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Abstract

In 1925, T. M. Cherry [1] presented a simple example demonstrat-
ing that linear stability analysis will in general not be sufficient for
finding out whether a system is stable or not with respect to small-
amplitude perturbations (see also [2]). The example consisted of two
nonlinearly coupled oscillators, one possessing positive energy, the
other negative energy, with frequencies w; = 2w, allowing third-order
resonance. In a previous paper [3], the present author reformulated
Cherry’s example and then generalized it to three coupled oscilla-
tors corresponding to three-wave interaction in a continuum theory
like that of Maxwell-Vlasov [4]. Cherry was able to present a two-
parameter solution set for his example which would, however, allow a
four-parameter solution set, and in Ref. [3] a three-parameter solution
set for the resonant three-oscillator case was obtained which, however,
would allow a six-parameter solution set. Nonlinear instability could
therefore be proven only for a very small part of the phase space of
the oscillators. This paper now gives the complete solution for the
three-oscillator case and shows that, except for a singular case, all
initial conditions, especially those with arbitrarily small amplitudes,
lead to explosive behaviour. This is true of the resonant case. The
non-resonant oscillators can sometimes also become explosively un-
stable, but only if the initial amplitudes are not infinitesimally small.



1 Introduction

In a previous paper [3] Cherry’s two nonlinearly coupled oscillators [1] were
reformulated and then generalized to three coupled oscillators correspond-
ing to three-wave interaction in a continuum theory like that of Maxwell-
Vlasov [4]. Cherry was able to present a two-parameter solution set for his
example which would, however, allow a four-parameter solution set, and
in Ref. [3] a three-parameter solution set for the resonant three-oscillator
case was obtained which, however, would allow a six-parameter solution set.
Nonlinear instability could therefore be proven only for a very small part
of the phase space of the oscillators. This paper now gives the complete
solution for the three-oscillator case and shows that, except for a singular
case, all initial conditions, especially those with arbitrarily small ampli-
tudes, lead to explosive behaviour. This is true of the resonant case. The
non-resonant oscillators can sometimes also become explosively unstable,
but the initial amplitudes must not be infinitesimally small.

2 Reduction of the equations of motion

The Hamiltonian for the three coupled oscillators was
La L1 1 o
H = 5 wa;ﬁkgk + 50_'615263 - 30- 515263_ (1)
k=1 &

The quantities %ﬁk are coordinates, and the quantities & the canonically
conjugated momenta. Invariance to time reversal is guaranteed for purely

imaginary a. The equations of motion following from eq. (1) are
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is independent of the special oscillator. From eq. (2) one finds
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If one defines

i
F= / fdt',
0

Gels = Ap+ P & F*.

Ak are real positive constants:

one obtains from eq. (4)

Ar 2> 0.
Equation (2) then has the formal solution
& = Epe
with . £
G = twyt +fo dt’m.

When f is decomposed into its real and imaginary parts:
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f = fR + if[a
one can write G as
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The definition (3) for f then yields the relation
f=—a H §D G,
From this relation one finds
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and
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It is helpful to decompose thlS equatlon into its Ieal and imaginary parts:
ff
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fr= Z wr fR.
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3 The resonant case ©j_;w; =0

In this case one has

fr = const (17)
and
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where

|21 = la* M A2 s, (19)

Since all the A’s are non-negative, the r.h.s. can vanish only for negative
values of Fr. The zeros are

152 |
Fre = =G > A \f = AP (g —23)® + (Ms — M2 . (20)
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According to definition (5) Fr is zero at ¢ = 0. Negative values of Fg
are therefore obtained only for initially negative Fp = fr- But also these
initial conditions lead to Fr > 0 after some time except in the singular
case, leading to

Fr(t — co) = Fpy. (21)



For all other initial conditions the asymptotic behaviour is characterized
by the (Fg)? term on the r.h.s. of eq. (18) becoming the dominant one.
First the once-integrated form of eq. (18) is written down:

SR = S(R+
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Its asymptotic form is

op_° g3 2 3
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The solution of this equation with the constant of integration ¢y for t < ¢,
i 1 1
Fp=—m——— 24
from which it follows that
1 1
SN . N 25
fr 1o (¢ — t0)? (25)
Equation (11) then yields for ¢ close to tg
1
Gy = w t+ 1 + const 26
k=Rt o 0 TaPE = to)? e
and therefore _
elwkt
. s 27
§ 0 - o (27)

The general solution of eq. (18) or (22) valid for all times except at reflection
points can be expressed in terms of the Weierstrass g function:

| B
Fr = oo |287(t to, 92, g3) — EVE (28)
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where ¢, and g3 are the so-called invariants, which in the present case are
given by

1 1
43 = EB2 - 1c:'A (29)

and

F
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The quantities A, B,C, D are

g3 C®. (30)

A =8|al?,

B =4|a} (M + A2+ As), (31)
O = DlelPCN N Aoty Fhadal,

D =(fg)

These are the coefficients in eq. (22) when this equation is written as
(fr)? = A+ CFr+ BF}, + AFj,. (32)
The constant of integration to is obtained from Fr(t = 0) = 0:

£

A (33)

5 9(~10,02,)
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2|0:|2 bl 3
It is necessarily real. Since the Weierstrass p function is an even function,
to satisfying eq. (33) can have either sign. The sign is determined by

Fr(t =0) = f3. (34)

After a reflection at a time tp the time ¢ runs backward corresponding to
the other possible sign of fr in eq. (32), i.e. the solution is then the one
which is obtained by the replacement

o(t —to) — p(2tp — to — t). (35)

Furthermore, g is a doubly-periodic meromorphic function in the complex
t — to plane, and since g; and g3 are real, it is periodic along the real ¢t — o
axis. If this property is combined with the fact that o possesses as the
only singularities a double pole at vanishing argument and corresponding
periodic points, one always finds the behaviour exhibited by eq. (24). The
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special solutions corresponding to eq. (21) imply parameters g, g3 which
lead to an infinitely long period of p along the real axis. Also Cherry’s
solutions for the two-oscillator case and those for the three-oscillator case
presented in Ref. [3] belong to this class.

In order to write down the £.’s, one has to do the integral occurring
in eq. (11), which can be expressed in terms of Weierstrass’s ( and o
functions. This will, however, not be done here, since the main emphasis
is on the time dependence of the amplitudes.

4 The non-resonant case ©;_,w; # 0

With ,
Z W = Q (36)
k=1

one obtains from eq. (15)

- . d 2 FFr ‘
= —{ — ) 37
Ir f1+dt;§/\k+2FR’ (37)
which, by means of eq. (16), becomes
frn = —Q*F, +f—l-i-f'f— (38)
RETEIRT G S 2k, :
Integration over t with f? = f;(¢ = 0) then yields
frn=—-QF, +iL—Qf° (39)
.R R k=1/\k+2FR .[7

which replaces eq. (18). The r.h.s. of this equation is again a polynomial
of second order in Fpg:

fr=c+bFg +aF2 (40)
with
i = 13al®
b = —Q? +4|al) (A + A2+ A3), (41)

c = —Qf? + |Cl‘|2()\1/\2 + /\2A3 + )\3/\1).
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Since a is positive, sufficiently large Fr > 0 always leads to runaway of this
quantity. If the equation

c+bFp+aFf=0 (42)

has no real solution, then one has fR > 0 for all Fg , which results in
explosive behaviour for arbitrary Fr. The same is true if there are two real
solutions that are both negative. This was the situation with the resonant
case. If at least one solution is positive, a threshold initial amplitude may
be needed to obtain explosive behaviour. Of special interest are small
amplitudes for which

b2
B (43)
da
The solutions in this case are
b N 95
a  12]al?’

Fg (44)

Q

Nf_?
"

oy

The important solution is the first one. When it is inserted in the potential
V(FR) corresponding to the r.h.s. of eq. (43),
1 i
V(FR) = —cFr — §bF§ - gaFg, (45)

one obtains

1
7 3(24]af?)

Since this is non-infinitesimal, there cannot be nonlinear instability with

|4 (46)

arbitrarily small initial amplitudes.

The general solution of eqs. (40),(41) valid for all times is again given
by egs. (28)-(30),(35), and eq. (32) also holds, but with the following new
definitions of the quantities 4, B, C, D:

A =8|,
B = —Q% +4]al?(\ + A2 + a), .
C = =217 +2|al?(MA2 + A2A3 + Ashy), (47)
D =(fR)"



With these quantities the potential (45) can also be written as

1
V(FR) = -§(C'FR + BF} + AFR). (48)

5 Examples

In this section some examples are given showing explosive behaviour or
stability.

Insight into what is to be expected provides a more detailed discussion
of the potential (48) and its negative derivative, which is the r.h.s. of eq.
(40), than the one found in the foregoing section. Figures la-1d may be
helpful for doing this. They show typical forms of the potential V(Fg).

The conditions for runaway to occur at all initial values f are obviously
that

1. eq. (42) have no real zero, or

o

. real zeros of eq. (42) be at negative Fpg, or

3. the maximum of V(Fg) be at positive Fg, but that it be negative.

If none of these conditions is fulfilled, stable behaviour is possible if the
maximum of V is at positive Fr and is positive. The final condition for
runaway not to occur is then

SR < V(Frnas), (49)

where FRpuaz 1s the position of the maximum of V(Fg):

b [ b2 ¢
Fromar = —— —_— 50
i 2a w 4a?2 « e

Since the condition for stable behaviour being possible is a single one, it
is easier to discuss this condition instead of the three conditions for runaway.
For this discussion the zeros of V(FR) are of interest. They are given by

FRO == 03
. _ B, [B C (51)
RE ™ Toq4 Va4 4

One can then distinguish two cases:




L e< @,
2. ¢> 0.

For the discussion which follows Figs. la to 1d may be helpful; they
show typical forms of the potential V(Fr).

The first case means that the derivative of V(Fg) at Fr = 0 is positive,
which implies that the condition in question is fulfilled.

If one has b > 0 in the second case, then V(FR) is convex from above at
Fr = 0, and since the derivative is negative, V(Fr) is negative for Fr > 0.
Hence the condition is not fulfilled.

If one has b < 0 in the second case, the condition is satisfied if Fry is
real and positive. The latter condition is automatically fulfilled with the
first one. Reality requires that

B2
Stable behaviour requires in addition that inequality (49) be satisfied.
When f§, and f}7, referring to eq. (19), are written in the forms

fID - Sinﬁ!al‘\/z\lz\gAg y f}% - COSﬁlCl‘|\//\1/\2A3 3 0 S ﬂ S 27 5 (53)

the quantities involved in the foregoing conditions become

= 12/,

= —Q% +4]|a| (M + A2 + A3),

—{1sin lB‘G’l\/ }\1/\2)\3 + |C¥|2(/\1/\2 + /\2/\3 + /\3/\1),

= slal, (54)
—Q% 4+ 4]a? (M + A2 + Aa),

= —2Qu|a|vVA A3 + 2lalP (M Az + A2 A3 + Ash),

= cos? Bla|* A1 A2 5.

Qe &=
I

Figures 2 present typical examples; shown are the potential V(Fg) together
with 1(f%)? (dashed line), and Fr(t) together with Fr = fr (dashed line):

2a: © = 0;\; = 0.01; )\, = 0.01; A3 = 0.01; 8 = 0; potential like the one
shown in Fig. la; runaway; the solution belongs to the special class
of Cherry-type solutions found for the resonant case;
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2b: = 0; A1 = 0.01; A = 0.01; A3 = 0.01; 8 = =; potential like the one
shown in Fig. la; Fr(t) comes to a stop at the maximum of V(FR);
the solution again belongs to the special class of Cherry-type solutions
found for the resonant case;

2¢c: 2 = .46; A\; = 0.01; A2 = 0.0049; A3 = 0.0025; § = .5; potential like the
one shown in Fig. 1b; stable behaviour;

2d: Q = .5; ) = 0.01; A, = 0.0049; A3 = 0.0025; 8 = 0; potential like the

one shown in Fig. 1b; runaway;

2e: 2 = .4; A = 0.01; A, = 0.0049; A3 = 0.0025; 8 = 2; potential like the

one shown in Fig. 1c; stable behaviour;

2f: 2 = .542; A\; = 0.01; A, = 0.0049; A5 = 0.0025; § = —.565; potential like

the one shown in Fig. 1d; runaway.

6 Conclusions

The discussion of the complete solution of the three-oscillator case has
shown that for almost all initial conditions resonance leads to an explo-
sive behaviour. The nonlinear coupling of the three oscillators, however,
allows runaway to occur in the nonresonant case as well, but the initial
amplitudes must not be infinitesimally small. In a continuum theory the
three-wave coupling expression usually contains terms additional to the
ones considered here. They are generally of a kind which introduces non-
resonant behaviour even in the otherwise resonant case. One can speculate
that their effect averages out so as to make the resonant terms dominant.
This would mean that one can expect nonlinear instability rather generally,
when a continuum theory allows negative energy perturbations. In Ref. [2]
the same conclusion was obtained especially by referring to the original
two-oscillator case of Cherry and his class of solutions. The present paper
can be considered as further support for this conclusion.
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Fig. 1a
\"
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Fig. 1c

Figures la-d:
Typical forms of the potential V(Fg).
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Figure 2a:

Example showing the potential V(FRr) (solid line) together with 3(fR)?
(dashed line), and Fg(t) (solid line) together with Fr = fr (dashed line);
Q= 0;A; =0.01; A\, = 0.01; A3 = 0.01; 8 = 0; potential like the one shown
in Fig. la; runaway; the solution belongs to the special class of Cherry-type
solutions found for the resonant case.
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Figure 2b:

Example showing the potential V(Fg) (solid line) together with 2(f3%)?
(dashed line), and Fg(t) (solid line) together with Fg = fr (dashed line);
Q = 0; ) =0.01; A\, = 0.01; A\ = 0.01; 8 = =; potential like the one shown
in Fig. la; Fr(t) comes to a stop at the maximum of V(Fg); the solution
again belongs to the special class of Cherry-type solutions found for the
resonant case.
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Figure 2c:

Example showing the potential V(Fg) (solid line) together with 3(fR)?
(dashed line), and Fg(t) (solid line) together with Fr = fr (dashed line);
Q = .46; \; = 0.01; A, = 0.0049; \3 = 0.0025; 8 = .5; potential like the one

shown in Fig. 1b; stable behaviour.
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Figure 2d:

Example showing the potential V(Fg) (solid line) together with Z(fR)?
(dashed line), and Fg(t) (solid line) together with Fr = fr (dashed line);
2 = .5; A = 0.01; \; = 0.0049; A3 = 0.0025; 8 = 0; potential like the one

shown in Fig. 1b; runaway.
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Figure 2e:

Example showing the potential V(Fg) (solid line) together with Z(fR)?
(dashed line), and Fg(t) (solid line) together with Fr = fr (dashed line);
Q = .4; A = 0.01; ), = 0.0049; A3 = 0.0025; 8 = 2; potential like the one
shown in Fig. lc; stable behaviour.

18



_ 5.E-07
1 0
S e e e Z(fR)z
-, -3 \\\iE
| iy, EiF
8.E-03_
R
S S ///
op ”‘7‘“” E
R 20.0
=5 Eanu]

Figure 2f:

Example showing the potential V(Fg) (solid line) together with (f3)?
(dashed line), and Fg(t) (solid line) together with Fr=fr (dashed line);
Q = .542; \; = 0.01; A\, = 0.0049; A3 = 0.0025; 3 = —.563; potential like the
one shown in Fig. 1d; runaway.
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