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Abstract

This study treats the system of Vlasov and Maxwell equations for the Fourier trans-
form in space and time of a plasma referrcd to Cartesian coordinates with the coordinate
z parallel to the uniform equilibrium magnetic field and with the equilibrium plasma
density dependent on nz, where 5 is a parameter. The %k, component of the wave
vector is taken equal to zero, whereas k. is different from zero. When the interaction
of ordinary and extraordinary waves is neglected, the Fourier transform of the elec-
tric field of the ordinary waves obeys a homogeneous integral equation with principal
part integrals, which is solved in the case of weak absorption and sufficiently small 7
(essentially smaller than the vacuum wave vector), but without limitations on the ra-
tio of the wavelength to the Larmor radius (the usual approximation being limited to
wavelengths much smaller than the Larmor radius). The reflection and transmission
coefficients and the total energy absorption are given in this approximation, whereas
the energy conservation theorem for the reflection and transmission coefficients in an
absorption—free plasma are derived for every value of 1 without explicit knowledge of
the solutions. Finally, a general and compact equation for the eigenvalues which does
not require complex analysis and knowledge of all solutions of the dispersion relation is

given.

Introduction

The system of Vlasov and Maxwell equations for the electric field of a plasma referred to
Cartesian coordinates with the coordinate z parallel to the uniform equilibrium mag-
netic field and the equilibrium plasma density depending on nz, 7 being a parameter,
yields a system of integral equations for the Fourier transform in space and the Laplace
transform in time of the electric field. The inhomogeneous term of this equation is given
by the initial conditions and possible sources, and the Laplace transform variable w is
the eigenvalue parameter. These equations belong to a class of integral equations which
reduce to algebraic equations when a parameter, 1 in our case, goes to zero because
the kernel becomes proportional to a Dirac é-function. The eigenfunctions (waves in
the z space) can be separated, in most physical situations of interest, into two classes
of scarcely interacting waves: ordinary and extraordinary ones. The ordinary waves
propagate adiabatically into vacuum when the density goes to zero, and can be directly
excited by a source in vacuum. The purpose of this paper is to derive the transmission

and reflection coefficients for ordinary waves propagating in the plane (z,z) when an
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electric field source with a given angular frequency is located at z = —oco. In section 1
we relate the required coefficients to the solution of an inhomogeneous integral equation
with principal part integrals and show that they verify the energy conservation theorem,
which is an obvious requirement, with a less obvious proof, valid for every value of 7. In
section 2 the homogeneous integral equation corresponding to the inhomogeneous one
introduced in section 1 is asymptotically solved when the parameter 7 is sufficiently
small (essentially smaller than the vacuum wavelength of the source). The method
we have chosen here consists in deriving asymptotic approximations for the solution in
various superposed k-intervals. The intervals are such that one approximation of the
solution matches onto another approximation in the common subinterval (a ‘matched
asymptotic procedure’; see, for example, Murray (1974)). In section 3 the asymptotic
solution of the inhomogeneous integral equation is derived by means of two linearly
independent, but for general w values not integrable, solutions of the homogeneous
integral equation in the following way. The form of the inhomogeneous term shows that
except in the neighbourhood of k, the solution is proportional to two different solutions
of the homogeneous equation in the intervals k < k, and k> k, which are such that
they go to zero when |k| goes to infinity. In the neighbourhood of k, the integral
equation is approximated in two steps by a differential equation, which is solved by the
usual methods. Then the matching conditions determine the, still free, proportionality
factors of the two neighbouring approximate solutions. A by—product of this procedure
is the eigenvalue condition, which is obtained in a compact and general form. Finally,
the phase changes of the reflected and transmitted waves and the reflection coefficient

are explicitly given.



1. Transmission and reflection coeflicients

We consider a plasma immersed in a uniform magnetic field in the z direction, described
by the linearized Vlasov equation. Let the equilibrium density distribution function be
ﬁ(n:t:), a symmetric function of nz, typically exp(—n?2?). Let the Larmor radius
be smaller than the inhomogeneity length. We want to deduce the transmission and
reflection coefficients of the ordinary waves for such a configuration when an electric
field source with a given angular frequency w islocated at * = —co and the coupling
of the z component of the electric field wih the other components (i.e. the coupling
of the ordinary and extraordinary waves) can be neglected. Whereas the content of
this section is valid for every value of 7, the results derived in in sections 2 and 3
are asymptotic in 7, i.e. 7 has to be sufficiently small (essentially smaller than the
vacuum wavevector of the source), no assumption being made, however, on the ratio of
Larmor radius to wavelength.

As is well known, the space Fourier transform of the z component of the electric field

obeys the following integral equation (see appendix):
(k2 —w?/ct)E(k,w) — a(k,w) /h(k' —k)E(K,w)dk' =0, (1)

where, for simplicity, k£ is used to denote k,; and the dependence on k., is not
indicated; o is connected with the (z,z) component of the dielectric tensor of a
similar configuration, but with the uniform density distribution function iz((]), by the
relation ¢ = €., — 1; h is the Fourier transform of 72, which in the limit n =0 is
the Dirac function é(k' — k). With the usual approximation that the Larmor radius
is small compared with the wavelength eq. (1) reduces to a differential equation, but
this approach cannot tackle essential parts of the problem. Our aim is to deduce the
solution of eq. (1) whose inverse Fourier transform is such that the amplitude of the
ingoing field for z going to minus infinity has the given value S. The modulus squared
of the ratio with respect to S of the amplitudes &, and &; (in general complex) of
the outgoing field for z going to minus and plus infinity, respectively, are the required
reflection and transmission coefficients.

The previous condition on the dependence of the electric field on z can be translated
into the following requirements about the form of £(k) : if %k, is the vacuum wave
number (k, = w/c), in the neighbourhood of %k =k, it must hold that

ko .. S : &
SN_'hm(k—k,,—z'e_k——ko-l—ie)’ £
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an equation which can also be written as

ko(S — &) 1
i Pk — ko’ &

E ~ ko(5+€t)5(k - -lh’o) +

where P denotes the principal value and § is the Dirac function. Analogously, in the
neighbourhood of k = —k, it must hold that
kb 1

i Pk+ko'

E ~ kol 8(k + ko) + (4)

Both conditions are subsumed under the following ansatz for the Fourier transform of
the electric field:

k(5'+£t)5(l.—k)+k56(k+k)+PF(k:3. (5)

Once F(k,w) is known, & and & are given by the equations

2k? 2%?
F(—k,,w) = — ’“° E:  F(kow) =

—(5-&). (6)

By substituting eq. (5) into the homogeneous equation (1) we get an inhomogeneous

integral equation with a principal part integral for the function F' :

F(k,w)—o(k, w)][ h(k'—k) 5 ( “’) diJ = koo (k,w) [(S + &) h(k — ko) + & h(k + k)] -
(7)

The solution of this equation is easily related to the solution of the simpler equation

I
Q(l»2 s Koy t2) dk' —
k'* — k2 2 |

Q(k, ko,w) — o(k, w)f h(k' — k)

(k—ko), (8)

because one obviously has

2k2 Flk,w)=(S+ &) Q(k, koyw) + & Q(k, —Fko,w). (9)

Notice that only %k, has to be changed in eq. (8), and not the variable w in o,
although k, = w/c. With the help of the function @ eqs. (6) take the explicit form

(from now on the w dependence will be explicitly indicated only when necessary):

1€ = (S + &) Q(—ko, ko) + & Q(—ko, —ko),
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—i(S = &) = (S + &) Q(ko, ko) + & Q(ko, —Fs) . (10)
We solve this algebraic system for &, and &; and obtain
2:1Q(—ko, ko)
1+ Q(—ko, ko)Q(ko, —ko) — Q(ko, ko)Q(~ko, —ko) + i(Q(ko, ko) + Q(—ko, —k,))
(&/S) = -1+

+ 2(1 + iQ(_krn _ko))
1 + Q(_ko, ko)Q(kcn _ka) - Q(ko, kD)Q(_kD: _ko) + i(Q(ko, ko) + Q(_ko: “_ko)g . )
11

The reflection and transmission coefficients, which can be derived from these equations

(gr/S) =

as functions of ), should give energy conservation in a situation corresponding to a
stable, absorption—free plasma. Indeed, when ¢ isreal (i.e. k; =0) and hence @ as

well, we get with some elementary algebra

R+T =1+

4Q(—ko, ko) (Q(—ko, ko) — Q(ko, —ko))

Q(=kos k0)Q(koy —ko) — Q(koy ko)Q(—kay —ko) + 1)* + [Q(Ko, ko) + Q(—Fo, —ko)(]iz')

Hence energy is conserved if Q(—k,,k,) = Q(ko,—ko,). This condition is verified when

"

o is an even function of k, the case of interest in plasma physics also when k. is
different from zero. In this case, however, the function @ is complex and the expression
(R+T—1) (which is no longer given by eq. (12)) yields the energy absorbed in plasma.
Owing to the symmetry of the function @ eqgs. (11) simplify to

2%Q(—Fko, ks)
(Q(=ko ko)) = (Q(ko, ko)) + 1 + 2iQ(ko, ko)

(&:/S) =

(8 /S) . 1+ (Q(koa kO))2 - (Q(_koa ko))2

£ = .
(Q(=ko, k) = (QKos ko)) + 1+ 2iQ(ko, ko)

It remains to deduce the function Q(k,k,). Equation (8) will be solved by a modifi-

(13)

cation of the method developed in ref. [1], in particular for discussion of the integral
equations which govern the longitudinal component of the electric field in the same
plasma configuration we are considering here. The essential difference of eq. (8) from
the equations considered in [1] is the presence of the factor describing the vacuum waves,

(k* — k2), which has two zeros on the k axis.
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2. Homogeneous integral equation

In order to obtain the solution of eq. (8), we need two solutions of the corresponding
homogeneous equation which do not go to zero for k going to both minus and plus
infinity since they are not eigenfunctions. Hence we derive (without many details,
because the method is already described in ref. [1]) two solutions of the following
equation:

xp(zu w)

O(k,w) — ok, w)][ Wk — k) 5 dk’ =0. (14)

We first assume that k. is zero and that o is positive on the whole k axis. We then

set
k

(k) = exp ](g(k')/n)dk'

and expand the exponent in powers of (k' — k) because the function h is peaked
around k' = k; since it holds that

h(k' — k) = (1/2nv/m)exp [—(K' — k)*/4n’]

from eq. (14) we get

a
L
4\/7 kon
. , 1 1
f emvr-2ng () G200y [ _ e e 15
f y+(k—ko)/2n  y+ (k+ko)/2n] Y ka2

To the first order we neglect 7¢’ with respect to unity and use the representation of the
principal part of (1/z) as iw§(z)+lime=g 1/(z +i€) to derive, by means of a contour
integral, an alternative expression of eq. (15), valid when the imaginary part of ¢ is

not negative:

1 26—.(g+(k—ko)/q) et g (g+(k+k )/n) +

N AU 1
4./ kon

2 2 1 1
g —t — — : dt = 0. 16
‘ /e (t+g+(k—ko)/2n+ze t+g+(k+ko)/2n+ze)] W

The integrals in this equation are a representation of the plasma dispersion function,

and so eq. (16) can be written as

9.
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2 2
.[iﬁe—(gﬂk—ko)/n) _iﬁe—(g+(k+ko)/n) _

~2(g+ (k= ko)/2n) + Z(g + (k + ko)/21)| = 0. (17)

Since the plasma dispersion function is analytic on the complex plane (g+(k—k,)/2n),
eq. (17) is valid also when the imaginary part of g is negative. An alternative derivation

of eq. (17) which is valid from the beginning for both signs of gr is obtained by writing

oo

g fe (el B = 4 /exp [it(y + i€ + (k £ ko)/2n)] dt.

It will be seen that the solution ¢ verifies the inequality |g + (k £ k,)/2n| > 1 ev-
erywhere; then the plasma dispersion functions can be replaced by their asymptotic

expressions, so that eq. (17) becomes

a 2
9°.
4kon”

ivre—(ort=km)" _; =~ (g+(tro)/m)” 4kon =, (18)
(209 + k)" — k2

an equation which is valid when the imaginary part of ¢ is positive; the corresponding
equation valid for ¢gr < 0 is obtained by replacing 2 by —i; for g;f = 0 the terms
proportional to =+, the poles’ contributions, are not present. Let us introduce the
notation T = o(k,w)/(k? —k2). In the intervals of amplitude of the order 72/%|0r/dk]|
about 7 = 1, i.e. in the neighbourhood of the real values k;(w) (7 = 1,2,...,2N),
which are solutions of the dispersion relation o(k,w) = k% —k2, the condition |ng'| < 1
is not fulfilled; these intervals will be considered later. When 7 is sufficiently larger
than unity, the real part of g is negligible, and one gets ¢gr ~ +ln7. When 7 is
sufficiently smaller than unity, but positive, the imaginary part of ¢ is negligible,
vielding gg ~ £In7. When 7 is negative, i.e. when k% < k%, then g? becomes
complex; also the corresponding complex conjugate quantity is a solution of eq. (15).
The solution for k? =~ k2 will be derived later, with a different approach (see eq. (41)).
An approximation to the solution of the original eq. (15) which takes the presence of
ng' into account is obtained by adding a correction g; to the solution of eq. (17). By

denoting for brevity the integral in eq. (15) by I(g,g'), one obviously has

g1=—¢ [aig,f(g,g')/é%f(g,g’)] : (19)

9'=0
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Since the derivative of I with respect to ¢’ is equal to (n/2) times the second
derivative with respect to g, we can use eq. (17) to get g1 =~ (—ng'/2g) — ngg'; it
thus follows that [(¢1(*")/n)dk' =~ —In,/g — ¢g*/2. This correction is the usual one

in a WKB approximation. It shows that the approximate solution ¢? = In7 is valid
if 2ng' < ln7, 1e if |k—Fki| > (n|67/3k|)2/3. The intervals where this condition
is not fulfilled separate on the k axis the intervals where ¢ is approximately real,
which will be denoted by s; (7 =1,3,..,2N 4+ 1) from the other intervals, which will
be denoted by S; (7 = 2,4,..,2N). In each interval of these two classes ¥ is asymp-

k
totically represented by a linear superposition of the functions exp |(1/7) [g1,2 dk']

( g12 are the two independent solutions of eq. (15) previously derived), the coefficients

of the superposition being different in the different intervals. For practical reasons we
k
choose different superpositions of exp |(1/n) [gdk'| as ‘elementary solutions’in the

two classes of intervals. In the intervals s; (where 0 <7 < 1) we choose

fi= (1\/;)1/4e\p /\/—ln'rdk + c.c., (20)
nr

k
—1
5= Llﬂexp — /\/—lnfdk' + c.c. (21)
2(—ln'r) U z
1

The function f; goes to zero for k going to minus infinity and diverges for k going
to plus infinity; the opposite is true of f;. In the intervals S; (where 7 > 1) the

‘elementary solutions’ we choose are

vr : o VT
Fy WCOS(G(F») —(r/4)), Fz= (In )i/ sin (G(k) — (7/4)) , (22)

where

k
G(k,w) = (l/n)/\/hl_rdk’. (23)
ky

The intervals where eq. (15) is not valid have amplitudes of the order of (n|07/ 8k|)2/ 3,
as we have already remarked; they are contained in intervals whose amplitudes are of
the order of one, which will be denoted by d; (j = 1,2,..,2N), where the solutions
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were shown in ref. [1] to be proportional to the Airy functions. This can be seen by

expanding ¥(k') ineq. (14) in powers of (k'—k); one obtains the differential equation
a(k)

(1= o(k)F(k)) T(k) - ”F(km(m ”“)”2(%F(k)"w(k))m)"=o,(24)

2
where F(k) =+ h(k' —k)/(k' —k2)dk', a function which is easily seen to be given by

the real part of the plasma dispersion function:

F = (1/2kon) [ZR((‘I"' & kO)/’?) - ZR((k - ko)/ﬁ‘)] .

In an interval d the function o(k) can be considered as constant, and since |k+k,| >
n, one has F ~ 1/(k* — k?). Hence with the ansatz ¥(k) = (k% — kg)l/ztﬁ(j)(k) we
obtain for ®U) the following Airy equation:

a

2
AP IEAY - SR = 2
LW + (T —1) 800 =0, (25)

As ‘elementary solutions’ we choose the functions

(7)) _ \/ﬁ 27ry / 2?Ty3/2
= 2t (e (o) e (B07)) - o

(7) VY 2ry3/%\ 2ry3/2
" (e /o) (J1/3((a"")2) Jr_l/a((au))2 ’ o

where a9 is equal to the quantity \/(3n|3'r/3k|/7r) taken at k¥ = k;, and y =

(k — k;)[070k],— k; - For more details see ref. [1]. A schematic representation of the

various intervals is given in fig. 1.

Si Sj+1 Sj+2
I I
d; dj1

1 ]

kj kj-l-l

Fig. 1: Overlapping intervals for the matched asymptotic expansion.

The asymptotic solution of eq. (14) can now be derived by matching the approximations
valid in the different intervals. At the end one gets a couple of linearly independent so-

lutions which have the same form as the solutions of the homogeneous integral equation
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of ref. [1], but for a different definition of the function ¢, o(k,w) now being replaced
by 7(k,w). In particular, if ¥, = ag,'q)@gl) holds in the interval d;, in the intervals
ditn (n=1,2,...,2N — i) one has

U, = o7, (i,i + n)®{+m (28)

where the matrices Tyq(7,7 + n) are recursively defined as

(7)

s i3 P .., a .
qu(z,z) = dsq, Tsq(2,5 + )= Tsr(%])mqu(J +1)
. . ati+h) . . .
Toq(t,7 +2) = Tor(2,J + 1)mcrq(; +2), (i+1)<( =1,3,5,...) < (2N —-1),

(29)
with the following definitions:
sin (GUH) — GU))  —cos (GUTY — GW)

5 Y | W) = G(k.
Brdd +1) = (—cos (GG — W) —sin (GUHD — GU))) , G =G(ky), (30)

Crg(j +2) =

0 ~2sin?(7/6) exp [GUTD) — GUFD)]

—(1/2sin?(7/6)) exp [-GUF?) 4 GUHD)] 0
(31)
The matrix ag,'q) can also be obtained by means of eq. (28) when cxg, ;) is given, because

one obviously has
o) = al)T, (1), (32)

By choosing the free constants of the functions ¥, such that for k going to minus
infinity one has ¥; = f; and ¥, = f;, the function aﬁ,ﬁ’ is defined by al(,l,,) =
bps(bp/a?)), where the quantities by = (1/2sin(7/6)) and by = —sin(7/6) are due
to the matching of the approximations valid in s; and in dj, respectively. All the
quantities we have introduced depend on w directly and indirectly through the solutions
ki(w) of the dispersion relation k? — k2 —o(k,w) =0, although the dependence is not
indicated, for the sake of handiness.

We now have to consider the effect of possible zeros of the function o(k,w). Let o =
(k* — k?)o,(k,w), where o, is positive definite (it is easy to deduce the effect of the

presence of more couple of zeros from this case); for the sake of definiteness let us
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assume k2 > k2. We introduce the function & = ¥/(k? — k2), which verifies the

following equation, derived from eq. (14):

2
O(k,w) — op(k, w)][ k'2 ;:2 d(k' w)dk' =0. (33)

When |k%—Ek2| > n, i.e. far from the zeros of o, we can consider the factor (k'? —k?)
as being taken at k' = k, owing to the presence of the function h(k' — k), and take
it out of the integral; we thereby get the same equation as for ¥. In general, eq. (33)

can be written as

(k' w)

g =0

B(k,w)—a,(k, w)/h(y £) B(k', w) dk — (2= k2) o (F, w)][ B — k), w)

(34)
By proceeding as was done for eq. (15), we derive the following equation, which replaces

eq. (18) in the neighbourhood of a zero of o :

2 k2 — k2
l—0o,e™? |1+ = = ]——'0, 35
g (ng — k)% — k2 (35)

from which one obtains

2 k% — k2 — 2nkg
Kz _ k2

1—o0pe™* =0. (36)
At variance with eq. (18), which in the neighbourhood of a zero of o yields g¢*
InT ~ In(k — ky), which diverges, eq. (36) gives for ¢ the finite value ¢? ~ —Iny
for |k — ks| <n. We conclude that @ is finite at the zeros of o, and therefore ¥ is
zero there.

When k. is different from zero, i.e. when o is complex and the plasma absorbs energy,
one can repeat all previous arguments if |n¢'| becomes much larger than |InT in the
intervals d;, i.e. if at k; the quantity |or/ogr| is much smaller than (n|8r/6k|)2/3

Otherwise the absorption is too strong to allow the formation of waves.
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3. Inhomogeneous equation and reflection coefficient

We now come back to the inhomogeneous equation (8). Since the function h on the
RHS of eq. (8) becomes a é-function when 7 = 0, the solution is approximately a
linear superposition of the real functions ¥; and ¥, except in the neighbourhood of
k = k,. The coefficients of the superposition can be different in k£ < k, and k > k,; in
particular, for £ <k, < k, the solution must have the form C;¥; since ¥, diverges
for k going to minus infinity. For k > k} > k, the solution @ must have the form
C2(¥1 +c¥y), where ¢ is determined by the condition that @ go to zero for k going
to plus infinity; in practice, we do not need to evaluate ¢, because the symmetry of
o(k) plainly makes W;(k)+ ¢¥a(k) proportional to Wy(—Fk). In order to determine
the solution in the neighbourhood of %, integral equation (8) will be approximated
by a differential equation. As first step we deduce from eq. (8) an integro—differential

equation without principal part integrals. We derive eq. (8) with respect to k, and by

taking eq. (8) into account we get (with the notation @ = Q(k)/o(k) — 55-h(k — k,))
= - 57 JCE AL g = (37)

We again derive with respect to k& and by taking eq. (8) into account we get

8* 1 0
200 + 5y (k= ke )+

—(k+ &, ][h k' — k) Q) g 4 fh(k'_k)Q(k’)dk':o. (38)

k" +k, n*
Finally, by using eq. (37) we obtain
o kO 2(k? — k2) 4 T o
a2+ o p ¥R+ o [_“5”— +1] k)~ /h(k —k)Q(K')dk' = 0. (39)

-0

The last term of this equation can also be written as

S /h(k’

or, approximately,

— k) o(KYh(k' — ko) dEk’

2ma(k)
ntk

o

k) fh(k’ k)®(k') dk' + /h(k’ — k) h(k' — ko) dk'. (40)
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Thus eq. (39) becomes an inhomogeneous integro—differential equation for the function
®(k). As announced in the previous section we now derive an approximation for the
function ¢ valid in the neighbourhood of %,, in the approximation (which will be seen

to be correct) that ng' < 1. From eq. (39) we get the following equation for g :
4n?g® 4 4kng + 20 + (k* — k}) = gexp [g2] : (41)

In the neighbourhood of &, the term (k% —k2Z) can be neglected, and the approximate
solution is ¢*> =~ Inn + Inf, where for f% one gets f* =~ (4k,/0)*(Inn + Inf) =~
(4k,/0)?Inn.

We now approximate eq. (39) in the interval k ~ k, with a differential equation, by
expanding ®(k') in powersof k'—Fk, similarly to the procedure in the neighbourhood of
the zeros of the ‘dispersion relation’ of eq. (14). Since the solutions of the homogeneous
equation corresponding to eq. (39) are known, being the functions (k) derived in
the preceding section, we are in a position to write the solution of the inhomogeneous
equation for the interval considered by means of the method of the variation of the

arbitrary constants. As one has

/hwu4g( my~@u)f —Ldy—%ggéwy/wtwfuy—kmy

,,?2 32
= (k) — T 77 2(k), (42)

equation (39) becomes

o2 4k 0 2 [2(k* — k2)
w@(k) 3 ak‘I)(k) 7 [—72‘2 =+ 1:| O(k)—
4o n‘a & B - P .
_77 ‘i’(k‘)-l- 1 ok (k) = ik, h(k" — k) h(E' — ko) dE' . (43)
The solution of eq. (42) can be written as
k
B(k) = Ty(k) / k) () A~ () [P v,

where W(k) is the Wronskian of ¥y 5(k):
W (k) = U1(k)(02(k)/0k) — (0T1(k)/0k)T2(k),
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and H(k) = \/7r-/§(a/koq3)exp(—(k — ko)?/8n?) is the RHS of eq. (43). As lower
limits of the integrals in eq. (44) we choose plus infinity for the first integral and minus
infinity for the second one. With this choice the solution is almost independent of (k)
at the beginning of the interval we are considering, as it is of ¥;(k) at the end of the

interval. The form of @ in the neighbourhood of k, follows from the definition of
o :

FH(E)
Wk

-0

k
% b= ko) + a(8) [ el A~ ()

Q(k) = Uy (k') dE". (45)

2
It shows the separate effects of the source and the plasma. The function h decreases
from the value 1/ for k = k, to a quantity of the order of unity at the boundary
of the interval we are considering, and is exponentially small outside it. The coefficient
of ¥,(k) is exponentially small for k sufficiently larger than k, and is a constant
otherwise. Analogously, the coefficient of Ws(k) is a constant when k is sufficiently
larger than k,, and is exponentially small otherwise. Since these properties imply that
Q(k) =~ C12%, 2(k) far enough from k = k,, eq. (45) can be considered valid on the

whole k axis if the constants C are defined as follows:

o= Y228 [ o [k — oy /80?] SR

kon® Wk
Vi 2o(ks) | ' 2 o2 Y1(k')
=" Xp |—(k — ko k'
C2 kon3 exp [ (‘l" k ) /87} ] T,v(kf) d (46)

Approximations of ¥(k) and W(k) for k = k, necessary for the evaluation of the

constants C are now derived. Since one has gr < gr one can write

.
(k) = aexp lf(g(k')/n)dk’ +ee.,

where a is a complex constant whose explicit form can be obtained from eq. (28)
with 7 = 1. In the case that there are no zeros of the dispersion relation in the interval

(—ko, ko) (this particular case has been chosen only to simplify notations), for ¥, one

has

wf
T A /(g(k’)/n)dk’ +ee.
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k

=aexp |— [ (g(k")/n)dk'| + c.c.
{

ko K
= a*exp ] (g(k')/n)dk'} exp L/ (g(k')/n)dk'} tee. (47)
—k, 0

ko
With the notation b= aexp {— [ (g(k")/n) dk'} one then obtains
_ko

W(k) ~ 4|g(k)|(ab),/n, which depends only slightly on & . Hence

C =~ _yta(®) exp [—(k' — k,)?/8n?] ¥a(k") dE',

kon?’PV(ko) R
Cx e LT [ exp [0 = ko f50P) sl (48)

The integrals can be evaluated as was done for the derivation of ¢ in the neighbourhood

of k,, the final result being

2wo(ks) & drk, ”
A —————(b" 2 )R ——————
. 2mo(k,) 5 Y 4rk, 2
Co ~ ForZW (k2 (aexp [2¢°] +c.c.) = —cr(ko)PV(ko)g apr (49)

because ¢? is approximately real. For a general value of w and k, these expressions
are of the order of 7, owing to the presence of W, so that Q(k,) = (7o /2k,)h(0), the
source term in the equation for ). However, as the necessary and sufficient condition for
the eigenvalues is W(k,w) =0 for every value of k, asis shown afterwards, Q(k) is
singular at the eigenvalues, as it ougth to. In order to show that W = 0 is the eigenvalue
condition, let us note that an eigenfunction must be proportional to ¥,(%k) because this
function goes to zero for k going to minus infinity for every value of w, in particular for
the eigenvalues. At the same time it must be proportional to ¥,(k) = ¥;(—k), for an
analogous reason. Hence at every k one must have ¥,(k) = AUy(k) and ¥q(k) =
AW¥,(k)', where A is some constant; the necessary and sufficient condition for the
solution of these two equations is precisely W = 0. The previous considerations show

that the reflection coefficient, which is the modulus squared of £,/S given by eq. (13),
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varies from zero (when Q(—k,,k,) =0, i.e. at the eigenvalues or when ¥;(—k,) = 0),
to unity. The last case is given when 1+ (Q(ko, ko))2 —(Q(—ko, ko))2 =0, a condition
which can be verified only in the neighbourhood of the eigenvalues because the quantity
h(0), which appears in Q(ko,k,), is of the order 1/7.

The phase angles of (£,/S) and (&/S) are easily deduced from eq. (13); when k. =0

one obtains

1= (Qkor ko)) + (Q(—ko, ko))
2Q(ko, ko)

2
tg ¢r = : tgde = —1/(tgdr).  (50)
Hence, for values of w sufficiently far from the eigenvalues the phase change of the
reflected wave with respect to the source is approximately 7 /2, whereas the phase
change of the transmitted wave is of the order 7. In the neighbourhood of R =0 1t
is ®, which goes to zero, whereas @, is approximately /2.

We now derive the explicit form of the function F(k,w) from eq. (9). By taking egs.

(13) into account we get
[(@(=Fo, k0)* = (QUkos ko))" + 1+ 2iQ(ko, k)| Fl(ky) =

482 | |
(14 iQUka, ko) QU ko) +iQ(—ko, ko) Q(, —ko)) (51)

™

or

[(@(—For k) = (QUkos k)" + 1+ 2iQ(ko, ko) F(h,w) =

4k? . :

"2 5 ((1+iQ(kos ko)) Qk, ko) +iQ(— ko, k)Q(—k, ko) ) (52)
Although the function Q? appears in both the numerator and the denominator, the
function F is singular at the eigenvalues because (Q(ko,ko) 4+ Q(—ko,ko))W is zero
at the eigenvalues, as is easy to deduce from eqs. (49). For k < —k, eq. (52) can be

written in the form
[(@(=ko,k0))* = (Qko, k2))* + 1+ 2iQ(koy ko) | F(k,w) =

4k?
T

(1 +iQUko, k0))C1 +iQ(—ko, ko)C2 ) W1 (k). (55)

A general remark can now be made about the relative amplitude of the electric field

in the intervals S, and Sy (we assume that there are only three S intervals, with
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Se¢ symmetric with respect to S3), i.e. about the relative energy content of short—
wavelength and long—wavelength waves. In the interval s3 the function ¥, is a super-
position of the functions f;2; for general values of w and k. the coefficients of fi ,
are comparable and therefore |¥,| is much larger in S; than in S,. However, when
w and k. are such that the coefficient of f; is zero (this would be the eigenvalue
condition if S; were the only S interval; see also ref. [1]), the function ¥; is pro-
portional only to the function f, in s3, and consequently |¥;| is much larger in S5
than in S4. The values of w and k, with the required property are easily deduced

from eq. (29); one obtains the equation
ka2
Bipbpz =0, i.e. cos /(g/n)dk' =) (54)

Finally, some remarks should be made about (R + T') in the presence of absorption,
i.e. when k. # 0. The first consequence of absorption is that one has |¥;(—k,)| <
| ¥, (ko)|, from which it follows that |Q(—ko,k,)|? < |Q(ko,k,)|?. With this approxi-

mation, and some algebra, one obtains
R+ T-1= Qilke,ko)/(1+ (Qr(ko, ks))") . (55)

At the eigenvalues the plasma reaction dominates over the source; then R 1is zero,
T is equal to one and there is no energy absorption. However, in the immediate
neighbourhood of the eigenvalues the real part of the plasma reaction can cancel the
source term, thereby producing the largest absorption, given by

2k, o7

. X 56
s e (56)

R4+T-1=

where o is negative. The same result is obtained when eq. (54) is verified, which also

happens in the neighbourhood of the eigenvalues.
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Summary of the results

We consider the system of Vlasov and Maxwell equations for a plasma referred to Carte-
sian coordinates with the coordinate z parallel to the uniform equilibrium magnetic
field and with the equilibrium plasma density dependent on nx, where 7 is a param-
eter; we assume that k, = 0, but that %, is different from zero. The interaction of
ordinary and extraordinary waves is neglected. The (space) Fourier transform of the
electric field of the ordinary waves obeys a homogeneous integral equation with princi-
pal part integrals, which is solved in the case of weak absorption and sufficiently small
n (essentially smaller than the vacuum wave vector), but without limitations on the
ratio of the wavelength to the Larmor radius (the usual approximation being limited
to wavelengths much smaller than the Larmor radius). We show for every value of 75
that the reflection and transmission coefficients verify the energy conservation theorem
for an absorption—free plasma, with a proof which does not require explicit knowledge
of the solutions. A physically interesting property of the distribution of energy over
the different k intervals is also derived, as well as the total energy absorbed, again for
weak absorption and asymptotically in 7. A by-product of our derivation is a general
and compact equation for the eigenvalues which does not require complex analysis and

knowledge of all solutions of the dispersion relation.
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Appendix

Let the equilibrium distribution function for the particles of species a be f, = h(nz +
nvy[Qa)frm, where , is the gyration frequency of a particle and fy; is the Maxwell
distribution function. Since for the ordinary waves the term (E + 7 X 5) has no y

component, one has

— - — 6 = - = a
Z(E+U X B)i—t;f“ = h(nx +nvaa)Zi:(E+v X B)ia

Ui

fa -

i
When nv,, <€ 1, where vy, is the thermal velocity of the particles, one gets the
final equation by substituting the space Fourier transform of the product h(n2)E.(z)
for the Fourier transform of h(0)E.(z) in the equation valid for n = 0. The same
is obtained by first integrating along the characteristics (on which the function % is
constant) and then making the approximation on the argument of the function h before

integrating over velocity.
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