all parametric dependencies (almost)

horizontal.

The coefficients describing the spline representations of T, n. and p. for the
high density database are collected in Table VII. All profiles in Figs. 2 and 4 can be
generated using the first block of spline coefficients in Table VII together with eq. (14)
and recalling the knot layout: rgnoe = .2,.3,.4,.5,.65 (Note that the u(r;) coefficient
is not tabulated as it vanishes for our normalised profiles). Specifically, the profiles in
Fig. 4 are reproduced by directly substituting the spline coefficients into eq. (14). To
recover the profiles of Fig. 2, eq. (14) must first be differentiated spatially. Thus the
reference normalised profile in Fig. 4(a) is given explicitly by (see egs. (12) — (14))

In(Teresy(r)) = —1.248(r2 —.2%) —3.611(r—.2)3H(.2) + . . . +31.383(r—.65)3H(.65) ,
while the reference IFOL profile (the negative of Fig. 2(a)) is described by

Loy (r) = 2(—1.248)r +3(~3.611)(r— .2)2H(:2) + . . . +3(31.383)(r — .65)2H(.65) .

5.2. Density

Since many of the results presented in the last section apply to the density profiles as
well, we only mention the differences. Tables IV and VI contain the density statistics
for the high and moderate density databases respectively. For both databases, as can
be seen from the RMS values for &;,: and &;0¢ , the discharge to discharge variations
in the measured density are comparable to, or sometimes even dominate the within-
discharge variance. The overall regression RMS relative error for each database (.029
and .060) is very similar to the corresponding temperature value. As explained in the
temperature results, the error on the absolute scale (for normalised profiles) can be
easily computed, giving RMSE values for all 15 channels of .024 and .042, again very

similar to the temperature results.

The density profiles are extremely flat inside r = .4 as shown in Figs. 6-9. The main
feature of the IFOL profiles is a g, dependence closely mirroring that of the temperature
IFOL, though at a reduced magnitude (—%(mam) ~ 5; —%‘—é;—%(mam) ~ 2).
The radial region over which it is significant (.25 < r < .55 for the high density
database) is more localised than the equivalent region for the temperature. Whereas,
outside the half radius, the temperature IFOL is monotonically growing as a function
of radius, the density IFOL peaks around r = .75 and the profile shape tends to become
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flatter towards the boundary. As was the case with the temperature profile, the shape
dependencies on I, and 7, are weaker than that on g,. Near the edge, however, there is
a statistically significant broadening of the density profile shape with increasing current,
enhancing the broadening tendency already remarked upon (the ‘experimental’ IFOL
datapoints suggest that this current dependence is due solely to the outermost channel).
In addition, some flattening of the density profile occurs in the region .5 < r < .7 with

increasing 7. .

A number of density profiles in both databases are slightly hollow in the region
3 < r < .4 . The use of the same set of reference profile parameters (¢; = 2.5,
I; = .4 MAand 7 * = 4 X 102°m~32) for both databases exaggerates this aspect for
the moderate density database (Figs. 7 and 9).

5.3. Electron Pressure

The analysis of the (logarithmic) electron pressure profiles, defined as In(P.) =
In(T.) + In(n.) , gives additional insight, as can be seen from the parametric depen-
dencies shown in Figs. 10-13. For the high density database, the most striking feature
is that the I, dependence is significant over most of the radius and there is a general
broadening of the outer half of the pressure profile with increasing current, the effect
being strongest towards the plasma boundary. This can be viewed as a result of the
weaker I, effects on the temperature and density profile shapes reinforcing one another.
The g, dependence of the inside half of the profile is similarly enhanced, whereas the
7ie radial dependence is little changed from that of the density profile.

6. ANALYSIS FOR RADIALLY CORRELATED ERRORS

When the random errors are correlated, the weighted least squares estimator is
consistent but not efficient, i.e. as the number of datapoints approaches infinity, the
estimates of the regression coefficients converge to their true value but the rate of

convergence is not optimal.

To increase the precision of the estimate, one tries to model the actual covariance
matrix for the errors. The closer the assumed or estimated X is to the actual error
structure, the more accurate the ensuing estimates for o are. We continue to assume
that the statistical fluctuations are temporally uncorrelated and neglect the parametric
dependencies. However we now allow radial correlations in the fluctuations. Since the
dataset consists of 15n datapoints, the entire covariance matrix is 15n x 15n. However

we assume a block diagonal form for £ of the form:
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Ti% i = Skabii (20)

where 7,1’ index the time-averaged profile and k,! index the channel number.

This covariance matrix of the residual radial errors may be estimated by:
- 1
Lky = ;Z(Ys‘(fk) — Y pit(re, @) (Yi(ri) — Y, pie(r1, ) (21)
i

In the previous sections, we have assumed ¥ is diagonal. To examine whether our
initial hypothesis of independent errors is reasonable, we perform a principal compo-

nents analysis on X .

If the condition number (the square root of the ratio of the largest to smallest eigen-
values) or the ratio of the arithmetic mean to the geometric mean of the eigenvalues is
approximately one, then the previous analysis, based on radially uncorrelated fluctua-

tions, is justified.

If the condition number is substantially larger than one, then the statistical estimat-
ing efficiency can usually be improved by prescribing a functional form, X (¢) to model
the observed covariance. We can simultaneously estimate a and # using maximum
liklihood estimates [1].

7. DISCUSSION AND SUMMARY

By comparing the high density and moderate density databases we have identified
which features of the plasma have approximately the same scaling and which features
scale differently. The scalings for the total plasma energy and electron temperature
hardly differ between roll-over and saturated Ohmic confinement regimes. The total
plasma energy and average temperature depend on the plasma current I, and average
density 7. , but, at constant I, and @, , are practically unaffected by the toroidal
magnetic field. The nearly linear current dependence for both the temperature and the

total energy is reminiscent of L. mode scaling.

The strong dependencies on the plasma current I, of both the total plasma energy
Wp and the Ohmic power approximately cancel to give a relatively weak current scaling
for 7z . Replacing B; by ¢, gives a 7g scaling weakly dependent on @; , strongly
dependent on ¢, and with no statistically significant I, dependence.
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The Spitzer Z.s; depends on all three control variables. Regression of Z.fy — 1
indicates, for both databases, that the impurity density is (almost) %, indepependent,

but strongly dependent on both I, and By .

3/2
The electron temperature profile peaking factor <—$°37§ scales as .94(4.04)q, 10704,

a result which is in close agreement with the prediction of classical resistive equilibrium.

A careful statistical analysis is necessary to determine the radially varying paramet-
ric dependencies of the profile shapes on the bulk plasma variables. By simultaneously
fitting all profiles with spline coefficients which depend on the plasma variables, we

believe we have found a reasonably effective method for solving this problem.

An earlier study of ASDEX temperature profile shapes [14] (for both Ohmic and
neutral beam heated discharges) revealed that the shape depends strongly on g, inside
the sawtooth mixing radius, but is almost independent of plasma parameters outside
r = .45 . The results of our profile parameterisation are roughly consistent with, and

constitute a refinement of this analysis, for Ohmic profiles.

Except for a dependency of the outer region of the density profile shape on plasma
current, the I, and 7, dependencies on both the temperature and density profile shape
are rather weak in general. In most cases the current and density dependencies can be

set to zero within the error bars of the dataset.

In the interior, g, is the most important bulk plasma parameter in determining the
temperature shape. By r = .5, however, this dependence has weakened considerably
and outside r = .6, as is clear from Fig. 2, the IFOL profile has an invariant shape. We
note that the extent of the g, sensitive region is reasonably consistent with the widest
sawtooth inversion radius in the database (riny(maz) =~ 1/gq(min) = .54 and .42 for
the high and moderate density databases respectively).

Comparing Figs. 6 and 2, we see that the variation in the density profile shape, while
significant, is much weaker than for the temperature. This follows from the result that
the density IFOL ¢, sensitivity over the inner half of the radius is only =~ 40% that of
the temperature. The g, dependence is only significant for .25 < r < .5. In contrast
to the temperature shape, which is unique outside r = .6, the density profile broadens
significantly near the edge with increasing current.

The electron pressure IFOL exhibits a very strong g, dependence in the inner half of
the profile, while increasing I, causes a general broadening of the outer half, a tendency

which intensifies approaching the plasma boundary.

Our findings are in agreement with the hypothesis of electron temperature profile
consistency [13,14] . However, we have not addressed the relative merits of profile
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consistency versus local transport models [9,15] containing sawtooth effects. This issue
should be addressed by a statistical comparison of experimental profile dependencies

with the dependencies predicted by local transport models.

APPENDIX A
PARTITIONING R? USING THE t STATISTIC

Without loss of generality, we consider the multiple linear regression problem
y=oa1T1+ o032+ ... +opTpte (22)

with centered dependent and independent variables. If the independent variables are
uncorrelated, i.e. if < z;,zx > = Z:N=1 z; jTi k = ||z5]|26;,k , it is easily shown that the

least squares solution reduces to

A

A2 A o
)= — 23
g (a.?) ”:1:_-,‘“2 ( )

A__<:r:j,y>_
T el

Here 6(&;) is the estimate of the standard error for the coefficient estimate &; and
6% = |ly — 9||*/(IN — p) is the mean square regression error. From the definition of the
t statistic, we have that

by =<a:_,-,y>:\/N-p<z_.,-,y> (24)
6(8y) llz;l|o ly =3l =l

In geometrical terms, < z;,y > /||z;|| is the projection of y onto z; where y and
z; are vectors in ®Y . Hence adding z; to the regression model makes a fractional

contribution to the total variance of

< zjy>?
A R2 P i 25
®%i = T Pl (29)

Combining this with
T lly - g1I* (26)
llvll?

and substituting into eq. (24) we obtain eq. (2). Furthermore, summing up all con-
tributions, we have from Pythagoras’ theorem that Z?:l < zj,y >2 /|l=il1? = 19l1?
which gives
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P All2 R2
t2 = (N - M;——: N — 27
j;, ( P)"y_y”2 (N-p{—qa (27)

This formula is the analog of Weisberg’s partition of Cp [ 16] . It provides a useful
practical check on the applicability of eq. (2) when the regressors are correlated.

APPENDIX B
COMPOUND ERROR STRUCTURES: TEMPORAL HIERARCHY

To efficiently estimate the spline coefficients, ¢, we try to model the actual covariance
matrix for the errors. The closer the assumed or estimated X is to the actual covariance

error structure, the more accurate the ensuing estmates for o are.

The assumption of independent errors is not always justified. In general, tokamaks
possess a compound error structure. The first level of errors are statistical fluctuations
which vary from time point to time point within a given discharge. The next level
consists of those errors which vary from discharge to discharge (we assume here that
there is only one compressed datapoint per discharge) but remain constant within a
given discharge. Finally, there are variations which only change between operating
periods of a tokamak. We denote the covariance matrices of for the radial fluctuations
of each of these three types of errors by gi"t,gdi"“h,g"” respectively.

We use a triple index, (p,?,t) to denote a given profile timepoint where p indexes
the operating period, ¢ the discharge number, and ¢t the time. Within a single profile
timepoint, the individual radial measurements are denoted by a fourth index, . The
cross-correlation of any two pairs of profile measurements, (p, i,t) and (p',¢',t') is given

by a 15 X 15 matrix, X p,i,¢,p',i',t'+

We assume that the errors do not depend on the plasma parameters and that the
covariance structure does not vary between different blocks of data at each level. The

most general error structure of this form is

L pi,t,p il = gint‘spm'&‘-"af-f' +§diwh5p,p' it _§_°P6P,p' (28)

We restrict our attention to datasets consisting of a single operating phase. In this
case eqn. (28) reduces to g‘-’“&',i'&,t' + Ed‘”h&,p. For simplicity, we assume that

each discharge consists of n; timepoints.
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We estimate the within-discharge variance, g""t empirically by calculating the time

point average and the time point variance for each discharge separately:

ndg ng

Bt = g 2 (i) - Vi) aelr) = Vi) (290)

1=11t=1

where

Vi(rk) = 3 Yie(rs) (290)

The disadvantage of analysing only the time averaged profiles is that information
about the statistical fluctuations is lost. In an optimal statistical analysis, all time
points would be retained and analysed simultaneously. This analysis may become
unwieldy when the number of timepoints is large. However, if the timepoint variations
are comparable to n; times the discharge variation, a statistical analysis based on

structured covariance matrices is desirable.

Within a single operating period, the total variation between datapoints is estimated
by

nd ne

S = n—“d;}:?z Z(Yi,t(?'k) — Yyit(re; @) (Yie(r1) — Yyie(ri; @) (30)

where f denotes the number of fitted parameters. The fitted values, Y_f.;t(n;g_)
depend on the values of the plasma parameters and therefore implicitly on the indices,
¢ and t. Yji(r; ) may be estimated either by regressing each measurement channel
separately or by fitting all channels simultaneously using the spline representation. The
latter method will inflate the variance if the profiles cannot be well approximated by

the spline representation.

The discharge variance is computed by subtracting the within-discharge variance as

defined in eqn. (29a) from the total datapoint variance defined in eqn. (30).

In describing nested error structures of this form, statisticians use the terms “within
discharge variation” to refer to the time point to timepoint variation and “between

discharge variation” for the discharge variation.

Several caveats must be placed on this procedure. First, using too many or too few

terms in the regression analysis will artificially inflate the variance estimates. Second,
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the errors in the estimates of the variances tend to be rather larger unless a substantial

number of profiles are available.
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Table I(a)

Summary of High n Low g Database

Parameter mean minimum maximum

qa 2.432 1.858 3.370

Ip 0.388 0.321 0.483 MA
Ne_linav .442 . 326 .823 e+20m-3
Btor 2.011 1.754 2.730 T

Loop Voltage 1.325 1.124 1.760 V
Ohmic Power .518 . 362 .811 MW
Te_volav . 380 271 .482 keV
Ne_volav . 391 271 . 712 e+20m-3
Zeff_Spitzer 1.800 1.391 2.185
Rmag_axis 1.684 1.674 1.715 m
Zmag_axis -0.000 -0.001 0.000 m
b_minor 0.400 0.398 0.406 m

Area 0.480 0.475 0.495 m**2
bpol+li/2 0.905 0.762 1.0886
bpol_diam . 386 LRT7 .B28
Wplas_diam 44.9 34.3 70.1 kJ
Wplas_kin 38.6 28.2 61.260 kJ
Taue_diam 87.6 71.5 113.0 msec
Taue_kinetioc 74.8 55.9 6.7 mseo

Table I(b)

Summary of Moderate n Moderate g Database

Parameter mean minimum maximum

q_a 3.088 2.382 4.195

Ip 0.355 0.281 0.452 MA
Ne_linav .308 . 163 .399 e+20m-3
Btor 2.335 1.682 2.813 T

Loop Voltage 1.072 0.920 1.225 V
Ohmic Power .383 .269 .495 MW
Te_volav .490 . 388 .878 keV
Ne_volav .47 . 128 .206 e+20m-3
Zeff_ Spitzer 2.587 2.040 3.504
Rmag_axis 1.890 1.678 1.712 m
Zmag_axis 0.001 -0.000 0.013 m
b_minor 0.398 0.391 0.404 m

Area, 0.478 0.461 0.496 m**2
bpol+li/2 0.970 0.857 1.142
bpol_diam .398 .304 .542
Vplas_diam 38.3 36.0 50.3 kJ
Wplas_kin 33.5 198 43.9 kJ
Taue_diam 101.1 80.0 124.0 mgec
Taue_kinetic 88.0 70.85 107.1 msec




Table II(a)

Correlation Matrix of 1n{ Ne_lav, I_p, g a, Zeff_Spitzer, P_Ohmic}

High n Low g Database

1n{Ne_lav} 1n{I_p} 1n{q a} 1n{Zeff_Sp}

1n{Ne_lav} 1.000 0.199 -0.135 -0
1n{I_p} 0.199 1.000 -0.694 0
ln{q_a} -0.135 -0.694 1.000 -0
1n{Zeff_Sp} -0.819 0.208 -0.034 1
1ln{P_Ohm} 0.728 0.780 -0.636 -0

PCA for all five variables
Eigenvalues of 5 x 5 Matrix: 2.745 1.761 0.389
Fraction of Total Variance: 0.549 0.350 0.078
Cumulative Variance Fraction: 0.549 0.899 0.977
PCA for 1n{Ne_lav} 1n{I_p} 1ln{q a}
Eigenvalues of 3 x 3 Matrix: 1.767 0.930 0.302

Fraction of Total Variance: 0.589 0.310 0.100
Cumulative Variance Fraction: 0.589 0.899 1.000

Table II(b)

1n{P_Ohm}
.819 0.728
.208 0.780
.034 -0.636
.000 -0.359
. 359 1.000
0.085 0.029
0.017 0.006
0.994 1.000

Correlation Matrix of 1ln{ Ne_lav, I_p, g a, Zeff_ Spitzer, P_Ohmic}

Moderate n Moderate q Database

1n{Ne_lav} 1n{I_p} 1n{q a} 1n{Zeff_Sp}

1n{Ne_lav} 1.000 0.293 -0.065 -0
1n{I_p} 0.203 1.000 -0.661 0
In{q_a} -0.065 -0.661 1.000 =0
In{Zeff_Sp} -0.724 0.225 -0.371 1
1n{P_Ohm} 0.528 0.937 -0.722 0

PCA for all five wvariables

Eigenvalues of 5 x 5 Matrix: 2.728 1.808 0.333
Fraction of Total Variance: 0.546 0.361 0.086%
Cumulative Variance Fraction: 0.546 0.907 0.974

PCA for 1ln{Ne_lav} 1n{I_p} 1ln{q a}
Eigenvalues of 3 x 3 Matrix: 1.749 0.952 0.299

Fraction of Total Variance: 0.583 0.31%7 0.100
Cumulative Variance Fraction: 0.583 0.900 1.000

724
.225
371
.000
.040

0.121
0.024
0.998

1n{P_Ohm}

0.528
0.93%
-0.72%2
0.040
1.000

0.009
0.002
1.000




Table III(a)

Temperature Descriptive Statistics for High n Low q Database
(Absolute Scale)

Channel <radius> <Te(kev)> spread «Te/Te_r=.2> spread
1 .515 0.588 .096 0.804 .104
2 .432 0.671 .089 0.825 .085
3 . 545 0.6386 .020 0.918 .041
4 . 247 0.678 .100 0.97%7 .023
5 .180 0.694 .104 1.000 .019
6 .138 0.718 1 1.034 .028
7 .164 0.705 .108 1.015 .020
8 .RR5 0.686 .102 0.988 .019
=) . 309 0.646 .090 0.933 .046

10 .407 0.620 . 100 0.897 .098
11 .489 0.573 .103 0.829 i e
12 .585 0.505 .085 0.732 .102
13 .682 0.407 .074 0.589 .089
14 .784 0.271 .046 0.393 .063
15 .885 0.166 .028 0.241 .038

Table ITII(b)

Logarithmic Spread, Noise estimates, and Spline Regression Errors
(Relative Scale)

Logarithmic Within-discharge Total Profile Regression
Channel Spread noise noise <Relative Error:>
1 .130 .028 .02% .029
2 .104 .018 .023 .037
3 .0486 .018 .028 .031
4 .024 .020 .020 .021
5 .019 .018 .018 01
6 .027 .027 .02% .029
7 .020 .020 .020 .019
8 .019 .016 .016 .01%
9 .051 .015 .022 .024
10 -107 .018 .025 .034
11 .13%7 .024 .032 .033
12 .139 .038 .040 .042
13 .148 .029 .029 .028
14 .185 .031 .031 .031
15 .154 .041 .052 .0580

RMS wvalue for 15 channels: .025 .028 .031




Table IV(a)

Density Descriptive Statistios for High n Low g Database
(Absolute Scale)

Channel <radius> <Ne(E+20 m-3)> spread <Ne/Ne_r=.2> spread
1 .516 0.523 . 149 0.926 .058
2 .432 0.576 .168 1.018 .038
3 . 345 0.581 . 166 1.028 .023
4 . 247 0.5686 .166 1.0387 .015
5 .180 0.579 .160 1.026 .0156
8 .138 0.572 .160 1.013 .015
/4 .164 0.586 . 166 0.988 .01%
8 .225 0.539 .1863 0.954 .014
9 . 309 0.542 . 187 0.958 .018

10 .407 0.534 .152 0.944 .033

11 .489 0.501 . 147 0.887 .083

12 .585 0.462 . 146 0.813 .064

13 .682 0.419 . 135 0.736 .0868

14 .784 0.327 A0 0.573 .080

15 .885 0.272 .092 0.479 .08%7
Table IV(b)

Logarithmic Spread, Noise estimates, and Spline Regression Errors
(Relative Scale)

Logarithmic Within-discharge  Total Profile Regression

Channel Spread noise noise <Relative Error:

1 .060 .015 .021 .022

2 .038 .012 .018 .026

3 .023 .014 .015 -01%

4 .014 011 .014 .016

5 .015 .012 .014 .020

6 .015 .012 .014 .014

7 .018 .011 .018 .023

8 .018 .011 .014 .018

9 .019 .010 .017 .017

10 .035 .010 .018 .019

11 .080 .018 .025 .028

12 .079 .033 .04%7 .051

13 .079 .014 .027 .027

14 .08%7 .021 .031 .032

18 .116 .048 .080 .059
RMS value for 15 channels: .019 .027 .029




Table V(a)

Temperature Descriptive Statistios for Moderate n Moderate ¢ Database
(Absolute Scale)

Channel <radius> <Te(kev)> spread <Te/Te_r=.2> spread
1 .516 0.754 .135 0.711 . 109
Q .434 0.788 . 146 0.741 .094
3 . 347 0.970 .151 0.914 .095
4 .282 1.074 i | 1.007 .051
5 . 190 1.066 .153 1.001 .022
6 .154 1.108 .154 1.042 .044
7 .180 1.074 . 168 1.007 .026
8 .238 1.034 .155 0.970 .027
9 .821 0.960 . 145 0.905 .092

10 .41%7 0.819 . 160 0.770 . 103

11 .499 0.664 . 139 0.624 .092

12 .594 0.558 .122 0.521 .083

13 .691 0.470 .098 0.444 .082

14 .793 0.285 .060 0.269 .049

15 .894 0.181 .033 0.171 .025
Table V(b)

Logarithmic Spread, Noise estimates, and Spline Regression Errors
(Relative Scale)

Logarithmic Within-discharge Total Profile Regression
Channel Spread noise noise <«Relative Error:>
i | .162 .025 .0_7 .087
2 .130 .020 .023 .031
3 .105 .018 .032 .056
% .050 .021 .027 .043
5 .021 .013 .013 .025
6 .042 .031 .032 .059
T .026 .018 .018 .035
8 .027 .019 .024 .026
e .103 017 .029 .038
10 « 137 .023 .042 .047
1l +181 .032 .038 .079
12 .164 .042 .059 .127
13 .188 .024 .045 .048
14 +18% .023 .080 .049
15 .151 .037 .0786 .096

RMS value for 15 channels: .025 .039 . 063




Table VI(a)

Density Descriptive Statistios for Moderate n Moderate g Database
(Absolute Scale)

Channel <radius> <«Ne(E+20 m-3)> spread «<Ne/Ne_r=.2> spread
1 .516 0.346 .064 0.813 .082
2 .434 0.385 .069 0.904 .062
3 . 347 0.406 .070 0.955 .048
4 .252 0.407 .065 0.959 .047
5 .120 0.434 .078 1.018 .024
6 .154 0.43% .083 1.021 .028
7 .180 0.437 .088 1.021 .036
8 .38 0.429 .088 1.001 . 047
9 .321 0.376 .058 0.886 .047

10 .417 0.400 .08%7 0.933 .088

11 .499 0.343 .06%7 0.804 .075

12 .594 0.295 .062 0.690 079

13 .691 0.235 .045 0.851 .065

14 .793 0.189 .040 0.444 .0538

15 .894 0.132 .032 0.311 .063
Table VI(b)

Logarithmio Spread, Noise estimates, and Spline Regression Errors
(Relative Soale)

Logarithmic Within-discharge Total Profile Regression
Channel  Spread noise noise <Relative Error>
i .100 .016 .036 .073
2 .069 .014 .028 .039
3 .051 .012 .07 .088
4 .049 .013 .013 .041
5 .023 .012 .012 .034
6 .028 .014 .015 .033
7 .038 .012 .019 .042
8 .048 .012 .019 .063
9 .054 .012 .015 .054

10 .095 .013 .019 .0564
11 .093 .020 .028 .046
12 .11% .040 .041 .080
13 .119 .012 .030 .048
14 .119 .018 .045 .090
15 .213 .045 .108 .114
RMS value for 15 channels: .020 .028 .060




Table VII

Spline Coefficients (with standard errors) for High n Low q Database

Normalised Temperature Profiles

Intercept In(ga/qk) In(I,/1;) In(fe/7e)
©"(0)/2 — 1.248(.07) — 2.214(.54) —1.782(.82) | —0.004(0.20)
c1 ~3.611(1.9) | - 85.812(14.) 2.326(21.) —9.151(5.1)
c2 16.736(5.7) 259.152(41.) 39.709(62.) 28.949(15.)
cs | —23.810(7.8) | —228.112(54) | —88.397(82) | - 30.122(20.)
c4 — 7.549(6.2) 38.372(38.) 49.847(58.) 11.579(14.)
cs 31.383(4.1) 16.181(13.) — 2.712(20.) — 1.881(4.9)
Normalised Density Profiles
Intercept In(ga/q2) In(I,/1I}) In(me/7e")
1"(0)/2 — 0.466(.06) 0.607(.43) 0.191(.64) 0.383(0.15)
c1 0.880(1.5) | —50.252(11.) | —27.318(16.) — 4.605(3.9)
c; | —44.698(4.4) 113.355(32.) 99.895(48.) 0.618(11.)
c3 75.616(5.9) | —53.578(41.) | — 138.561(62) 31.504(15.)
ca | —69.438(4.9) | —27.343(30.) 91.804(45.) | - 48.734(11.)
cs 56.806(3.5) 18.483(11.) | — 31.147(17.) 24.538(4.1)
Normalised Pressure Profiles
Intercept In(ga/q}) In(Ip/I;) In(ne/7e™)
p"(0)/2 — 1.633(.08) —1.100(.61) —0.827(.93) 0.358(0.22)
¢y 4.807(2.2) | —150.187(16) | —54.177(24.) | —12.413(5.8)
c; | —24.171(6.6) 414.743(47.) 239.688(71.) 25.599(17.)
c3 45.270(9.1) | —335.527(62) | — 377.360(94) 8.229(23.)
cs | —67.789(7.3) 46.687(44.) 258.188(67.) | — 46.249(16.)
cs 78.703(4.9) 23.340(16.) | — 76.694(24.) 28.796(5.8)
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Plasma Current Dependence of Inverse Fall-off Length
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Temperature Log Profile normalised at r= .2 for High n Low q Database
Reference Prolile (q.0= 2.5 |_p= .40MA ne_lav= .4E+20 m-3)
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Temperature Log Profile normalised at r= .2 for Moderate n Moderate q Database
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Plasma Current Dependence of Log Profile normalised at r= .2
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Plasma Current Dependence of Inverse Fall-off Length
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Density Log Prolile normalised at r= .2 for High n Low q Database
Reference Profile (q_o= 2.5 I_p= .40MA nelov= .4E420 m-3)
Minimum Profile: q_o= 1.9 Moximum Profile: q_o= 3.4)
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Density Log Profile normalised at r= .2 for Moderale n Moderate q Database
Reference Profile (q_o= 2.5 I_p= .40MA nelav= .4E420 m-3)
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Pressure Inverse Fall-off Length for High n Low q Database
Reference Proflile (q.o= 2.5 I_p= .40MA nelov= .4E+20 m-3)
Minimum Profile: q.o= 1.9 Moximum Profile: q.o= 3.4)

1/Lp
Q=N WAE2UIITNODOO

-1
-2
-3
-4
-5
-6
-7 v v T

T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

- normalised

FIG. 10 (a) Normalised Flux Surfoce Radius

Safety Factor Dependence of Inverse Fall-off Length

10
9
8
7
~ b
5
g 4
£ 3
35
w Q ; = ..,...r.:...ﬁ.uunnnn.u...n-.
: SRR
o w
© -2
=3
-4
-5
-6
IN | .

T T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FI1G. 10 (b) Normalised Flux Surface Radius

Pressure Inverse Fall—off Length for Moderate n Moderate q Database
Reference Profile (q.a= 2.5 I_p= .40MA nelav= .4E+20 m-3)
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Plasma Current Dependence of Inverse Fall-off Length Plasma Current Dependence of Inverse Fali-off Length
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