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Abstract

In conventional drift wave theory the density gradient k, = d Inn/dz determines the
linear phase velocity, and the (electron) temperature gradient k7 = d InT'/dz gives rise to
a nonlinear term which leads to the existence of soliton-type solutions and solitary waves.
LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and
Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not k7 but
essentially the derivative of the density gradient, dk,/dz, that is relevant. This claim is
refuted by means of an expansion scheme in € = e®/T < 1, where ® is the drift wave

potential.



1. Introduction and conclusions

Plasmas with gradients of the density and the temperature immersed in magnetic fields
can support nonlinear coherent structures like soliton-type perturbations or solitary waves
(ORAEVSKII et al., 1969, PETVIASHVILI, 1977) or two-dimensional vortices (LAEDKE
and SPATCHEK, 1986). These nonlinear phenomena, besides being an interesting study
in themselves, are also important with regard to, for example non-collisional energy

losses. The same is true in the opposite case of drift wave turbulence; see, for example,

HASEGAWA and MIMA (1978).

In the simplest case of quasi-one-dimensional drift solitons (ORAEVSKII et al., 1969

]

OREFICE and POZZOLI, 1970, PETVIASHVILI, 1977, RAHMAN and SHUKLA, 1980,
MEISS and HORTON, 1982) the rdles of the density gradient k, = d Inn/dz and temper-
ature gradient kr = d InT/dz are quite straightforward: k, determines the phase veiocity
of linear drift waves, and £ gives rise to the nonlinear term. Another nonlinearity, the so-
called Hasegawa-Mima (HM) term contains neither k£, nor £r and vanishes in the strictly
one-dimensional case. It came as a surprise when LAKHIN, MIKHAILOVSKII and ON-
ISHCHENKO (1987), (1988) recently claimed that this standard picture is erroneous, and
that, owing to the HM term, the temperature gradient should be essentially replaced by the
derivative of the density gradient. Since this point is fundamental to nonlinear drift wave
theory the basic theory is reconsidered here. It is found that the conclusions of LAKHIN

et al. (1987), (1988) are incorrect. Their fault does not lie in the formal derivation but in

insufficient consideration of the order of magnitude of terms to begin with.

In the next section, for reference, a short derivation of nonlinear drift wave equations is

presented together with the arguments of LAKHIN et al.

In Section 3 a smallness parameter is introduced by assuming e®/T = ¢ < 1, and
expansions in € are discussed. It is found that the starting equation of LAKHIN et al.

does not correspond to a consistent ordering. Two orderings are considered in detail. One

2




is suitable for long-wavelength solitary structures and waves, (kyps)? < 1, and leads to
KdV-type equations. The other, with (kyps)% ~ O(1), is often used in drift wave turbulence
theory but can yield solitary structures of a more complicated type as well. In the first
case the pre-Lakhin et al. picture with the k7 nonlinearity is found to be valid after all.
In the second case, for quasi-one-dimensional wave-like solutions, an additional nonlinear
term ~ 9(V®)?/at is relevant which is lacking in LAKHIN et al. (1987), (1988), so that
their theory does not apply as such, and in particular not with a simple replacement of the
k7 nonlinearity. Their insistence on checking the réle of the HM term, however, is justified
and in this second case might lead to modifications of previous results by ORAEVSKII et
al. (1969), RAHMAN and SHUKLA (1980).




2. Short review of drift solitons and of Lakhin et al.’s considerations

Let us consider a plasma with density and temperature gradients in the z-direction and
a constant magnetic field B = Be, in the z-direction. The continuity equation and the

equation of motion for the ions, considered to be cold for simplicity, are

on;
iv(n; vi) = 0, 1
5+ div(n; v;) (1)
a € 1
(E-i-v,'-V)VgZE(—VQ-PE[V;XB]), (2)
where E = —V® and e, m; are the charge and mass of the ions. The electrons with

temperature T'(z) are assumed to obey the Boltzmann distribution

ed®
ne = n(z)eT . (3)
The system is closed by the quasineutrality condition n, = n; and the assumption, again

for simplicity, that v-e, = d®/9z = 0. For drift waves with a frequency much less than the
ion gyrofrequency (1; = eB/(mic) equ. (2) can be solved iteratively, yielding v; ~ vg+vp,

where c
szﬁ[eszQ],

c 0 (4)
_ 2 v .
VP =" B0, (at t VE ) e

The second term in the polarization drift vp gives rise to the so-called Hasegawa-Mima

(HM) nonlinearity (HASEGAWA and MIMA, 1978). Other nonlinearities arise from the
product n;v; in equ. (1). The simplest one, from vz - Ve¢®/T | brings in the temperature
gradient and is proportional to k7®3®/dy. Authors differ somewhat on which of the
nonlinear terms to keep or not; compare, for example, TASSO (1967), ORAEVSKII et
al. (1969), PETVIASHVILI (1977), HASEGAWA and MIMA (1978), RAHMAN and
SHUKLA (1980), MEISS and HORTON (1982), LAEDKE and SPATSCHEK (1986),
SHUKLA (1987), LAKHIN et al. (1987), (1988). This reflects the fact that often no
systematic expansion is made. ORAEVSKII et al. (1969) and RAHMAN and SHUKLA

4




(1980) consider more nonlinear terms than the HM and/or the k1 nonlinearities. If one
keeps the two nonlinear terms just mentioned the result is (LAEDKE and SPATSCHEK,

1986, LAKHIN et al. 1987, 1988)

ad 9 0 o 9. 00 9 C 9 CKT ad
— - — — Knpily — — pt—= [VO® x V|, V*D —® — =0, (5

where p? = T/(m;Q?) and [V® x V|, = 9,8 - 8, — 8y - 3,. The stationary wave ansatz

®(z,y,t) = ®(z,n = y — ut), where u is a constant phase velocity, yields

a9 od
2
— A — So — =
DV — A5 + 250 85 =0 (6)
with
D=2 _ 4waxv (7)
_an Z 9
1 n2£
i ¢ (8)
Sy = CKT
OHZpEBu

and a = ¢/(Bu). If the z- dependence of ® is neglected, D reduces to d/dn and equ.
(6) can be integrated once with respect to n. With the boundary condition that ® and
its derivatives vanish at 7 — +oco one finally obtains (PETVIASHVILI, 1977, MEISS and
HORTON, 1982, LAEDKE and SPATSCHEK, 1986, SHUKLA, 1987, HE and SALAT,
1989)

3%®

En—z—AqurSoqﬂ:o, (9)

which has well known sech? soliton-like solutions; see Appendix A.

LAKHIN et al. (1987), (1988) point out that it is premature to neglect the z- dependence
of ® totally since after all ® depends on z parametrically via the coefficients. Even for
|02®/9z%| < |82®/8y?| the HM term [V® x V],V2® need not be small. They manage

to integrate equ. (6) once, up to a small correction, and only afterwards do they consider
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small z- dependence. The result, equs. (12)-(14) below, indeed differs from equ. (9).
LAKHIN et al. realized that equ. (6) can be written as

DF=a1q>2a—‘I’:0(«I>3)<<1, (10)
on
where
— v2p _ a dA\ o2
F = V% A¢+(So+2dm)c1> (11)

and a; = a d(So + a/2-dA/dz)/dz. The r.h.s. of equ. (10) is small of third order in @
and therefore is neglected. (For the special profile d?k,/dz? =0 a; is even exactly zero.)
DF = 0 is equivalent to [VF x V(a® — z)], = 0 and hence F is an arbitrary function of

a® — z only. With the aforementioned boundary condition one finally obtains F' = 0, i.e.

Ve — AD + S®% =0, (12)
where
a dA
S-—So+—2-a~£. (13)

If it is now assumed that |0%®/0z%| < |92®/dy?|, equ. (12) differs from equ. (9) by the
substitution So — S. When A and Sp are taken from equs. (8), the temperature gradient

kT exactly cancels, leaving (LAKHIN et al., 1987, 1988)

e dkp
3 = 2mu? dz L)

This unexpected result, which was derived by LAKHIN et al. (1988) using three different
methods, undeniably follows from equ. (5). However, as stated above, the selection of
nonlinear terms to work with is not straightforward. It is necessary to set up a consistent
expansion scheme in terms of small parameters as done by, for example, OREFICE and
POZZOLI (1970), NOZAKI and TANIUTI (1974), TODOROKI and SANUKI (1974).

This is done in the next section and will be shown to restore the k ®9® /8y nonlinearity.



3. Consistent expansion schemes

In order to discuss the relative sizes of terms, it is useful to introduce dimensionless
variables. Let 75, ng be the electron temperature and density at x = 0, say, and
ro = L the scale length of the density gradient. The quantity vo = c¢To/(eBL) is a
velocity of the order of the electron drift velocity v.. = —¢Tk./(eB). We consider
the dimensionless quantities ¢’ = z/ro, y' = y/ro, t' = t/to, where to = ro/vo, and
vl = vifvo, n' =n/ne, T = T[To, ®' = e®/To, k|, = rokn, Kk = rokr. With the
definition pZ = To/(m:012) it follows that to = (L/po)?/Q;. In the following, the primes
are again omitted for brevity.

In the new variables the equation of motion of the ions is

dv. [0 1
% = (E—E—V-V)v—;(—vtﬁﬂ-[vxez]) (15)
with s = (po/L)?. It is assumed that ® ~ € < 1 is a small quantity, and similarly that
_ (Po)? o
s—(L) e, a>0, (16)

so that s < 1 also. If the drift solitons or solitary waves are to retain a relation to the
physics of drift waves, the ratio of the time derivative to the y- derivative should be of the
order of vg, which in dimensionless units implies 8/8t ~ 3/dy. The derivative of @ in the

z-direction is assumed to be weaker than or of the same order as the y-derivative. This

implies
d 7]
ot dy oz (17)
B+ €&<0, p <0, §>0.

The first inequality expresses the fact that ®(z,y,?) cannot vary in z more slowly than the
equilibrium quantities whose scale lengths are ~ O(1). The third inequality corresponds
to /0z < 3/dy, and the second one follows from the other two.

It is now straightforward to see the weak point in the treatment of LAKHIN et al. In

dimensionless units their final equation, equ. (12}, is

1 oF 1 dk,
Vzcb——(1+”u)@+ s LR (12a)

sT 2su? dz



22 respectively, assuming that in

The order of magnitude of the terms is el 127, ¢l=2 ¢
unnormalized units v ~ v,.. Hence the nonlinear term is one order of magnitude smaller
than the second term. Obviously, the nonlinear term to dominant order should not be
kept. If it is kept, for convenience as it were, or by arguing that 1+ x,T/u could be small
one should be aware that other small terms could enter as well and modify the nonlinearity.
We therefore proceed with a systematic expansion in powers of € < 1.

If the equation of motion is solved recursively, it is evident from

2

d
v =[e;xV® — s —V® — s?[e, x d

3
= S & & L ve + e (18)

dt3

that the expansion proceeds pairwise in powers of (sd/dt)2. Convergence therefore requires

that s8/0t ~ e*TF < 1 and sVV® ~ eltat26 <« 1 je.
a+ g >0 and 1+ a+ 26 >0. (19)

In keeping the usual terms

ove

v = [e;xV®] — s g

~ 5 [V®x V|,V® (20)

we are aware that the neglected ones are of order e2(®+8) and 2(1+2+28) smaller than the

last two terms. Repeating the procedure which led to equ. (5) one obtains

%%—T - S§V2<I> = mn-‘g . snncf:—;; — §[V® x V|,V2e + “’?chg—f -

%V‘I’- %VQ — sKk,[V® X V]z-f;—i 4 MTT(I)(?:_Gi —

%V@-([V@ X V]|, V®) + MTTQ[VQ X V]%ii =0. (21)
The order of magnitude term by term wise is

!B | eltat3p | el 8 | eltat2f+€ | e2tatdf+§ [ 218 |

g2ta+3p , g2ta+3f+2¢ | e2tat+2p+¢ |

e3tatap+e | g3tat3f+2{ (22)




In view of the inequalities (19) the only terms which can possibly be dominant are those
which scale as e!18, elT+38 and 2+to+46+¢ | There are four such terms, namely the
first three and the fifth. Altogether there are five possible combinations for which at least
two terms balance each other. We shall only discuss the two most pronounced cases,
namely case a): the first and the third terms (the most basic ones) balance each other,
and case b): all four terms contribute to the balancing. The other combinations lead to

the same conclusions or describe rather untypical situations.
Case a) a+ 28 >0, 1+ a+38+ €& >0. (23)

This ensures that the dispersion term sdV?® /8t and the HM term s[V® x V|, V%® are
small. The remaining equation

1 89 ad
T ot ey =0 (24)

implies that to lowest order ®(z,y,t) is a function of z and w = y+ k, Tt only. In the next
order in € a weak dependence on ¢ separately is allowed. With ® = ®(z,¢,w) we make the

ansatz
A . 0%

E ~ 5;, T > 0. (25)

w

In order to obtain contributions from this slow time dependence and from the dispersion
term, one has to set 7 = 1 and

a+ 28 =1. (26)

As a consequence, in unnormalized units one has (kyp;)? ~ €?#t® ~ € < 1. The tem-
perature gradient nonlinearity contributes in this order ~ €2*# too. The HM nonlinearity
contributes for 1 + # + £ = 0, which implies # < —1. In the opposite case, 0 > g > —1,
the HM term is small. It does no harm, however, to keep the term formally in this case
too if only correspondingly small terms are finally identified and eliminated. This saves us

one more separate discussion of subcases. Thus we consider

1+pf+€>0. (27)
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The term sk, 82®/3t8z — sk2T32®/dwdz contributes to the present order for £ = f =0
only, i.e. for z- and y-derivatives of the same order of magnitude. In the following, however,
for simplicity and for the sake of comparison with LAKHIN et al. (1987), (1988) we focus
on quasi-one-dimensional solutions, i.e. 8/3z <« 8/dy, which implies ¢ > 0. In this case

the slow time dependence of ®(z,¢,w) is governed by the equation

%%—f—snnTg—Z%—s[V‘be]zg-?%@g%:O. (28)
If § and € are such that 1+ + £ > 0 the third term can be neglected and the Korteweg-
de Vries equation is obtained. Apart from the restrictions (17) and (27) 8 and £ are free
parameters, while a = 1 — 2.

Equation (28) without the third term was also obtained by OREFICE and POZZOLI
(1970), with an extension to d/dz # 0. The special case a = 1/2, f = 0, £ = 1 was
assumed. It was not realized, however, that in this case with #+ £ > 0 the solution would

depend on z more slowly than the equilibrium itself.

Looking again for wave-like solutions, we make the ansatz ®(z,t,w) = ®(z,n) with
n=w-—14t =y + (k, T — 4) ¢, (29)

where i is a constant of order € in order to satisfy the scaling (25) with 7 = 1. This yields

Fad) 1 3%d @ 9% KT oo
—3n3 + PG [VQXV]Z anz + SiﬁnTz E - SlﬁnTz d % = 0. (30)

This equation is of the same type as equ. (6), except that V® is replaced by 82®/an?.

Now we have a = —1/(k,T) and

—i
A= ——
sk,T2 "’
T (51)
g = 28k, T2 ~

Repeating the discussion leading to equs. (10)-(13) then yields

—KT 24 U d}cn
1 ——  hn
25K, T2 ( e K.nT) 2sk3T3 dz (32)
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with S ~ €% so that a; = adS/dz ~ ¢~ % and a;829®/9n ~ & 1P ~ 2+3F, On
the other hand, it holds that 83®/dn® ~ €'*%f so that the r.h.s. of equ. (10) is small
compared to the L.h.s. and an equation analogous to equ. (12) is obtained. The nonlinear
term S®? contains both the temperature gradient k7 and the gradient of k,,. Since @ ~ ¢,
however, the dk,/dz term is small and only part of the xr nonlinearity matters and

S = So + higher-order terms. The final nonlinear equation resulting is

0%d " i b - T .
on? 8Kk, T? 23K, T2

=0. (33)

Although this equation looks different from that of the naive 1-d approach, equs. (8), (9),
its soliton-like solutions agree to dominant order (see Appendix B).

With these results we can draw our main conclusion: the nonlinear drift wave equation
(5) without the HM term but with the k7 nonlinearity is well suited to describing long-
wavelength (kypo ~ +/€ ) quasi one-dimensional drift solitons (PETVIASHVILI, 1977,
MEISS and HORTON, 1982, HE and SALAT, 1989), while the version of LAKHIN et al.
(1987), (1988), equs. (12), (14), is not meaningful.

The fact that the HM term ~ [V® x V],V2® does not leave any trace in equ. (33) is
easily understood. V2® is approximately of the form VZ® = f(z)®+g(z)®2. The operator
[V®x V], acting on ®", however, gives zero identically, and only its operation on the slowly
varying coefficients f(z), g(z) remains. In the most pronounced case, 1 + 3 + ¢ = 0, this

gives a reduction by a factor e (#+€) ~ ¢ <« 1 in relation to the original estimate.
Case b) a+ 28 =0, 1+8+€&=0. (34)

The wave-number in the y direction (in natural units) satisfies kypo ~ 1. To dominant
order ~ €!*P equ. (21) becomes

1 3% o o o® B
= = 8 =V o o s[V®x V], V2% = 0. (35)

This is the Hasegawa-Mima equation, which was originally used to investigate two-

dimensional drift wave turbulence (HASEGAWA and MIMA, 1978) and drift vortices
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(LAEDKE and SPATSCHEK, 1986). Although it is not in the spirit of these applica-
tions we discuss the plane-wave ansatz ®(z,y,t) = ®(z,n = y—ut) in order to see how the
arguments of LAKHIN et al. (1987), (1988) work in this scaling. The constant velocity u

is here O(1). The resulting equation

0 1 2 1 ko T\ 09
@ = i = — =0 36
(Bn u[V@xV])V@ sT(1+ u)an (36)
is of the form (6) with @ = 1/u, So =0, and
1 knT
A = — 37
sT (1 + u ) (87)
so that from equ. (13) one obtains
. 1 —KT 1 dﬁ:n
S = 2us ( T u u dz ) ' (28)

Therefore it holds that S ~ a; ~ €2?, and the r.h.s. of equ. (10) is a factor € smaller
than the Lh.s. Also, the nonlinear term S®2 in equ. (12) is negligible by one order of

magnitude, and there only remains

a2 2
(6_1']2+§1_:E)Q_A@:O' (39)

If it is assumed again that |92®/dz%| < |82®/dy?|, the solution of equ. (39) is
®(z,n) = A(z) sin(VAn + ¢(z) = & (40)

with arbitrary amplitude A and phase ¢. The situation is different from case a) in that
here the functional form of ® is already fixed by the lowest-order equation. In the next
order there is a small dependence of A and ¢ on t and y, and a small deviation from the
functional form above: ® = &;+€e®P5+---. The condition that ® have no secular behaviour
gives rise in the usual way to evolution equations for A and ¢. In this next order, in equ.
(21), there are contributions from the four terms already familiar from the lowest order,

and from the terms k7 ®3®/8y and sV® - dV® /3t as well. Both nonlinear terms are
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present in (ORAEVSKII et al., 1969, RAHMAN and SHUKLA, 1980) and have been used
to demonstrate the modulational instability of the sinusoidal solution (40) (RAHMAN
and SHUKLA, 1980) and the existence of 1-d solitary waves and soliton-like structures
of a non-KdV type (ORAEVSKII et al., 1969, RAHMAN and SHUKLA, 1980). The
HM nonlinearity, however, was not included although according to the present discussion
it contributes at least formally. It remains to be seen whether it affects the next-order
results as little as it did the lowest-order ones.

LAKHIN et al. (1987), (1988) do not have the term ~ V& - 3V®/dt. They seem to
have in mind the case (kyps)® < 1, which corresponds to case a). Still, the discussion
above underlines the conclusion that only an ab initio discussion can decide which terms

are relevant in which situations.
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Appendix A

Instead of equ. (9) one may consider the slightly generalized equation

%@ ”
— — A S = ', Al

= + (A1)
which reflects the fact that @ is a potential and may have ® — C = const # 0 away from
the soliton. Equation (A1) has elliptic function solitary wave solutions and soliton-type

solutions. The latter are

® = &, + A sech’(kn), (A2)

where

A=3(A-28%)/(25), k* = SA/6 (A3)

and C = ®¢(S®o — A) . The sech? solution, however, is not a true soliton. If a collection
of such excitations is used as initial condition in equ. (5) (without the HM term) they are

destroyed upon collision with each other (ABDULLOEV et al., 1976).

Appendix B

In equ. (33) @ depends on n = y + (k,T — 4)t. For the soliton-type solution & =
®o+ A sech?(kn), equ. (A1), one has A = —i/(sk,T?) and S = —k7/(25k,T?). Inserting
this into equs. (A3) and solving for i, one obtains

—K:TA

5 KT
125k, T2 °

u = (A"}‘B@O), kzz

: (A1)

A and ® have to be of order ¢ in order to be consistent with & ~ e.
In contrast, in the naively derived equ. (9) ® depends on n = y — ut, with u ~ O(1). In
dimensionless units A and Sy are given by A = (1 + £,T/u)/(sT) and So = kr/(2usT).

Again solving equs. (A3) for u, one obtains

u=~nnT+f33(A+3cI>0), (A5)
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—kTA 1

2 _
b = TeraT? 1= (A% 380)rr/(3enT)

(A6)

Comparison of equs. (A4) - (A6) shows that the total effective phase velocities —k,T + i

and u agree. The wave numbers k agree to dominant order in € < 1.
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