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Abstract

The fully developed turbulence of 3-d resistive, viscous, incompres-
sible magnetohydrodynamics is investigated using Elsasser variables
and Hopf equation for probability distributions. The method is an ex-
tension of a previous work for Navier Stokes equations done in [1] and
[2] based on a suggestion by ITopf (see [3] page 120). It uses essenti-
ally self-similar properties of the statistics, which ”almost” determine
the turbulence spectrum up to a mild assumption on an unknown
function. This spectrum is the well known Kolmogorov [4] spectrum.

1 Introduction

Fully developed 3-d turbulence in Navier-Stokes fluids at high Reynolds
numbers has a long history (see for example [5]). One of the milestones
is the Kolmogorov spectrum [4], which was proposed in 1941 mainly on
dimensional arguments. Hopf [3] introduced a general functional equation
for the statistical description of turbulence and was the first author to
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sketch a "rigorous derivation” program of the Kolmogorov spectrum based
on a two-parameter group of similarity transformations (see [3], page 120).
An explicit accomplishment of this program, with proofs, can be found in
references [1] and [2], where from the self-sililarity of the Hopf probability
measure scaling properties of correlation functions and the energy spectrum
are derived. Adding to the mathematical scaling relationships appropriate
"mild” physical assumptions, leads to the well known E; = Ce?/3k=5/3
spectrum of Kolmogorov. This kind of "rigorous derivation” does not close
the topic because, for instance, observed intermittency even at rather high
Reynolds numbers (see for example [6]) could escape to a "smooth” stati-
stical treatment.

In this paper, we extend the derivation metioned above to resistive vis-
cous incompressible magnetohydrodynamics (for short MHD). It has been
suggested a long time ago by Elsasser [7] to use variables bearing his name
in a general context to describe MHD. This will be the first time, howe-
ver, at least to our knowledge, that these variables are introduced together
with an exact statistical derivation of the energy spectrum of 3-d MHD. As
shown in this paper, the energy spectrum turns out to be essentially the
Kolmogorov spectrum, as for the Navier-Stokes equation, up to an appro-
priate change of definition of E; and e. The missing rigor in the cited papers
and in ours, is the proof of a global existence and uniqueness theorems for
3-d solutions of Navier-Stokes and MHD equations. For an account of that
problem see [8].

The paper is organized as follows. In section 2 the MHD system and its
energy equation are given. The Hopf-Liouville equation and the averages
are described in section 3. We choose the probability distributions families
and define the scale transformation in section 4. In section 5 we obtain
the transformed MHD system and the correlation function and the energy
spectrum are calculated in section 6. The conclusion and the appendix are
in sections 7 and 8 respectively.



2 MHD System and its Energy Equation

The MHD equations used in this paper describe a resistive, viscous, incom-
pressible magnetofluid of unit density. They are given by:

&-F(V-V)V = —~\7p—|—-—1—(VxB)xB—|—vV2v (1)
ot Har
%—? = Vx(vxB)+7nV?B, (2)

where 7, v and ups are the magnetic diffusivity, the kinematic viscosity and
the magnetic susceptibility. As usual, v is the velocity of the fluid, B the
magnetic field and p the pressure. As the fluid is incompressible:

V.v=0, (3)

as well as

V-B=0. (4)

Using vector formulas and the Elsasser variables [7]:

1
P = v+ B 5
o (5)
1
Q = v— B, (6)
29.%¢
the MHD equations can be rewritten in the following symmetric way:
opP o 2
'é't'“l'(Q'V)Q = —Vg+wnVPx || VQ (7)
0
_(5‘—?+(P'V)P = =Vgzx |r2| V’P + 1 V?Q, (8)
which is very closely analogous to the Navier-Stokes equation. In equation
(3):
1
n = 5;@+n) (9)
1
vz = 5(v—n) (10)
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and -
2 pum

The plus and the minus signs correspond respectively to v > n and v < 7 .
The energy of the sistem is:

vz BZ
E _f(§+ 2%) dx, (12)

gq=p+

where the volume of integration is the whole space.
The energy time-dependence can be found employing equations (1) and
(2) and assuming appropriate boundary conditions at infinities, so that:

2 it
ot 2 ZpM

which can also be written using Elsasser variables:

) dx = —/{u(v x V)2 + - (V x B)*}dx, (13)
Har

%f (P*+Q?) dx == [{(H{Vx (P +QF +n{Vx (P - Q)}} dx (14)

3 Hopf-Liouville Equation and Averages

The probability distribution function of the system (7) and (8), p, is defi-
ned as a homogeneous statistical solution of the Hopf-Liouville equation as
given in [2]:

d ! U

= [2(P,Q) du(P,Q) = — [ ducfu (P, ®p)) % || (Q.2p)) +
({Q- VP, )+ |1 | (P.2q)) +u ((Q.2q)) + ({P - V}Q, 2q)},(15)

where

b} = ja-bdx (16)
(a,b) = zsjjva,--va,-dx, (17)

and ‘I"P is the functional derivative of the functional ® with respect to P.
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In some volume V we introduce:

2
Pl=r [ IPGOF dx (18)

and
2 _ 2
||P||V_|V|f|VP(x)] dx = IV|/|'\7><P| dx, (19)

where the last equality is due to the fact that both v and B are divergence
free fields and thus also P and Q.

The ensemble averaged energy is then:

e(p)= [(IP R +1QP})du (20)

In the same way, the ensemble averaged energy dissipation terms can
be written as:

Bi(w) = [IP+QI} du (21)
By() = [IP-QI} du (22)
The associated energy equation is:
d
e;fd-kvElﬂu)+nfh(ud——0 (23)

Defining the dissipation rate € as:

e(t) = vEy (1) + nEz (), (24)
the energy equation (23) is:

de (u)
ot

This equation tells us that the flow will be decaying as well as the turbulence
we are studying.

e=0 (25)



4 Choice of Probability Distributions and
Scale Transformations

Following Hopt’s idea (3] to choose of all possible probability distributions,
the ones that depend only of the parameters vy, | 5 | , €(t), we define the
family:

pe = prialet) (26)

Similarly to [3, 1, 2], we demand this family to be preserved by change of
scales of the MHD variables given by:

oe P (x) = (P(Ax) (27)
o Q(x) = £Q(Ax) (28)

This means that:
f ¢ (JE.APa UE,,\Q) dlui (P: Q) = / ¢ (Pa Q) d{O'e',\jJ,t (P1 Q)} (29)

Accordingly, the average energy transforms with o¢ ) in the following
way:

e(oeam) = [P +1Q ) d(oeam) = € [{IP Foy +1Q [ov) du
(30)
So:
e(ogame) = Ee () (31)

Similarly, the average dissipation terms transform as
By (ogame) = [IP+Q I} d(oean) =€ [ 1P+ Qs dur (32)

Then:
Ey (og i) = ENEy (1) (33)

and
E; (og i) = N E; (1) (34)



Equations (15) and (29) lead to:

%/ ®(P,Q) d(oepe) = %/‘I)(o'gl,\P,o'ﬁv\Q) dus =
— o5 [ doan) (55 (Pa7) = 25 (@) +
({Q V)P, ep) + EZ2RS (P, 2q)) +

A
" ((@.20)) + (1P v)Q.20))

It can be noticed then, that for /i; , defined as

»ﬁ"t = C‘rf,)\f""t ?

transformed ”viscosities” can be introduced :

5 = nt
D

- |ml€
|V2| - /\ b

as well as a new energy rate €:

€(t) = VEy (fi) + 1 E; (fi) ,

so that:
E(t) = 2)e(t) .
Then:
4e, gl e

e (#vx ,IV2!.C)

To fix a reference distribution function we choose:
1/2
(v | v2 )7 €

A
e’ = 1,

= p

then equation (31) can be written as
e (W) = (n | wa /42,
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where

1/2 1/2
7 lal
= eguli) () 7y, (45)
Using (44) and the energy equation (25) one finds for €:
€ (t) = L 2 (46)
1 el/2¢
( 7(U1|U2|)134)
where
€0 = €(0). (47)

The following probability distribution turns out to be stationary for the
modified MHD system (see appendix):

b\ 1/2 1/2 )
)" ()" i

bl

7

where 7 is given by (45).
To connect p with other members of the self-similar family, we choose:

€ = v V2% Ay |1y )R (49)
A= gV |1 )R, (50)

so that, applying (41) we have:

vy,lvale

H = Oym112e /8 (1 i )18 =112 /4 (1 i) B (51)
or, defining 9 as
9=y (0 | g )11, (52)
we have:
W = 0 it (g2 (58]

5 The Transformed MHD System

The above considerations and equations (49), (50) and (52) lead to the
following change of variables of the MHD equations (7) and (8):

1/8 1/4
5 ((mm) ef)M 1)

~1/2




(| w2 /oM
Q = ( 7.1/2 N

X = (11 | v |)3/871/2
- el/4 y

, ((m | v2 I)l“'r) T
- €l/2 2

where M , N , y and 7 are the new variables.

Using €(t) given by (46), the new system of equations is:

1-n 2L M+ (y-V)M} +(N-V)M =

1/2 ™ 1/2
—Vr+( ) VM + ( ) VN
| V3 | 151

(1—7)%—1:1—§{N+(y-V)N}+(M-V)N:

" 1/2 lV l 1/2
—Vr—i—( ) VN + (—2) VM,

1

where
7q

/2 (v | vy NV

Or, letting:
T=1—¢e"",

we have the following system of equations:

O (M4 (y-V)M) +(N-V)M =
1/2

S

%—T——{N+( .V)N}+ (M V)N =

1/2 1/2
) VN + (M) VM
%1

9

_v+(

| va |

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)



Now that we have the transformed dynamics, we can for completeness
relate back their statistics with the statistics of the MHD system. It will
be proved in the appendix that p given by (48) is a stationary probability
of the modified MHD system (62) , (63).

6 Correlation Matrix and Energy Spectrum

The correlation matrix is defined as:

Rie(y) = | 157 J, %0 (x4 ¥) Xe () i (64)
where 5
x-(2). -
It is easily seen that:
() = trR(0), (66)
and that i
VHtrR(y)} ly=o= —5 1B () + Bz (1)} (67)

If the scale transformation o¢ \ is applied to R;y, then:

Rj (y; ue 1o ',53,\5) =

jﬁ/;,'xj (x+y)Xi(x) dxd(oepe) =

1
2 ; B
¢ ./)\3 | V'] ./,\31/‘\"' (x + Ay) Xk (x) dx dp, =

&R (Ny; v, | vz |, €) (68)
Replacing y for y/A :
Butrimlulo = (B4 15 er) o)
AT A
Letting for example:
e = 1 (70)
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and

A=yl (71)
then E 225 -
Rik(ysv,| va|e) = (TI) Rjk (1, Iy T 1) 3 (72)
where
L = o5 (73)
L, = |—6—':;’—31 (74)

At this point, we have to assume that in the limit of v, — 0, or
v, | vy |— O

lim R;, (1; i, ﬁ, 1) = constant, (75)
40 [y 'yl
in which case, the correlations (72) agree with those derived in conjunction
with the Kolmogorov spectrum (see (3, 1, 2]).

To a certain extent, this spectrum can be derived by doing a Fourier
transform of the trace of the correlation matrix (64) (see [1]) to obtain:

S (k) = Pr3PF (i) : (76)
kq
with
" el/4 (77)
il =i s
(1 | w2 |)*®

We are now very near to the spectrum of Kolmogorov [4]. However, a
last "mild” assumption: F (k/ks) =~ C is necessary at least for the range
k/ks < 1 in order to justify the exponent of k, the exponent of € being
naturally obtained. Though our function F' (k/ky) is slightly different from
the one obtained in [1], we can closely follow [1] for the discussion of our
function F, in order to help in the justification of our assumption.
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7 Conclusion

This work extends the kind of derivation of the Kolmogorov spectrum done
in [1] and [2] based on a Hopf suggestion (see [3] page 120). It uses the ma-
themathical description initiated in [3] without solving the Hopf equation
explicitly. In fact, a self-similar family of probability distributions is esta-
blished in conjunction with the scaling properties of the MHD equations,
written in Elsasser variables [7]. This allows to relate the correlation matrix
and spectrum of MHD systems having different values of resistivities and
viscosities. Already this fact gives the correct exponent 2/3 in the energy
rate appearing in the Kolmogorov spectrum Ej = Ce?/*k=%/3, C and the
exponent of k can only be obtained after accepting some assumption on an
unknown function (see section 6).

The boundary conditions on the fluid are such that the solutions of
the MHD system have to decay as well as the turbulence. The self-similar
family of probability distributions allows, however, to find properties of the
correlation matrix and the energy spectrum. A complete determination of
the spectrum cannot be found without a knowledge of the explicit solutions
of the Hopf equation. From the self-similarity condition, however, it is
already possible to "almost” derive the KKolmogorov spectrum for 3-d MHD
turbulence.

8 Appendix

It is now shown that any homogeneous statistical solution of the MHD
equations (7),(8), p, transformed in accordance with (54) - (57) is a ho-
mogeneous statistical solution of (62) and (63). In order to show this, let
us take:

1/2

£ = v

(11 | va |)I/861/4
72 (v | 1 |)*/°
/4

s = —log(l—7)

A =

Taking into account the dependence of the linear transformation with
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time, then for any functional ® :

d

ds

/@(M,N) i, =
d

= [ #(M,N) d(oean) =

ds

dt d

ds dt

%{—jdm{m (M, VM®{Z,W}) +

| v2 | (N, VM®{Z, W})) + ({M - V}N, Vi ®{Z, W}) +
1 ((N)VN(I){Z!W})) + | V2 I ((M1VN(I){Z!W})) +

({N-V}IM,VN®{Z, W})— (iag,,\M,@'Z{Z,W}) —

/‘I’(O‘e.AMa%AN) dps =

dt

d ’
(-&-EO.E’,\N’ @W{Z, W}) |Z:O’€’AM ,WEGE,AN}}

It must be noticed, that the scalar transformation used here is the in-
verse transformation of (49) , (50) and thus, Z, W can be identified with
P and Q respectively.

As

el/2

2(w | v Ny

(Z+{y-V}Z) |z=0 M

and

dt (v )y
ds €l/2 !

the preceding expression can be written as
d e\ 172
= ’ d -vs = - jd a“s — s :
dsf@(M N) dji i {(I = I) (M, @) +
2

(Li’_%.l)l/ (N, @0)) + (AN - VIM, @) -

Vi

[V R

(M + {y-V}M, &'M) +( - )1/2 (N, en)) +

| v2 |
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(N+{y-VIN,&'N)}.

SR

()™ (o) -

The equation above is the Liouville equation for the system (62), (63),

showing that u, is a homogeneous statistical solution of the transformed
system.
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