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Abstract

The purpose of this paper is to derive the asymptotic solutions to a class of inhomoge-
neous integral equations which reduce to algebraic equations when a parameter 7 goes
to zero (the kernel becoming proportional to a Dirac é-function). This class includes
the integral equations obtained from the system of Vlasov and Poisson equations for the
Fourier transform in space and the Laplace transform in time of the electric potential,
when the equilibrium magnetic field is uniform and the equilibrium plasma density de-
pends on nz, with the coordinate z being the direction of the magnetic field. In this
case the inhomogeneous term is given by the initial conditions and possibly by sources,

and the Laplace transform variable w is the eigenvalue parameter.




Introduction

The system of Vlasov and Poisson equations for the electric potential of a plasma re-
ferred to cartesian coordinates, with the coordinate z parallel to the uniform equilib-
rium magnetic field and the equilibrium plasma density depending on nz, n being a
parameter, yields an integral equation for the Fourier transform in space and the Laplace
transform in time of the electric potential. The inhomogeneous term of this equation is
given by the initial conditions and possible sources, and the Laplace transform variable
w is the eigenvalue parameter. This equation belongs to a class of integral equations
which reduce to algebraic equations when a parameter goes to zero, 7 in our case,
because the kernel becomes proportional to a Dirac é—function. The purpose of this
paper is to derive the asymptotic solutions to this class of integral equations when the
parameter 7 goes to zero. The integration method used requires that, for every value
of w, two linearly independent solutions of the corresponding homogeneous integral
equation be known (only one of the solutions being integrable at the eigenvalues). Part
of this problem has already been solved; see, for example, Ref. [1], and Ref. [2] for a
more general case; indeed, in the last reference the normal modes of a vector system of
integral equations were derived by using a version of the WKB method which embodies
a variational method for obtaining the equation for the single-wave ampitudes. Here,
however, a somewhat different variety of WKB is chosen in order to apply the same
method to both the homogeneous and the inhomogeneous integral equations. It con-
sists in deriving asymptotic approximations for the solution ®(k) in various superposed
k—-intervals which are such that one form of the solution matches onto another form in
the common subinterval (a ‘matched asymptotic procedure’; see, for example, Ref. [3]).
In section 1 we derive the asymptotic solutions of the homogeneous integral equation
for a particular but relevant equilibrium plasma density profile. In the intervals which

do not contain values of k£ which solve the dispersion relation (i.e. the homogeneous
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integral equation with 7 = 0), the results are the same as those derived in [2]; in the
other intervals the integral equation is approximated by an Airy differential equation;
the appropriate linear combination of Airy functions is then determined by the matching
condition. The eigenvalue condition is obtained in a compact and general form when
it is required that the solution be integrable. In section 2, two linearly independent
solutions of the homogeneous integral equation, that are integrable for general w val-
ues, are used to derive the integrable solution of the inhomogeneous integral equation,
in the following way. A physical argument leads to an asymptotic approximation for
®(k), valid everywhere on the k axis except for the intervals about the real values of
k which are solutions of the dispersion relation. In these intervals (of amplitude pro-
portional to n?/ 3) the integral equation is approximately written as an inhomogeneous
Airy differential equation. After a particular solution is derived by the usual method,
the correct solution is obtained by imposing the matching condition in one of the two
neighbouring intervals. The matching in the other interval is made possible by adding
there a suitable linear combination of the solutions of the homogeneous integral equa-

tion. Generalizations of the form of the kernel are introduced and discussed in section

3.



1. Homogeneous electrostatic equation

As is well known, the system of the Vlasov and Poisson equations for a plasma in
a uniform magnetic field leads to an integral equation in the (k,w) space. For an
electron plasma with density profile exp [—nzxz] and with electron Larmor radius
much smaller than the inhomogeneity length (k = k; in the inhomogeneity direction
and k. in the magnetic field direction; ky, = 0) the integral equation assumes the

relatively simple form (see, for example, Ref. [4])

oo
o (k,w) — % /e"(k'_k)2/4"2¢h(k',w) dk' =0, (1)

where o = k%ey; +2kk,e13+k2€e33, and €; is the dielectric tensor for the correspond-
ing homogeneous plasma (whose dispersion relation would be 1 —o¢ = 0); w is the
variable of the time Laplace transform.

In the following we consider integral equations of the form given by eq. (1) for func-
tions ¢ which are zero for |k| going to infinity and are unity at the values k; (¢ =
1,2,...,2N), which are the zeros of the dispersion relation 1 — o = 0. A particular
case is a function o proportional to 1/(k* + K?), where K is a constant, which
allows integral equation (1) to be reduced to a differential equation in the z space.
Generalizations of the density profile and of the form of ¢ are considered in section 3.

We write ®,(k,w) = exp f(g/n) dk' and expand the exponent of the integrand of eq.
(1) in powers of (k' — k), because the kernel of eq. (1) is sharply peaked at k' = k.

In this way we get, with the definition ¢’ = dg/dk,

WO NSty . . SN RS (2)
Vi—zng PV T-2mg "

if 2ng’ < 1. By neglecting ng’ we get the reduced equation

1-oexp{g’} =0. (3)
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We shall see later that eq. (3) is a good approximation in the k interval where |[1—o| >
(o'n)?/3, with o! being the value of do/0k taken at k =k;. From eq. (3) it follows
that integral equation (1) has two solutions, one of which is integrable at the eigenvalues,
which we do not yet know. In order to obtain the next-order approximation of g, we

take the logarithm of eq. (2):
Lin(1-2ng") = lno+g* /(1 — 2ng) . (4)
An expansion of the logarithm now yields
—(Ino +ng")(1 - 2ng") = ¢*. (5)

This equation shows that the approximate solution ¢g? = Ino is valid if 27¢’ < Ino,
i.e. if |of|n < |1 —o|*/2, as previously stated.

The next approximation, g;, follows from eq. (5):

29091 = (2Ino — 1)ngy, (6)
which can be written
291 = —n(g2)" — n(Ingo|)". (7)
We finally get the known result
k
, 1 1
(g1/m) dk zilno—zlnﬂna]. (8)

We are now in a position to write explicitly two independent solutions of eq. (1), which
we designate ‘elementary solutions’, in the different intervals we have considered up to
now. The L, solution of eq. (1) is a linear combination, yet to be determined, of the
‘elementary solutions ’. First of all we give a name to the different intervals, which, as

the figure shows, partly overlap.
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Fig. 1: Overlapping intervals for the matched asymptotic expansion.

Let S; be the intervals about the points k = k; where |1 —o| < 1. The intervals
where |1 — o] > |a;-n|2/3 will be: s;, where k < k; + O(]o;-nlz/:)’); Zj, for k
between k-+O(|a;-rp|2/3) and kj4q —O(|o}+1n[2/3); and finally s;41, where k >
i1+ O(lo} anl*/2)

In s; we choose the following functions as ‘elementary solutions’:

k
o 1
= “na%exp [E‘/\/|lno|dk’] , (9)
ky

fo= Iﬁl—\éﬁexp [ f\/llna dk} (10)

In the interval Z; we choose

Vo
F (ln—a)lﬁcos (G(k) — (7/4)) , F

(\/)_ sin (G(k) — (7/4)) , (11)

where

k
= (1/n)f\/'m_adk’. (12)
k

The solution in S; is obtained by expanding ®(k') in eq. (1) about the value k' =k :

o, (k) — 211‘1/7? ] (@h(k) +M@‘;{(k)) e~ (K=k?/an* gpr — 0. (13)

— 00
It follows that

(1—0)®, —on?®) =0, (14)



which, by introducing the definition y = ol(k — ki), can be written, in the interval

ly| <1,
az@h Yy
6y2 n20-£2

dp=0. (15)

Two independent solutions of eq. (15) for the interval S; are the functions

2y3/2
ViTays () (16)

i
but the following two solutions, proportional to the Airy functions, are better choices

as ‘elementary solutions’:

; 2y3/2 2y3/2
o= 7 (s (37701) -5 () ) - )

1 1
Some properties of @51)2 which will be useful later are now listed. Their Wronskian is
W = (6/7)sin(x/3). (18)

Their asymptotic form in (S; N Z;) is

. 3/2
(1) 1, 0, (5) A 2y
¢’ ~2a (:03(9*1'/6)3}'1/4 cos (3??'0” (7r/4)) , (19)
. 3/2
() o () o 1 o (2v”
¢, ~ 2a'* sin(7/6) Ji74 sin (37?|U£[ (71‘/4)) ; (20)

where a() = ,/(3n[o![/7). These expressions can also be written as a linear combina-

tion of the functions Fj, asegs. (17) and (18) show:
@gf) = FycosG® + FysinGH) @gi) = —FsinG® + Fycos GO, (21)
where GU) = G(k;). In the following, relation (21) will be written as

qs}.‘) = ﬂ};) - (22)
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with the convention that repeated indices have to be summed.
We also need the relation between F; and @§i+1) in the interval (Z; N S;+1), where

o! 41 is negative. One easily gets the equations
Fy = 8D gin g+ — g+ cos GUHY)

Fy = #q)gi-é-l) cos QU+ _ @giﬂ} sin @U+1) : (23)

which in the following are written as
Fy =b{sr0e+n. (24)

Where y <0, i.e. for k < k; orfor k> k;y1, eq. (17) is equivalent to

@glg = -yl (Il/s (2|y|3/2> ¢f—1/3(‘)) ; (25)

3n|oi|
and therefore in (s; N S;) one has

e—(2/3nloi])|yl*/®

; : ; (2/3nlo])|y|*/
() o o) g . pl) o g ® ;
D, a'*’ sin(m/3) o[/ 2 a Y[/ (26)
A comparison with the definition of f; (see eq. (9)) leads to the relation
f=0"a, (27)

where bgi) = exp [G(] /aD sin(r/3) and bgi) = —exp [-G] /al?). In the interval

(Sit+1 N si31) one gets the relation

2" =L, (28)
where ¢;; =0, ci2 = altVsin(n/3)exp [GUHV] and ¢py = —a(Hexp [—G(i+1)] "

The analytic continuation in the interval s;4; of a linear combination of functions

f; in the interval s; is again a linear combination of functions f;, with different



coefficients; we are now in a position to evaluate the new coefficients. The change of
k from s; to successively S;, Z;, S;+1 and finally to s;4; causes the following
changes

fj 3 b}")q,}i) b(‘)ﬁ(')F oy b(‘)ﬂf;)b;(ilc}+l (t+1) — b§£)ﬁ(;)b£;+l) (*+1)f . (29)

which are obtained by applying successively egs. (27), (22), (24) and (28). This pro-

cedure can be formalized by introducing the following matrices, defined in a recursive

way:
ST _ il i BN (T el
TV =TOBGTY TG =IO, (30)
where Tp(,;) = bpq0tq (g being free constants), C§;+2) = c£i~,+2)b9+2), and
B+ = sin (G(t’-ljl) _ G(i)) —cos (G(‘:H) - G(f)) (31)
o4 —cos (GU*D — g())  —sin (GU+) — g(0)
The asymptotic approximation of @5, in S; is then given by
Bpp = TP 0. (32)

The eigenvalues are given by the condition that the f; coefficient of ®j, is zero after
the last s interval, since ®j; is proportional to f; in s; (and hence goes to zero
for k going to minus infinity), and f; diverges for k going to plus infinity. This

condition is equivalent to

TEN) — 0, (33)

because in every (S;Ns;) interval the function f; is matched by Qgi). We explicitly
derive the eigenvalues first in the case of only one Z interval (as already stated, func-

tions ¢ which allow integral equation (1) to be transformed into a differential equation
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belong to this class). Equation (33) is then equivalent to

k2
cos l/\/lno:fc.llf:" =P (34)
n
ki

A first consequence of this equation is that since w, is such that k;z(wp) are real,
wy is a value of the function (k), where w = Q(k) is a solution of 1 —o(k,w) =0
for real k; hence the imaginary part of w, cannot be larger (more unstable) than the
maximum of the imaginary part of {1(k), which determines the asymptotic behaviour
in time of an homogeneous plasma. A further general consequence can be drawn when

¢ is symmetric; in this case eq. (34) is equivalent to the two equations

+(n+1/2)r. (35)

N

0 0
lV/.\/lnodk":%—i—mr and lf\/]nlm.ii":":
7 n

kl k.l

For the first class of eigenvalues the coefficient of f; in eq. (31), Ty, is positive, and
therefore the corresponding eigenfunctions are symmetric; antisymmetric eigenfunctions
correspond to the second class. With two Z intervals the eigenvalue condition (33) is
equivalent to

exp [G‘(3) — G(z)]
sin(m/3)

cos (G’(z) — G(l)) cos (G(“) _ G(3)) _

—sin(r/3)exp |-G + G@] sin (¢@ - ¢M) sin (¢W - @) =0.  (36)

When o is symmetric eq. (36) simplifies to
sin? (G = GM) =1 /(1 +sin’ (/3)exp [-2(c® - G(2>]) . (37)

The two equations equivalent to eq. (37) yield the eigenvalues corresponding to sym-

metric and antisymmetric eigenfunctions, respectively.
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2. Inhomogeneous electrostatic equation

We now consider the integral equation

(o0}
o(k,w) —(k'=k)2/4n? ' '
@(k,w)——fe (K—k)'/an" g (k! w)dk' = H , (38)
2
nym I

where H is a given function (in the case of interest for plasma physics H is given by
the conditions at ¢ =0 through a Laplace transform or by possible sources). We look
for a solution of the form & = [Hexp f(g/n) dk} ; if, as we assume, the logarithmic
derivative of H is much smaller than 1/7 (alsofor |k| going to infinity), the function
H(k') in the integral of eq. (1) can be approximated by H(k) and taken out of the
integral, because the kernel is sharply peaked at k'’ = k. Hence we expand the exponent
of the integrand in powers of (k' —k), as was done for the homogeneous equation, and

we get

o 2 1
_ ’ e - dk % . 39
! Vi—2ng P {g 1~ 2ng’} P f(g/n) (39)

When |k| goes to infinity the solution @ is expected to assume the same form as
in a homogeneous plasma, i.e. ® ~ H/(1 — o). Since this solution corresponds to
g =~ —no'[(1—o), the approximate solution is valid as far as |1—o| > |a$n|2/3, i.e. not
only for |k| going to infinity, but in every s; and Z; interval. In each of these intervals
an arbitrary linear combination of ®,; and ®j5, the linearly independent solutions
of the homogeneous integral equation, can be added to the approximate solution, the
coefficients of the combination being in principle different for every interval.

In order to obtain an approximation valid in S;, we expand the function ®(k’) in the
integral of eq. (1) as we did for the homogeneous equation. Instead of eq. (15) we now

get in S;
0%P Y H

ay? ' nZol? ® = _,?20;2' (40)

Il



Let us consider the following solution of eq. (40), obtained by using the ‘elementary

solutions’ of the homogeneous differential equation we introduced in the preceding sec-

tion
y y
$®) = (1/n%0?*w) |2 f H(y)3Y () dy' - @f) f H(y)oP (W) dy' |,  (41)
0 —o0

where W, the Wronskian of @g‘;)z, is given by eq. (18). In (s; N S;) $0) is ap-
proximately —H/y, i.e. H/(1 — o). Indeed, the largest contribution to the inte-
grals comes from the interval y’ ~ y; hence both integrals are approximately equal
to —(a?sin(w/3)no!/|y| (see (26)). The foregoing assertion follows from taking into
account the value of W and the definition of a;.

At the other extreme of S;, in (SiN Z;), the asymptotic form of @_S-i), given by egs.
(19) and (20), is valid, and therefore, as differential equation (40) shows, ¢() has to
be the sum of —H/y and some linear combination of @5") and @gi). Since tDJ(-i) now
rapidly oscillate and decrease only as y~'/4, the coefficients of the linear combination

are easily obtained by taking y = oo in the integrals of eq. (41); hence in (S; N Z;)

we have o .
() = _% + (:j;; /H@éﬁ') dk’ + (jﬁ.;? /H@(f) dk' (42)

0 Yoo

an equation which will be written as

o) = —% +eleld, (43)

where - -
() = (n01§)2 / HoW ak', )= (nii)z / a3 di’ . (55)

0 —o0

The functions @,(,i) in eq. (43) can be related to the solutions of the homogeneous

equation, (I’E:B, by means of eq. (31); by denoting the inverse matrix of T,g;) as 'r,g;)
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one obtains

' H i) (i) g (¢
¢(t) = -5t WrDal. (45)

Let us now suppose that in s; the solution has the form

H
¢~ ]_T + ap(php ) (46)

where «, are constants. In (s; N S;) eq. (7) is equivalent to
&~ ¢ + iy (47)

Owing to the asymptotic form of ¢(*), given by eq. (43),in (S;NZ;) @ is also given
by

H L
D~ g + [aq + cl(,’)'r;;)] Ppg . (48)

As this equation shows, when k goes through an interval S; where o > 0 the asymp-
totic representation of ® assumes the additional term (cg i 'r,gq) ) ®,4; this change is
reminiscent of the variation of the form of an analytic function defined through an inte-
gral when a pole of the integrand crosses the integration axis. In (S;+1 N s;+1), where

oi,, <0, the equation corresponding to eq. (48) is

B ~ lfj " [aq—l—c(') (©) _ cfi+1)y (t+1)] Bhg - (49)
The foregoing results afford the possibility of constructing the asymptotic approximation
of the solution ®.

In the first interval, s;, the function a®j; (where a is a free constant) can be
added to H/(1 — o), owing to the fact that ®p; goes to zero more rapidly than
H when k goes to minus infinity. In every S; interval following, solutions of the
homogeneous integral equation have to be additionally superposed, according to egs.

(48) and (49). In the last s interval the functions @, are linear superpositions of

the functions f;, as was shown in the preceding section; the coefficient of f; must
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be zero in order that @ be integrable. Whereas this condition gives the eigenvalues of
the homogeneous equation, it now determines a. We explicitly deduce this coefficient
in two cases corresponding to those considered in the previous section.

When there is only one Z interval, one obtains from eq. (49)
oT P + V) = 0. (50)

It is recalled that TI(Z) = 0 is the eigenvalue condition for this particular case.
With two Z intervals one gets the condition
4
oT(y) + 3 er) =0, (51)
i=1

where again T( ) =0 is the eigenvalue condition for this case.
According to the alternative theorem for Fredholm integral equations, when H is or-
thogonal to the eigenfunctions corresponding to some eigenvalue the inhomogeneous
integral equation has an infinity of solutions at this eigenvalue (one particular solu-
tion plus a linear superposition of the eigenfunctions). Let us now assume that H is
symmetric; we now show that for the eigenvalues corresponding to antisymmetric eigen-
functions, which are therefore orthogonal to H, there is an L, solution (and hence
infinite). Any two constants c,(,'.) and ng ) which correspond to a k; and a k; sym-
metric with respect to the origin of the &k axis, are equal when H is symmetric. On
the other hand, owing to the antisymmetry of the eigenfunctions one has 'r,gq) = 'r;g%)

and therefore

4
ZCS)TIE;) =0. (52)

=1

Hence « is finite, although the coefficient of f; in the expression a®p; is by definition

equal to zero at the eigenvalues.
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3. Generalizations

The results derived in the preceding sections can be extended to the class of density pro-
files h(k/n) which are such that in the limit 7 = 0 they yield the Dirac §(k)-function,
because in the interval k' ~ k and for n sufficiently small they can represented by
the exponential distribution used in the preceding sections.

In general, the class of kernels which can be treated by the method developed here can
be enlarged by introducing a k’-dependence in o (i.e. o = o(k,k’',w)), because in

the first order one can substitute k& for k’. An important exception isa o of the form
o = a(k,w) + (k' — k)b(k,w), (53)

which is the correct expression in an inhomogeneous plasma if k, is non-zero. This
case will now be considered in some detail. It is not difficult to see that the equation
corresponding to eq. (1) is now

oo

03] a,(k w) k' kY2 2
(p k _ 2 k = AT (k k) /4!7 ! dkl = .
(ky) = 20700, 0) 5 B 0,0) = 5% /e Sk, w)dk' = H. (54)
Equation (3) is thus replaced by
a+ 2nbg 2 i |
—_—— — 3 =0
T—2ng' {g 1 —2ng' ’ (59)
and instead of eq. (4) one gets
g> = —(lna+ng' +2n(b/a)g) . (56)

The zero—order approximation of g? is again —Ina. We skip the intermediate steps

and write the first-order approximation in the form corresponding to eq. (8):

T2

k k
/(gl/n) apf = llna—i—%ln ]na—/(b/a) dK’ . (57)
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Hence the solution in the intervals (s;,Z;) is that derived in section 1, multiplied by

the factor .

exp —/(b/a)dk’ . (58)

—k;

The equation corresponding to eq. (13), which determines ®j in the intervals S; is

0% ad y

= +2(b/a)§; + W

=0 59
= , (59)

which has the solution (cf. eq. (15))

&y = exp{—by/oi} Vy— (bn)? J11/3 (ae:(y = (57?)2)3/2) : (60)

Since the part of the correction due to g; which remains at the exponent is also —by/o:
(see eq. (58)), one can do the matching of the different intervals as in section 1. One

thus gets the same eigenvalue condition, where now the function G(k) is defined as

k k
G(k) = (1/n) /\/ Ino dk’ — /(Er/o) dk' . (61)
k1 k1
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Conclusion

We have derived the asymptotic solutions to a class of inhomogeneous integral equations
which reduce to algebraic equations when a parameter 7 goes to zero (the kernel be-
coming proportional to a Dirac é—function). This class includes the integral equations
obtained from the system of Vlasov and Poisson equations for the Fourier transform in
space and the Laplace transform in time of the electric potential when the equilibrium
magnetic field is uniform and the equilibrium plasma density depends on 7z, =z be-
ing the direction of the magnetic field. One can therefore take into account the initial
conditions, which appear in the inhomogeneous term through the Laplace transform in
time, and possible sources.

The matched asymptotic procedure applied here allows the solution and the eigenvalue
condition to be deduced in a compact and general form. The corresponding homoge-
neous integral equation has already been discussed in the z space (see, for example,
Ref. [2]). The method presented here, which requires solution of the homogeneous
equation in order to get the solution of the inhomogeneous equation, has the advan-
tage of éwoiding a cumbersome complex plane analysis. Another advantage is that the
derivation of the eigenvalue condition does not require all solutions (in general complex

and infinite in number) of the so—called ‘local dispersion relation’ to be known.
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