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1. INTRODUCTION

In magnetohydrodynamic equilibrium computations, the location of the plasma —
vacuum interface is not known in advance. It is a free surface, to be determined while
solving the equations. Several ways of doing this have been employed. In some of the codes
equations for the forces at the interface are added. A convenient approach for axisymmetric
equilibria is to “ignore” the free boundary when defining the grid. This strategy was used
both with finite difference schemes and with finite elements (see, for example, (7, 11, 4, 9,

15, 5)).

The discretization error of this approach is investigated in Section 2. For 2nd order
centered differences (O(h?) convergence on problems without free boundary), the residual
is O(h) in a neighborhood of the free boundary. But this neighborhood is of order k. Thus
O(h?) convergence is obtained globally, with less favorable constants than in the regular
cases. The size of the maximum error depends on the position of the grid points with
respect to the free boundary. Higher order methods reduce to O(h?) methods unless there
is special treatment of the free boundary. Extrapolation A — 0 is of doubtful value. As a
consequence, a naive application of multigrid methods might fail to converge in h. This is

demonstrated in Fig. 2.6 of Section 2.4.

A modification of the standard 2D difference scheme is devised in Section 3 such that
the residual becomes O(hz) locally. The global error is reduced and becomes independent

of the location of the grid points with respect to the free boundary.

1.1 THE MODEL EQUATIONS

An axisymmetric plasma equilibrium can be modeled by the Grad-Schliiter- Shafranov
equation (see, for instance, [2, Chap. 4], [12], or [16]):
A*Y+IT'+R?p =0, (1.1.1)
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for the flux function ¥ in a plasma region (2. Here, R , ¢ and z are cylindrical coordinates,
p(t) is the pressure, Bs = I(4)/R is the toroidal magnetic field, and primes indicate

differentiation with respect to 1. The poloidal field ﬁp is related to ¥ by
B, = V¢ x V4. A1

We consider the case where a plasma is contained in a conducting shell, but separated from
it by a vacuum region {2,. With this shell coinciding with a magnetic surface, ¢ becomes
constant there:

v=a<0 on 90 =23(0pUN). (1.1.3)

We suppose further that there are no singularities (wires) in the vacuum region (1. Then
we have

A*Y+II'+R*p=0 in (1.1.4)

and

A*Yp =0 in Q.

Since the magnetic field is continuous on the plasma surface, ¥ and gﬂ are continuous

across df)p. The total toroidal plasma current J is usually prescribed as a normalization

(cf. [11]):
1 _—_ - 19y
J=——[ —A*¢dez=—f Bdl=—f Bdl=—f ——dl 1:.1.5
a, B2 a9, 20 ank on (1)
Temam [16] considered the following model problems:

General assumptions: Let 1 C R? be a domain bounded with respect to the z; -
coordinate (z, < z1 < z*) and having a smooth boundary (00 € C*). Let L be a

uniformly elliptic operator in 1,

1 8u 1
= E = —A* d.
£ v aI‘ I1 BI, I - (l 1 6)

and let b € C'(Q) satisfy 0 < by < b(z) < b2 in 0.
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Problem A: Given  and a constant I # 0, find u, A, v, and Q, with 0, C Q, u(z) #0

in QUy, such that

T {—)'\bu in 0, i
01n  Q.:=0\0,

u
u|aq =7, 7 unknown, u|sg, =0, 0 continuous across 911, , and (1:1.7)

Remark 1: Once a solution to this problem is found, we see that A is the eigenvalue of
the subproblem

Lu+Abdbu=0 in 0, ulan, = 0. (1.1.8)

Owing to the character of elliptic problems, it is in general not possible to find a solution

to the full problem from an eigenfunction on some given subdomain 2, C (1.

Remark 2: Problem A is homogeneous. Thus we can multiply any solution by constants

to obtain other solutions with the same A and ;. The integral side condition
10
—f —Lgs=1 (1.1.9)

thus plays the role of a normalization.

Remark 3: The condition {2, C 0 (excluding the case of the free boundary touching the
fixed boundary 91) makes sense as a plasma close to a wall would destroy it. Mathe-
matically, this condition has been considered to be convenient. It allows solutions to be

renormalized by replacing the conditions

1 du
— ——ds=1 1.
fian zon (1-1.10)
ulaq =7, ~ unknown,

by the simpler and more standard condition

ulon = -1, (1.1.11)
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thus leading to
Problem B: Let (1 C R? be given. Find u, A, Qp with 0, C 2, u(z) # 0 in 0y, such that

_ [=Muin Q,
L = {0 in 0,:=0\0,

ou .
u|anp =0, ul|sg=-1, o continuous across 9(1.

The mapping between the solutions of Problem A and Problem B, however, creates
a singularity (see Section 2.1). We thus find it more convenient to reformulate Problem
A to include the limiting case 800 = 911, (see Sections 1.2 and 1.3). Among the results

obtained by Temam [16] it is found that the solutions to Problems A and B exist and
i. are holomorphic in {2, and in 1, = O\, ,

ii. have Holder-continuous second derivatives in {0 (i.e. the solutions are C***((2), 0 <

< 1)y

iii. their 3™ derivatives are in L?, p > 1 (i.e. the solutions are in w3 p>1).
1.2 EXAMPLE
We consider the free-boundary problem

"+ Xt =0  in (0,1),
P(0) =¢¥(1) = o, (1.2.1)
P'(0) —¢'(1) =1,

where 1 (z) = {g (=) if iggzg . Assuming symmetry of the solution, we make the ansatz

a+bz if 0<z<zy

P(r)={ esind(z—2f) f zy<z<1-=z;. (1.2.2)
a+b(1—z) if l=ap<Le<l

The continuity of ¢ and ¢’ in the free-boundary point zy, the fact that A2 is the eigenvalue
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of % in the interval (zs,1 — z7), and the boundary conditions provide five equations for

the six unknowns A, a, zy, a, b, and c. Therefore, we can choose one of these parameters.
Prescribing the inner parameter z; gives good insights and explains why there exist no

solutions for certain values of e, I = 2b, A , and Y¥max = ¢ . We find

= x<A= a
1-—22;

b
<oo and O0<Lc=—-<-. (1.2.3)
m

[N

0§z;=—%<

Fig. 1.1 and Fig. 2.2 show solutions to eq. (1.2.1).

1.3 NUMERICAL MODEL.

We now return to equations (1.1.4), (1.1.5). Let Rpj, and Rpax be the extremum

values of the radius R in 2. We non-dimensionalize and introduce coordinates = and y by

Rmax — Rmj
= —EER—-.——IPE, R = Rpin(1 + € z), 2 = (Rmax — Rmin) ¥, (1.3.1)
min
I=Runl, p=p,  $=Rh,e?
and get (after dropping the tildes and other minor changes)

8%y e oY 0%

972 1+ ez 0z o dy?

= -2 YT (1 -6y + Bp(1 + ex)?) (1.3.2)

in D := (0,1) x (b1,bs2). Here, ¢ measures the curvature of the torus, ¢ = 0 corresponding
to planar geometry (straight cylinder). Also, we introduced 3, to vary the degree to which
the poloidal currents contribute to the confinement. Our way of non-dimensionalizing

slightly differs from that employed by Lortz [12]. The other equations become

1 8y
_fzw Ty dl = J, (1.3.3a)
ay
(1-—7)Y+ Far = (1—7)g on 4D, (1.3.3b)

where

P .r Y(z, 0
Yr= {30 if ¢§z,£§o ’



g(z,y) is an arbitrary function,
7(z,y) is a function satisfying 7(0,y) = 7(1,y) =0, b1 <y < b2 and
lz,b) =e; $3=1,2;, 0L, 251,
Equation (1.3.3b) is closely related to “Schaeffer’s boundary conditions” (3, 14]. Equations

(1.3.2), (1.3.3) contain both Problem A and Problem B as special cases. But they are more

convenient in the following respects:
i. The plane case is obtainable from the toroidal case in a smooth limit (see [12]).

ii. The 1D case is a special case. Also, it is possible to impose symmetry with respect to

the R-axis.

iii. General boundary conditions allow us to compute solutions to Problem A in non-

rectangular domains.

iv. The free boundary is allowed to coincide with the fixed boundary.

The computational domain D is sketched in Fig. 1.2.

1.4 IMPLEMENTATION

First we discretize equations (1.3.2), (1.3.3) by conventional second-order finite dif-
ferences (local errors O(h?) on ‘regular’ problems). The location of the free boundary
is ignored in this approach (employed by, for example, Lackner [11], Johnson et al [9],
Blum [4] and Braams | 5| in their codes for computing 2D plasma equilibria). The re-

sulting nonlinear system of equations is then solved with Gauss-Newton iterations (details

below).

1.4.1 Discretization of L.. The elliptic operator L. in (1.3.2) can be discretized by
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standard central finite differences in two main ways:

] 1 1/k?
: h 2 h
Y2z — 1+ E.."‘:tbz + Py = he 1+ fl-lfez =d=g L= El-{fez P (1.4.1.1)
1/k?
(where h = h; , k = %’z’—) and
Uz .
1 -
( +EI)(1+€$ =+1,byy
. 1/k?
14 1+ 1+ 2 14+
%) l+e(zjzh/2) _1+e(zjjz/2j - 1+e(zizh/2) — i Trezihry) | ¥- (1.4.1.2)
1k

Although numerical experiments seemed to show slightly smaller errors for (1.4.1.2) than

for (1.4.1.1), the differences were not significant.

1.4.2. Normal derivatives at the boundary. The integral in (1.3.3) is approximated
by the trapezoidal rule and %}g by the one-sided O(h?)-accurate, unsymmetric 3-point

formula, which reads in case of the lower boundary

d 1
—3—‘;{(%51) = -ﬂ;(_:} Vi N2 +4 ¥iNa—1 — Vi N2-2)- (1.4.2.1)

Instead of discretizing the condition %‘5 = 0 in (1.3.3b), we assume the solution to be
symmetric across z = b;, 1 = 1,2, introduce mirror points outside the domain and use the
governing equation at the grid points with z = b;. This satisfies % — 0 for h — 0 and

introduces new non-zero elements only within the band.

1.4.3. Newton’s method. We solve the discretized analog of equations

Le v+ Q(¥,A5¢) =0 in D,

(1—7)Y+ r% =(1—-17)g on 8D, (1.4.3.1)
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1 dy
B ==l = I'= %0 =
f;p 1+E$andt I T€(¢5 ,I) 0

by Newton’s method:

L+ Qn Q"’ ¢n+l _ ,JJn L ¢n + Qn
( TJ} ¥ T;:}' ARl \n = " . (1'4'3'2)
Here, subscripts denote partial derivatives, superscripts the iteration number and Qz the

Jacobian matrix %%(W", A™). In the case of Q(1,A) = Y™ (1—Bp+Bp(1+e€z)?) , a diagonal

element of the Jacobian makes a jump
A1 = Bp + Bp(1 + €ex)?) (1.4.3.3)

each time the boundary passes a grid point. For small grid spacings, this is small compared

with the element itself (of size _‘ﬁ%‘f - %5) and appears to cause no difficulties.

The discrete analog of (1.4.3.2) is solved by a (pivoted) Gaussian band-solver applied
to (L+ Qﬁ)h together with a ‘bordering algorithm’ (as described by Keller [10]). It involves

the steps

(L+ Q%)™ =@3,
(L+Qy)="*' =-Ly"-Q", (1.4.3.4)
q,ﬂ.—f-l s ,\u+1 e X (_T$zn+l . Tﬂ')/(T/{‘ _ Tgyn+1)’

nt+l _ ’l,bn_H _ ’!lln — zn+1 _ yn+l n+1

p q

with the boundary conditions

ayn+l
(1 - T)yn+l o gk & an =0,
azn-i-l
(i~ e +p—g— =il (1.4.3.5)
ensuring that
6 n+1
(1—7)p"t + 'r];—n =0 (1.4.3.6)
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and thus

n+1
(1- )"t 4 1‘% =(1-1)g

if 10 satisfies this boundary condition.

1.5 EXPLICITLY KNOWN SOLUTIONS

Several solutions to egs (1.3.2), (1.3.3) can be given explicitly:

(1.4.3.7)

1.5.1 Example 1 (1D, € = 0). As already discussed in Section 1.2, the differential

equation

is solved by

a+ 1z if 0<z<zy
Y(r) = esinA(z—z5) f zy<z<1-uz4
a+I(1—xz) ifL1—2p<z<1
with free boundary in
«a 1
= —— &0, =
and eigenvalue
B
1 -—-2..":f
1.5.2 Example 2 (2D, € = 0). Equation
AY + 22T =0

11

(1.5.1.1)

(1.5.1.2)

(1.5.1.3)

(1.5.1.4)

(1.5.2.1)



in a circle can be reduced to the ODE
iy Lo 2.+
P+ —rv,b + A%yYT =0.

If we pick a solution with free boundary at radius ry, we get

Jo()\r) if OSTSTf
(r) = Aln;_'? if #2>#y

with

Arp=jon1 (first zero of Jo)

and

A=Xrp Jo(Xrg) = Joa Ja (5o,1)

jg o dl =2 mA.
r=r; an

This solution has already been given by Bandle (1].

(1.5.2.2)

(1.5.2.3)

(1.5.2.4)

(1.5.2.5)

(1.5.2.6)

In our numerical experiments, we chose the origin » = 0 to be situated in the center

(1/2,1/2) of the unit square D = (0,1) x (0,1) , and prescribed the function values of the

exact solution on 8D. Solutions to (1.5.2.2) with

% %dl=27rA
a

p on

(1.5.2.7)

and r; = 0.2 and r; = 0.4 are displayed in Fig. 2.3. The curvature (2nd derivatives)

strongly increases for r; — 0 . As a consequence, the discretization errors also increase if

the grid is kept fixed and r; is diminished. The limiting case of the solution is a cusp.

1.5.3 Example 3 (1D, € # 0,8, = 1). Equation

1
w"——w'+)\2r2w+: A
g

w(r)) = w(ry) = «

12
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is solved by

ay + % r? if HEPFER
w(r) =S esing(r?—rd) if ra<r<rs (1.5.3.2)
a3+%1r2 if r3<r<ry

withr; >0, rq =1+r;, @ <0, b3 <0 and

63 3
az=a-— -Z—Yi by =—b3, ag=a+ ?"f,
2 ay 9 as 2T b3
= -9 2 ==2—=, A= =——, 1.5.3.3
Ty b]_ y T3 b3 T% — T% ; C b\ ( )
provided that
b b
2a + ?3(,,‘;’ —r?) = _53(,-3 —r¥) >o0. (1.5.3.4)
With € = 1/r;, r=r1(1+ ez) and ¥(z) = € w(r1(1 + ex)) we get solutions of
€
" — ——¢' + A1+ ex)?9T =0, (1.5.3.5)

1+ ex

A solution of (1.5.3.5) is shown in Fig. 3.3. The parameter values are given there.

1.5.4 Example 4 (1D, € # 0,8, = 0). Equation
n 1 ! 2 +
w —-w +A"w" =0 (1.5.4.1)

is solved by
a1+%L?'2 if ri<r<rg
w(r)=CcrJi(Ar) if rs<r<r3 (1.5.4.2)
a3+-23-r2 if rs<r<ry

with
: ; J! (5
A>0, Ara=g,1, Arz=jJ1.2, := 1,(3.1’2),
JY(51,1)
i 13 ¥rs =9
r =m(—1+ 14 T(l'i"}f)), re=14+rp, (1.5.4.3)

provided that

r% — r% '1(r§ - rg) = .
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Here 71,1 and 71,2 are the first two zeroes of the Bessel function J;. With e :=1/r;, r =

r1(1+ ex) and ¢(z) = € w(r1(1 + ez)) we get solutions of

€
P! — 1_+'EE¢’ + X2yt =0, (1.5.4.4)

by computing the remaining parameters of eq. (1.5.4.2) in the obvious way. A solution of

(1.5.4.4) is shown in Fig. 1.3.

2. THE DISCRETIZATION ERRORS
2.1 PREVIOUS RESULTS

Lackner [11] solved the nonlinear MHD equilibrium problem by inverse iteration, com-
bined with a fast Poisson solver for the linear equations. He investigated the accuracy of
his computations in the presence of a free boundary by solving a problem with discontin-
uous right-hand side both numerically with his code and by evaluating a Green’s function
expression. Since the conductor causing the discontinuity was always placed on a grid
point, max ||error|| = C - h? was obtained when 1/35 < h <! /956 , provided the compu-
tations with h <! /g4 were performed in IBM “double precision” (i.e. about 16 decimal

places of accuracy) (unpublished).

Rappaz [13] and Caloz & Rappaz [6] give theoretical error estimates for Galerkin /

finite-element methods. In [13], Rappaz considers

Au+Arut =0 in , (2.1.1)

u=—1 on 911.
He uses the auxiliary problem
Av+dvt =0 in Q, (2.1.2)
v = —¢ on 911,

(v,0) =1 (&),
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to parametrize the solution set of (2.1.1) by the mapping

v(e)). (2:1.3)

Here, € € (—€ , €) is the parameter, ¢ the normalized eigenfunction of {1 (i.e. the solution

of (2.1.2) for € = 0), and (v,p) the L? scalar product. The bottom relation in (2.1.2)

implies the condition

(w0) = = = (1,0) (2.1.4)

for the solutions v of (2.1.1) and produces a ‘bifurcation from infinity’ for ¢ = 0. With
piecewise linear elements and triangularizations with diameters < A in a polygonial domain

(1, he obtains the error estimates
|A(e) = An(e)| S C R (2.1.5)

lu(e) — ua(@lla < C h e

for 0 < € < €, C being a constant independent of A and €. The relative errors

[[(e) — un(e)ll,0

l[u(€)ll1,0

<Chfor 0<e<E (2.1.6)
are independent of ¢, since |le u(e) — || = ||v(e) — || = 0 for e — 0.

Using similar techniques, Caloz & Rappaz (6] prove O(h)-convergence for piecewise

quadratic finite elements applied to the more general problem

—Au=XMu" +p(*)?} inQ,

u=—¢ on 91, (2-1.7)

where I > 0 is fixed and (¢, ) lies in a neighborhood of (0,0).

2.2 SOME TEST CASES
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In order to investigate the discretization error of our numerical approach in the pres-

ence of a free boundary, we performed the following experiments:

i. Take an explicitly known solution (A,%) from Section 1.5, with

T(w,A,0)=] . .

8D 1+ez_6_n

3 (2.2.1)

ii. Use Gauss-Newton iterations to compute a numerical solution (A, ;) with
Th(n, An,0) = J
as side condition, as described in Section 1.4.
iii. Stop the iteration process when
|l LaR + QF|loo < 5-1078 and ATH 28 <5 107F, (2.2.2)

(see (1.4.3.4); Owing to rounding errors, 5 - 1078 is the maximum accuracy obtainable

in some of the examples).

iv. Compute the errors

¥ (z,y) — ¥a(z,y)| A = Al |J = Th(n, An, 0)|
o) , ==t ; . (223

As a first example, we show in Fig. 2.1 the errors obtained for the solution of

AYp+Ayp=0 in D := (0,1) x (0,1),

-7y + 'r% =0 on 0D, (2.2.4)

el = 0 Hx=0oca=1
Y=11 ify=0ory=1

- %ds=2,

aD Bn
as computed with h; = /g, 1/16,..., } /512 and hy = !/5. Theoretically, this is equivalent

to
1!)"+/\¢=0,

$(0) = (1) =0, (2.2.5)



Rounding errors are more important in (2.2.4) than in (2.2.5). The main difference, how-
ever, is due to the change in normalization: the numerical error in (2.2.4) is dominated by

the truncation error of (1.4.2.1). Since

w_ Y-1—2y+y _ h? W=h27r4

Y% A2 ~3.a W T gLa

Y0, (2.2.6)

the truncation error of (1.4.1.1) is proportional to the exact function value in every grid
point: If there is no numerical error in the computation of the norm of the solution, we

get (up to rounding errors) the exact function values.

Consider how the errors of the trapezoidal rule compare with the errors in computing

% by means of (1.4.2.1):

9o 1 s LB ey 27"2~_2
o= or (=30 +4 Yy —a) m hY(0) = —h’ T ~ —h?-3.280868,  (2.2.7)

The values obtained for the last quantity in (2.2.3) are, after division by hZ,

1/h | 8| 16| 32| 64| 128| 256 | 512 |
C |3.1152 |3.2457 |3.2788 |3.2871 |3.2892 |3.2897 |3.2898 | (2.2.8)

Although the error estimates (2.2.6), (2.2.7) are valid only for h — 0 , we see in Fig. 2.1
that the asymptotic constants are almost reached already for h =! /16- The deviation is

5.3 % for h= /3 and 2-1072% for h = 1/512.

A completely different picture is obtained for

' Ayt =0,
$(0) = ¢(1) = —%, (2.2.9)
 ,
- "a—n' ds = 2.

Fig. 2.2a shows that, in this case, the error is bounded by Const-h?, but only the errors in
the global quantity A are equal to C - h? for some constant C. (Since the solution is linear
outside the free boundary, the numerical approximation of (2.2.9) is there accurate to the

rounding error level.) An analysis of the position of the free boundary with respect to the
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grid points for the different values of h suggests that the error depends on the distance
between the free boundary and the nearest grid point. This is confirmed by Fig. 2.2b,
which shows cases where h was chosen such that the free boundary always becomes located
at a grid point.

Looking at Fig. 2.3, Example 2,

AYp+Ayt =0 in D ={0,1) % (0,1},

Ylop = g, (2.2.10)
X
— ds=J,
ap On

(where g and J attain the values of the exact solution), we see that errors/h® (with
h = h; = hy) behave quite smoothly when the plasma range is large (r; = 0.4 or zy = 0.1),
but they are larger and behave more similarly to what is shown in Fig. 2.2a for smaller

plasma regions (ry = 0.2 or z; = 0.3).

2.3 ANALYSIS OF THE TEST CASES

To understand the experimentally observed behavior, we approximate the 1D solu-
tions, around the free boundary, by 3% order polynomials. We consider first the case when
the vacuum region is to the left, and the free boundary is located between the center and
farthest right point of the (3-point) difference stencil (cf. Fig. 2.4a). A is kept fixed at its
exact value. To third order, the function values of the analytic solution at the grid points

are

Y(=h) = —B(h+2),
¥(0) = -0 2, {2.3.1)
o) = plh— 5 - L2
where z is the grid point to free boundary distance and f is the value of ¢, at the interface.
With these expressions, we compute the residual as

Py %[1—2 14
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_ )3
= Liestr —2-p+ o -2y (s
BA
= G (= M)

This expression is visualized in Fig. 2.4b. The case —h < z < 0 is treated in the same

way. With ¢(0) = —f8z + '%\23 > 0 (including the ¥ term), we get

Rg:%{l—z Yo+A0 1 0
A
= P L 4 M2 22 (2.3.3)
2
= —%( + h)3 + %za

To leading order, this remainder (shown in Fig. 2.4d) is the mirror image of the previous

case.

To sum up: Let the solution % of

¢H + X ¢+ - 0,
$(0) = $(1) = o, (2.3.4)
Y'(0) =5

be locally approximated by cubics and let the difference scheme suddenly change at z €

[—h,h]:
ﬁ[l -2 1]+ A0 1 oyt =0, (2.3.5)
then:
i. The residual is
3 2| = R
{ﬁ% (|2| — h)? + O(h®) for {lzl 2h - (2.3.6)

ii. Max |d(z)| occurs for z = 0, 7.e. when the free boundary is located at a grid point.

iii. If the free boundary is located half-way between two grid points, two stencils will be

affected, but each cubic is down to !/ Sth of its maximum value. Therefore, the total
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error is down to l/4th of the ‘at a grid point’ case. This is confirmed by two series of
computations (with the choice of @ = —!/4 in (2.3.4)). In the case of {h = /s, /16

, - » Y/512}, the interface at zy = !/4 is always located at a grid point, whereas in

the case {h = /10, /18 5 /34 » /66 » }/130 5 }/258 » ' /514} it always falls half-way

in-between two grid points. Results are shown in Fig. 2.5.

2.4 FURTHER TEST CASES: Multigrid Computations

As we have seen in the previous sections, the actual error depends on the distance
free boundary — grid points.  This typically varies when a grid is refined (only in 1D,
e = 0, could we keep it constant). This observation led us to expect that there are

convergence problems in h for multigrid computations.
In Fig. 2.6 we show three sets of computations with program MGOOD of [8] and a
slightly changed main program for equations
—Aph = Aez 'ﬂb::_z in D := (0: 1) X (O$ 1)’

¢h|ap = ¢C.‘Z’gp’ (2.41)

Here the subscript ‘h’ denotes quantities affected by discretization, while the subscript ‘ez’
means that we use values of the explicit solution of Example 2. The deviation from eq.

(2.2.10) is necessary because MGOOD solves

~Ay=f  inD:=(0,1) x (0,1), (2.4.2)

Ylap =9

with known functions f and g which have to be given as Fortran FUNCTIONS.

In the first set of computations, we treated a case without free boundary : r; = 0.8,
see Fig. 2.6c. Here multigrid shows its full power. Convergence is O(h?), and storage re-
quirements are minimal. Much finer discretizations are possible than for the computations

of Fig. 2.3.
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In the next set of computations, we chose r; = 0.6. In this case the free boundary cuts
the fixed boundary, as shown in Fig. 2.6c. Convergence is O(h?) down to h = 1/33, and

then the error stagnates. Further refinement of the grid does not bring any improvement.

In the last set of computations, we chose ry = 0.4. This is the case of Fig. 2.3a. In

this case, the minimal obtainable error is already obtained for h = /.

Properties of MG00D:

Difference operators: usual 5-point stars on all grids;

coarsening: h, 2h, 4h, ...;

relaxation: red - black;

fine to coarse: half-injection;  coarse to fine: bilinear interpolation;

full multigrid interpolation uses grid equation (4th order).

The quantity m in the abscissa of Fig. 2.6a and Fig. 2.6b gives log,h for the
finest grid used in each computation. The routine contains several parameters that allow
one to vary the cycling (V, W, number of relaxations, ...). A change of these parameters

did not make any difference.

3. A CORRECTION STRATEGY
3.1 THE SIMPLEST CASE (1D, ¢ = 0)

3.1.1 The scheme. Now that we know the O(h) portion of the residual (equations (2.3.2)
and (2.3.3)), we can compensate for it by changing the difference scheme locally. Let the

differential equation

P+ AT =0 (3.1.1.1)

be given and the interval be partitioned by grid points z; with spacing h. Let the free
boundary be situated between z;, and z;,,; , as sketched in Fig. 2.4a (vacuum region to

the left of this boundary), and again between z;, and z;,;;. Then we use the following
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scheme:

7‘}1'[1—2 1]’{[’ =0, J<u
3
1 ) : 3 o
wll—2 1]y T & w.»1+1—+:m, =i I=n (3.1.1.2)
t—: )2 o 1.1,
ml-2 1Y + A ¢y - %t—‘—w‘_% =0, j=11+1

and similarly for the second interface. Fig. 3.1 shows computations with this scheme for
Ty = ! /5. We see that the errors in the function values now converge in higher than gnd

order, while the error in A has not changed (cf. Fig. 2.2).

3.1.2. Derivation of the new scheme. Let us consider Fig. 2.4a again. Since

H(h) = Bk — 2) — %(h—zy" (3.1.2.1)
¢(0) = _ﬁzs
we get
_Y(R)—%(0) BA. 2
B = 7 ik (1 h)3h2 (81.23)
L_ 30
B
Using (3.1.2.2) in (2.3.2) gives
__ﬁ _23:_5 ¢(h’)3 3
Ry =—(h—2) OO O(h®). (3.1.2.3)
Similarly, we get for —h < 2 <0
_ A Y(=h)p? 3
Ry = @00) —b(=h))? + O(h°). (3.1.2.4)

With a consistent numbering of the grid points, this gives the scheme (3.1.1.2).

3.1.3 Implementation of the new scheme. To implement the new scheme, we have to
find the appropriate indices 71, 73 (where the discrete function 1 changes sign), and then

alter the discrete analog of @ (cf. eq. (1.4.3.1)) by the four quantities R;(i1), Ra(?1 + 1),
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R3(i2), and Rj (2 +1). While the derivatives of @ only affect the diagonal of the Jacobian,

the derivatives of @ + R involve off-diagonal elements as well. The modifications caused

by the new scheme alter 8 off-diagonal entries, which all fall within the previous band

structure.

i.

ii.

iii.

During the testing phase, we implemented scheme (3.1.1.2) stepwise:

We treated the position of the free boundary as given, and changed only the residual in
the second equation of (1.4.3.4), thus saving the work of computing derivatives. This
reduced the discretization error in the function values to O(h?), see Fig. 3.2. For large
h, h > /33, convergence of this partial Newton method was considerably slowed down
in comparison with the original scheme. For small h , h <! /128, convergence of these

iterations was not affected.

We treated the position of the free boundary as unknown (z.e. searched for the indices
11, 12), but still used only partial Newton. There was poor convergence in some of the

cases h >1 /16, but no convergence problems for h <1 /32

We implemented the full scheme (3.1.1.2). The derivatives are approximated by their

discrete analogs, according to

OR; . Ri(; + d, ) — Ri(v)y,
-é%(v,b,-,m)z ; ’/”‘; W5 %), (3:1.3.1)

As variations in d between 10~2 - h, and 1075 - h, were found to have no influence on

the convergence rate, we routinely used d = 1072 . b .

Comparisons between partial and full implementations (Fig. 3.2) show only very small

differences; in both cases we got O(h*) for the function values and O(h?) for the eigenvalue.

Because of ii. we think that it will be possible (and advantageous) to use the generalization

of scheme (3.1.1.2) with Lackner’s inverse iteration [11], and also with multigrid.

3.2 THE GENERAL 1D CASE (c # 0)
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For the more general equation

€

1T ez E:L,T.bIr =AYt (1—Bp+ Bp(1 +ez)?), (3.2.1)

‘l‘b"

a local analysis in a neighborhood of the free boundary shows that the immediate gener-

alization of (3.1.1.4),

b; 5 .
E1 -2 1]y —[-1 0 1) 3 =0 j<i,

. . P —
L -2 1y -&[-10 1)y +He gty =0 §=i,

b.' Aci ;3 i
AL -2 1y W10 1Y+ et Mgty =0 j=itl
Lt —2 1)y —%[-10 1% + ey =0 z‘+1(<3%',2)

where
€ 2
7T 1 ¥ ez’ ¢j i=1— Bp + Bp(1 + ez;)", (3.2.3)

is indeed the correct generalization. Any first derivative term or any factor in front of
¥t can be completely straightforwardly implemented. No special precautions are needed

because of the interface. Two sets of computations for Example 3 are shown in Fig. 3.3.

3.3 THE NEW SCHEME IN 2D

3.3.1 Derivation of the scheme. In 1D, corrections were needed whenever the interface
occurred on one of the ‘legs’ of the stencil. In 2D, the similar ‘generic situation’ is that the
interface cuts across either one or two adjacent legs of the 5-point stencil, as illustrated in
Fig. 3.4. With slightly altered notation, we number the center grid point 0 and the other
four 1, 2, 3 and 4 (counter-clockwise from top). We consider first the situation in Fig. 3.4b
and assume v, ¥3 , ¥4 < 0, 91, Y2 > 0. Locally, ¥(z,y) can be considered linear in z and
y. This local plane is uniquely determined by the values 19, ¥; and 3. Therefore, the
interface line (along which ¢(z,y) = 0), the distances from this line to the stencil nodes
0, 1 and 2 (denoted do, d; and dz, cf. Fig. 3.4c) and the slope this plane forms with the
*horizontal surface’ 1(z,y) = 0 (denoted ) can all be expressed in ¥, ¥ and 2. We

assume for simplicity a grid spacing of & in both the z and y directions. Straightforward
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geometry leads to the relations

d2 _ h2,¢02
7 (%1 — %0)? + (Y2 — %0)?’
h21,b12
2
U =00 + (= ) e
&2 h4py?

2= (Y1 — 9¥0)? + (¢2 — ¢0)?’

and

_thi—tYo _Ya—to 1 2 kA2
ﬂ_d1+do_d2+do_h{(¢l 10)” + (2 —vo)“} /2.

Since the nodes 1 and 2 are located at distances d; and d; on the other side of the interface

(relative to the center node), according to the 1D argument in Section 3.1.2, ¢; and 2
L] 3

have changed by % and p—?ﬂ, respectively, from what they would have been, had the

equation not changed at the interface. When applying a stencil like

3 1 0
(73|t —4 1|=x[o L of)gp=0, (3.3.1.2)
1 0

we obtain the corresponding residuals by dividing these changes by h%. With use of

equations (3.3.1.1) we obtain

[Correction because] _ A P
Porgu <0 6 (Y1 — %0)? + (Y2 — %o)?
and (3.3.1.3)
[Correction becauae] _ A Py®
Yoy <0 6 (1 — %0)? + (Y2 — ¢0)%’
resp.
Notes:

i. For each occurrence of an interface cutting across any leg of the 5-point stencil, we

simply add (or subtract, depending on the sign of 1), a correction of the form shown

in (3.3.1.3).
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ii. These 2D corrections immediately reduce to the 1D formulas (3.1.1.2) in case the inter-

face is aligned with the = or y-axis (i.e. ¥ = ¢ and 91 = 1o, respectively).

iii. As in the 1D case, the presence of first-derivative terms in the governing equations
(e # 0) will not alter the appropriate correction formulas to leading order in 2D, since

their stencils are of the form [function values|/k rather than [function values]/h®.

3.3.2. Implementation and test results. Implementation of this scheme along the
lines discussed in Section 3.1.3 gave the expected behavior. Results are displayed in Fig.
3.5 for the test cases of Fig. 2.3. The observations reported in Section 3.1.3 about the 1D
case carry over directly. Usage of this new scheme in connection with multigrid should be
easy to implement. As a consequence, convergence of the discretization error for A — 0

can be obtained for multigrid computations in free boundary problems as well.

We believe that our correction strategy will carry over directly to 3D with its 6-leg
7-point stencil for the Laplacian. Until now, we have not carried out the required tests to

verify this.
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Figure Captions

Fig. 1.1:

Fig. 1.2:
Fig. 1.3:

Fig. 2.1:

Fig. 2.2:

Fig, 2.3¢

Fig. 2.4:

Fig. 2.5:

Fig. 2.6:

Sketch of solutions to eq. (1.2.1):
a) typical case 0 < 1%[ < %
b) limiting case with co:nmdmg fixed and free boundary, ]Tl =0
c) 11m1t1ng case in which the inner domain 1, is degenerated to the empty set,
le| —
3= 2'
Sketch of the computational domain D.
Solution to eq. (1.5.4.4) with A =5, a = —1 and € ~ 1.85645.

Numerical error of standard finite differences for the standard 1D eigenvalue
problem in 2D formulation, eq. (2.2.4):

a)|rel error|/h? versus m := —logy h. U — M — U: relative error in the compu-
tation of the integral; < — ¢ — <{: rel. error in 1/}(%, %), o —o —o: rel. error
in A;

b) log,, |rel error| versus m; actually, logo(|rel error|+10717) versus m is always
plotted since |rel error| = 0 occurred several times.

¢) ¥(z)-10 versus z. —— : exact values, - - -: function values, as computed
with h = 1/16. The error is dominated by the error in %';g at the boundary.

Example 1, zy = %-, g =2

a) h= /s, 1/16, }/32, ... , }/512. T is never a grid point, the distance varies;
b) h= /10, /20, /40, - s /320, /510 zf is always a grid point.
Example 2, by = hy = /s, /16, /32, /64, /o6

a) r; = 04, ; =0.1, a = (0, ;) & —0.27859, A? ~ 36.14491;

b) r; = 0.2, zy = 0.3, a=9(0,3) ~ —1.1439, A? ~ 144.5796.

B[ B

a), c): sketch for local analysis of the discretization error in a neighborhood of
the free boundary point; z is the distance free boundary - center of stencil;

b), d): the residual as a function of 2.

Example 1, z; = i—, J =2,

a) Computations with h = 27", n = 3,...,9 . The free-boundary points always
coincide with grid points.

b) Computations with h = (2" +2)~!, n =3,...,9 . Each free-boundary point
is located in the middle between two grid points. This brings the error in the
function values down to } of the previous value. (The error in the eigenvalue A

is not affected since A is a global quantity.)

Example 2. Multigrid computations with routine MGOOD of 8] for 3 different
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Fig.

Fig.

Fig.

Fig.
Fig.

3.1:

3.2°

3.3

3.4:
3.5:

positions of the free boundary:

rf = 0.8, zy = —0.3, ( no free boundary in computational domain);

ry = 0.8, £y = —0.1, (free boundary cuts fixed boundary of the computational
domain); :

ry = 0.4, z; = 0.1, (free boundary fully inside of the computational domain:

same case as in Fig. 2.3a).

Example 1, z; = %, d =2 Computations with scheme (3.1.1.2) and h =
/8, /16, /32, - »'/512. A comparison of this figure with Fig. 2.2a shows

that our new scheme considerably smoothens the numerical errors.

Example 1, z; = 1, J = 2. Computations with scheme (3.1.1.2) and h =
1/s, 1/16, /32, ... ,1/s12. Comparison of partial implementation of Newton’s
method (- - - ) with full Newton ( — ). Compare with Fig. 2.5.

Solution to eq. (1.5.3.5), Example 3, with r; = 1, & = —0.5, b3 = —1, and
€=10. z5,=+2—-1~0414, z;, =+/3—-1~0.732:
a) computations with the standard second order scheme;

b) computations with our new scheme (3.2.2) and full Newton.
Sketch for derivation of egs. (3.3.1.1) and (3.3.1.3).

Example 2, computed with 2D corrections according to (3.3.1.3), for hy = hy =

1/83 1/].6:| 1/32) 1/6‘19 1/96'
a) ry =04, 5 =0.1, a =(0, ;) ~ —0.27859, A? ~ 36.14491
b) ry = 0.2, zy = 0.3, a = (0, 7) ~ —1.1439, A? ~ 144.5796.

See Fig. 2.3 for computations with uncorrected standard scheme.

29



A
V(x) I W (x)

Fig. 1.1: Sketch of solutions to eq. (1.2.1):
a) typical case 0 < L-i o 0,

A

b) limiting case wn;h coinciding fixed and free boundary, L?-[ == 0;

x Y

c) hmltmg case in which the inner domain 1, is degenerated to the empty set,

ol _
b 2'
A
Y
01T 1
b2 _____
D
120 ‘E:O
Qp
0 >
X
b1 —————
0£1T< 1

Fig. 1.2: Sketch of the computational domain D.



a)

|rel error| / h?

7.0

6.0

5.0

4.0

3.0

2.0

0.0

A
ol \

0.0 -

0.0 02 04 06 08 10 x

Fig. 1.3: Solution to eq. (1.5.4.4) with A =5, a = —1 and € ~ 1.85645.

b) c) w(x)-10

A 0.0 A A
i \ 40 L
I  p 30 |
B § |
i @
i 2.0

W_O—O_H E -10.0 -
L 5 i a
I g fii L
: -15.0 |

O==0=—0—0==0=+0==0 h=2"
i 1 ] 1 1 i 1 Il o 1 1 1 1 i 1 - 0.0 1 1 1 ] 1 1 1 1 Il L
2.0 4.0 6.0 8.0 ; 2.0 4.0 6.0 8.0 m 00 02 04 06 08 1.0

Fig. 2.1: Numerical error of standard finite differences for the standard 1D eigenvalue

problem in 2D formulation, eq. (2.2.4):

a)|rel error|/h® versus m := —log, h. 0O — O — O: relative error in the compu-
tation of the integral; ¢ — <& — &: rel. errorin 1#(%, %), o —o —o: rel. error
in A;

b) log,o |rel error| versus m; actually, log,(|rel error|+10~17) versus m is always
plotted since |rel error| = 0 occurred several times.

c) ¥(z)-10 versus z. ——: exact values, - - -: function values, as computed
with A = 1/16. The error is dominated by the error in %% at the boundary.



a)

| rel error| / h?

b)

| rel error] /h?

7.0

6.0

5.0

4.0

3.0

2.0

7.0

6.0

5.0

4.0

3.0

2.0

y(x)-10
A 0.0 4 A
: i 20 |
r 5.0 =
- 1.0
i 5t ;
N 3
R = -100 0.0
L - | L
] g a0 b
L -15.0 - L
-—b-dp—o-—é—o—cb—-a—h- P U N N 2.0 g Lo
2.0 4.0 6.0 8.0 m 2.0 4.0 6.0 8.0 m 00 02 04 06 08 1.0 x
w(x) -10

A 0.0 A A
I L \ 20
r -5.0
- 1.0 |-

O ——0—0—0—0—0 -
i 5 -
B 3
L, < -10.0 0.0 -
|  o—o0—0—0—0—0—0 2 - c’_*’,n_,.‘,—-u\‘_‘/' L
L g 1.0 F
- -15.0 I \
i i 1 A L i 1 -2'0 i1 1 1 1 \ T

Fig. 2.2: Example 1, zy = —;—, J =2

a) h= 1/8, /16, !/32, ..., }/512. s is never a grid point, the distance varies;

b)h= 1/]_0, l/2(_), 1/40, swa 1/320, 1/510. zs is always a grid point.



a)

|rel error| / h?

b)

| rel error| / h?

yix. 1)
A 00 4 s itk
14.0 [ L
- - 10 F
12.0 L
B 5.0 | 0.8
100 | L
- = £ 06
(=]
8.0 E L
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i L 5 -10.0 04
I e L 0.2
4.0 O o b
Q
[| et tr—a=a = 0.0 F
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l O—o—0—0oa
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u-u A L A L L 1 1 P 'l 1 L L L 1 - L L L 1 L 1
2.0 4.0 6.0 8.0 m 2.0 4.0 6.0 8.0 m 00 02 04 06 08 1.0
Wix.5)
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s L < -100
40 = i 0.5 |
I g
20 -15.0 i
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O.G n 1 L 1 L L - n 1 1 1 e L T- 1 ' 1 1 ] L 1 L
20 4.0 6.0 8.0 m 2.0 4.0 60 8.0 m 00 02 04 06 08 1.0

Fig. 2.3: Example 2, hz = hy = 1/8, /16, 1/32, 1/e4, 1/g6-

a) ry = 0.4, z; = 0.1, a=1%(0,})
b) rp =02, zy =03, a= %(0, %)

—0.27859, A? = 36.14491;
—1.1439, A\? = 144.5796.



a) c)
A 0<z<h ‘VA -hgz50 \

1
g Bhe?, wiy) =py - B2 &

wiy) =By - e
i1 il,ﬂ N : %iﬁg
M: ; ) /z ° B =

wiy) = By wiy) =Py

5 s A'Z h 2
b) | fct value = 0, d) i derivative , = L_z_—
\ ivati = A 2n3
res. / derivative , = 0 sk / il = BLBh_
— : v #z .I ' + "__Z
-h 0 h h 0 h

3
e %2 (h-2)

- - % h ~— derivative 2=+ %L - - ‘B—sLh <— darivalive 2= = %

Fig. 2.4: a), c): sketch for local analysis of the discretization error in a neighborhood of
the free boundary point; z is the distance free boundary - center of stencil;

b), d): the residual as a function of z.



a)

| rel error | 7 h?

b)

| rel error| / h?
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Fig. 2.5: Example 1, zy = ;i-, Jo=2,

a) Computations with h = 27", n = 3,...,9 . The free-boundary points always
coincide with grid points.

b) Computations with h = (2" +2)7!, n = 3,...,9 . Each free-boundary point
is located in the middle between two grid points. This brings the error in the
function values down to % of the previous value. (The error in the eigenvalue A

is not affected since A is a global quantity.)
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Fig. 2.6: Example 2. Multigrid computations with routine MGOOD of (8] for 3 different
positions of the free boundary:
r; = 0.8, z; = —0.3, ( no free boundary in computational domain);
rr =06, zy = —0.1, (free boundary cuts fixed boundary of the computational
domain);
rp = 04, zy = 0.1, (free boundary fully inside of the computational domain:

same case as in Fig. 2.3a).
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Fig. 3.1: Example 1, z; = §, J =2. Computations with scheme (3.1.1.2) and h =
/s, /16, /a2, . , }/s12. A comparison of this figure with Fig. 2.2a shows
that our new scheme considerably smoothens the numerical errors.
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Fig. 3.2: Example 1, =y = i‘, J = 2. Computations with scheme (3.1.1.2) and h =
1/¢, /165 /32, --- , !/512. Comparison of partial implementation of Newton’s
method ( - - -) with full Newton ( — ). Compare with Fig. 2.5.
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Fig. 3.3: Solution to eq. (1.5.3.5), Example 3, with r; = 1, @ = —0.5, b3 = —1, and
e=1.0. zj =+v2-1=0414, z;, =3 - 1~0.732:
a) computations with the standard second order scheme;

b) computations with our new scheme (3.2.2) and full Newton.
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Fig. 3.4: Sketch for derivation of egs. (3.3.1.1) and (3.3.1.3).
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Fig. 3.5: Example 2, computed with 2D corrections according to (3.3.1.3), for hy = hy =

/s, /16, /32, /64y 1/o6-

a) rp =04, z; =0.1, a = (0, ) = —0.27859, A\* = 36.14491

b) r; = 0.2, zy = 0.3, a=$(0,1) = —1.1439, A? = 144.5796.
See Fig. 2.3 for computations with uncorrected standard scheme.



