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Abstract

In 1925 Cherry [1] discussed two oscillators of positive and neg-
ative energy that are nonlinearly coupled in a special way, and pre-
sented exact solutions of the nonlinear equations showing explosive
instabilities independent of the strength of the nonlinearity and the
initial amplitudes. In this paper Cherry’s Hamiltonian is transformed
into a form which allows a simple physical interpretation. The new
Hamiltonian is generalized to three nonlinearly coupled oscillators; it
corresponds to three-wave interaction in a continuum theory, like the
Vlasov-Maxwell theory, if there exist linear negative energy waves [2],

(3]
1 Cherry’s Oscillators

In 1925 Cherry [1] discussed nonlinearly coupled oscillators which are dis-
cribed by the Hamiltonian

H=—cw (P +¢%) + 5 @ (P2 + @)+ 5 Qapip: — w(df —p}) - (1)

The constant o measures the effect of nonlinearity. For & = 0 one has two
uncoupled oscillators of frequencies w; > 0 and w; > 0 which possess nega-
tive and positive energy, respectively. If w, = 2 w; , one has a third-order



resonance. Cherry found for this case the following exact two-parameter
solution set:
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where € and vy are determined by the initial conditions. These relations
show explosive instability for any a # 0 , whereas the linearized theory
gives only stable oscillations. There is also no threshold amplitude. Small
initial amplitudes only mean that it takes a long time for the explosion to
occur.

In a continuum theory, like the Vlasov-Maxwell theory, the assumed
resonance corresponds to the conservation law

wi + w2 + w3 =0 (3)

for a three-wave interaction. It is therefore of interest to have a formulation
and an example which are closer to the structure of a three-wave interaction.
To this end we introduce complex quantities given by

E=p+iq , & =p-igq. (4)

We can do a canonical transformation to £* as the new momentum and to
£/2i as the new coordinate. Cherry’s Hamiltonian then becomes

1
H:—%w1§;§1+§w2§;§2+%(§f52_ ;ZE;) (5)

This exhibits a simple structure of the nonlinear term which also allows a
simple physical interpretation: in quantum theoretical language it means
the simultaneous annihilation or creation of two quanta of frequency w; with
energy —hw; each and of one quantum of frequency w, with energy +/hw, .
If wy = 2w; these processes leave the energy unchanged and therefore allow
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the amplitudes to grow. The same holds for the first two terms in H. The
growth of the amplitudes is, of course, only possible for perturbations with
vanishing H.

2 Generalization to Three Coupled Oscilla-
tors

In this paper we give a generalization of the two coupled oscillators de-
scribed by the Hamiltonian (5) to three coupled oscillators corresponding
to the mentioned three-wave interaction in a continuum. The Hamiltonian

which will be investigated is

H =3 3w &b +abibabs+ a 66 . (6)

k=1

SR

The frequencies wj are assumed to satisfy the three wave conservation law

za:wk = {J. (7)
k=1

The equations of motion corresponding to the Hamiltonian (6) are

e = iwe & + 20" GGG G (8)
The ansatz ,
Ek(t) _ a(t) eI wkttivk ) Zﬂ‘ak = 0 (9)
k=1
with a(t) independent of k leads to the following equation for this quantity:
a = 2ia"d”. (10)
This can be solved by
ia* \1/3
= = =%
a=0 5 v=(gap) (11)
and _
b = b . (12)



This equation has the general solution

1
E—t

- (13)

with € being a constant of integration. We thercfore obtained a three-
parameter solution set

P B 1 . .
('EO’.’ ) eawkt-}-!l{.}k , lek — 0 5 (14)

lal/ e—laft

N =
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where
e = €/ |a|. (15)

These solutions correspond to Cherry’s two-parameter solution set .
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