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Introduction

A simple and fast numerical method to evaluate the absorbed energy and power den-
sity on the divertor plates of ASDEX and ASDEX-Upgrade is described in this paper.
Inertial cooled plates in the Divertor I of ASDEX as well as water-cooled plates in
ASDEX-Upgrade and in the Divertor II of ASDEX are considered. In either case the
temperature distribution on the surface of a representative divertor plate has to be
measured with an appropriate space and time resolution as an input for the numerical
computation. The time evolution of the profile of the surface temperature is determined
with standard infrared measuring technique and details can be found in Refs. /1, 2, 3/.

Additional experimental information on the temperature profile of the rear side of the
divertor plate are favourable and would considerably simplify the analysis but are not
necessary in the case of actively cooled plates. The distribution of the absorbed energy
and power density on the surface of the divertor plate is derived by solving the equation
of heat conduction inside the plate with the measured profile of the surface temperature
as a boundary condition.

A one-dimensional treatment of the heat conduction problem with constant thermo-
physical coefficients is justified in the large majority of the experimental situations /1/.
Mostly, the component of the temperature gradient which is perpendicular to the surface
of the plate exceeds the tangential components of the gradient by far and the elevation
of the surface temperature is restricted to a few hundred degrees.

In part I of this paper the mathematical and numerical method is established. Princi-
pally, the absorbed energy density on a surface element as a function of time is directly
computed by unfolding the measured surface temperature with an analytical function
which is derived by Laplace-transformation technique from the equation of heat con-
duction. The absorbed power density is calculated from the energy density by a special
numerical differentiation technique. The method is numerically stable and accurate. In
part II some experimental data of ASDEX are analysed.

I. The Numerical Method
1) Inertial cooled divertor plate

The surface of the divertor plate is discretisized in arbitrary surface elements S;. Each
element S; absorbs a power P;(t) and an energy E;(t) which are surface averaged values
on the element S; (Fig. 1). All the elements i are treated one-dimensionally in a first
order approximation. Their thermo-physical properties are assumed to be constant and
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the thermal coupling between the different elements is neglected. The cooling effect of
the mounting supports of the plate is not considered.

Hence, T;(z, 1) describes the temperature field in the element i and the course of T;(z,t)
is described by

0? cp-0 0
527 6i(z,t) = 7 Eﬁ,(x,t) (1)

§:(2,t) = Ti(2,t) — To-

cp is the heat capacity per unit mass, @ is the mass density and K is the thermal
conductivity of the divertor plate.

We define the start of a heat pulse on the divertor plate at t = 0 and suppose the elapse
of several heat diffusion times between the end of the previous heat pulse and the new
pulse at t = 0.

The initial condition is then simply Ti(z,0) = To or
5,'(:1:, 0) =0 (2)

Inertial cooled plates means no cooling of the plate and the boundary conditions are

Pt) = ~K5% [amo (30)
%’%/z:d =0 (3b)

In the following we omit the suffix i and denote §(z,t) as temperature. The linear
differential equation Eq. (1) with its initial condition Eq. (2) and its two boundary
conditions Eqs. (3a) and (3b) can be solved analytically by Laplace-transformation
technique. This method is well established and details can be found in standard text
books /4,5/.

A function f(z1...zk,t) can be represented by an integral in the complex plane s

1 a+joo

f(z1...zK,t) F(zy...zk,s8)e*ds

215 Jujoo
The function F(z1...zx,s) is called the Laplace-transformed of f(z1...zK,1t)
F(z1..zk,8) = L{f(21...zK,1)} (4a)
and the inverse transformation is defined as
f(z1...zK,t) = L YF(z1..zk,t)} (4b)

2




We use the notations of Eqgs. (4a), (4b) throughout this paper.

Eq. (1) is Laplace-transformed to

Cp: @
K

%5@,3) = 22, 5(z,5) — 6(z,0)] (5)

and simplified with the initial condition of Eq. (2) to
2 _b(z,s) = ffK—g .5+ 6(z,9) (6)

The Laplace-transformed boundary conditions are

P = kX2, (1a)
0= a—522:1;—‘2/:7: =d (7b)

We find the general solution of Eq. (6) with the Ansatz §(z,s) = ¢(s) - e*(¢)2

6(z,8) = cl(s)e\ﬁﬁ‘"’ + c;;(s)e—\ﬁ\/gac (8)
and introduce the abreviation
Cp 0
Y= (9)

A straightforward derivation of ¢;(s) and cz(s) from Eq. (8) with the two boundary
conditions Egs. (7a), (7b) gives

¢ CIP(S)0E 1 e 23

C]_(s) - = K \/;7\/‘; ' (C—Zﬁd\/; _ 1) (10)
_ P(s) 1 1

ca(s) = — W NG . AT (11)

The Laplace-transformed of the surface temperature is §(0,s) = ¢1(s) + ¢c2(s) and with
the notation 8 = ,/7d we find the solution for §(0, s)

6(0,s) = P(s) - o(s) (12)

with
1o 1 (emPVe 4 V)

) =R s (R (13)
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Eq. (12) is transformed (L™') to the integral equation

t
§(0,t) = / g(t—T)- P(T)dT (14)
0
with :
1 a+joo
g(t) = L™ {o(s)} = o e o(s)et*ds (15)

The solution of the integral in Eq. (15) is found in the literature /6/ and Eq. (14) can
be solved by inverting a triangular matrix. The elements of this matrix are defined by
the values g(t,) taken at the various sample times t,(n = 1...N). In order to avoid the
numerical problems which are inherent to the inversion of big triangular matrices (10*
rows and columns respectively when 10% samples are taken for one surface element) we
follow a different way of solving Eq. (12).

Instead of inverting a matrix we invert the complex function o(s) to 1/0(s) and multiply
the left and right side of Eq. (12) with 1/s.

_1_ _1_.5(0,3)22@

5 o(o) =W(s) (16)

W(s) is the Laplace-transformed of the energy density W (t) which is absorbed on a
surface element.

With the notation F(s) = a(ls) -1 and L7'{F(s)} = F(t) we write the inverse-
transformed Eq. (16) as

/ “Flt—1T)-6(0,T)T = W(t) (17)
0

L

F(s) = K\/[v 7 - tanh(B/s) (17a)

and the inverse-transformed of F(s) is

F(t) = Fi(t) + Fa(t) = K\/g ) % +2K .:/; . -% . Z(——l)nezp(_nzﬂz) (18)

n=1 t

F(t) is composed of two parts. The first Fy(t) = K \/_z . \/LE represents the solution for
a infinitely thick plate d — co(8 — o0) and has a singularity at r = 0. The second part

F(t) = K /I % Z:°=1(—1)”exp(—"—zfﬁ) is contributed by the finite thickness d of
the plate and shows no singularities. )



The energy density W(t) is written as

t t

Fi(t — T)6(0,T)dT + / Fa(t — T)6(0,T)dT  (19)

W(e) = Wile) + Wa(t) = |

0

Only the first part W;(t) = f: Fi(t —T)6(0,T)dT which is the exact solution for the
thick plate is somewhat critical to compute and contains all the inherent numerical
problems. Hence, we will only consider some experimental situations later on where
Wi(t) is dominant in order to show the applicability of the numerical method. It
becomes now clearer why the factor 1/s is introduced in Eq. (16). The factor 1/s
reduces the grade of the singularity at r = 0 and allows a stable and correct numerical
solution of Eq. (16). A direct solution of Eq. (12) by inverting P(s) = §(0,s)/o(s)
is much more difficult or even impossible. The measured surface temperature §(0,¢) is
not smoothed at all and the raw data are used to solve Eq. (19).

2. The actively cooled divertor plate

In the case of an actively cooled divertor plate we have to introduce a physical model for
the heat transport from the plate to the cooling medium. Normally the cooling medium
is guided in tubes which are located at the rear or within the divertor plate and an
effective thickness d of the plate has to be defined. The temperature of the cooling
medium is measured at only one or at most a few positions on one divertor plate.

In section 2a we suppose an average temperature Tk of the cooling medium in one
plate due to the lack of information. The application of the solution of 2a to any two-
dimensional distribution of the temperature of the cooling medium in one plate is trivial.
In section 2b we treat the special case where the temperature of the rear of the plate is
known as a function of time.

2a) The temperature of the cooling medium is measured

The density of the heat flux within the plate at x = d is supposed to be proportional
to the difference of the temperature of the cooling medium Tk and the temperature
T(d,t) within the plate at x = d.

N KZ_: foma = o|T(d,t) - Tx]

or
o

7 6(d,t) (20)

a6
8al ===
Eq. (7b) is replaced by
d «a
525 (%:8)/a=a = —36(d,5) (200)

5




and Eq. (6) is solved in a similar way as is already described in section 1. The solution
of Eq. (6) which corresponds to Eq. (16) is

W (s) = 6(0,s) - o(s)

with
o(s) = 1 (Vs + :%)eﬁ\/E — (Vs — %)e—p\/s]
()‘—I{\/’7 \/E [(ﬁ\/‘;'*'%)eﬁ‘/‘;"‘(\/’_h/_—%)e—ﬁﬁ]

In order to find the inverse-transformed of o(s) we have to solve the integral

(21)

1 a+ioo y
o(t) = xSRI o(s)e*’ds (22)
o(s) is uniquely defined in the complex plane s due to [r - etlP+2m))1/2 — _[reiv|1/2 and

hence o(re*(#+2m)) = o(re'®).

For s — oo o(s) > K \/'7-\}—3 -tanh(B+/s) and this proves that o(t) is represented by
the sum of the residua of o(s) - e**.

The non-trivial poles of o(s) are derived from

e—28VE — _ (VIVs+ &) (23)
(VAVs — %)
with the Ansatz s = —A% (4 > 0).
We find the single poles of o(s)e?® at
s=0
with the residuum c
Res(0) = 24
es(0) = 7= en
and at
a2 T Ly _
Sp = —AL = —ﬁ(n - 5) — gn(a) (n = 1,2,;35.500) (25)
with the residua (42 2)
2(A% + ¢ 2
R n) = n _An't
es(sn) e+ AlAZ +€2)e (26)
and use the notations § = ,/Ad and € = Kc:ﬁ'
gn () is derived from the equation
_ o (Af=ed)
COS(ZﬂAn) = —-(—:4_?7_{-_6_2) (27)
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by using Newton’s iteration technique and with the constraint (n+ %)% < 4n < (nt1) 3.

The general unfolding function o(t) for the actively cooled plate of thickness d is

15710588 upd (Af+e?) i = (20a 4
W =W Teg 4 nzz:l e+ B(AZ + &7)]

(28)
Without cooling (e = 0) o(t) simplifies to

1

oft) = = Zemp (n— 5)2 t] (29)

and is proven to be identical with F(t) of Eq. (18).

The unfolding functions for the thick plate Fj(t), for the thin plate F(t) and for the
cooled plate o(t) are compared in Fig. 2 for copper as the plate material. F(t) and o(t)
describe the uncooled and cooled divertor plates of the Divertor II in ASDEX with data
taken from Ref. /7/.

For ¢t < 0.18? the deviation of either F(t) and o(t) from the thick plate solution Fy(t)
is less than 2 - 10~%. Hence, the absorbed energy density on the thick plate and on the
cooled and uncooled plate is described by the same expression

W(t) = /O “Ri(t—T)-6(0,T)dT (¢t <0.16%) (30)

For t > 0.13% we have to replace Fy(t) by the proper unfolding function Fj(t), F(t) and
o(t) in order to solve Eq. (30).

The variation of the positions of the first four poles Sy, S2,.Ss and S4 with the parameter
ad/mK is shown in Fig. 3. A pronounced variation is observed for 0.3 S ad/7K < 10
and the calibration of the thermographic diagnostics concerning the parameter « has
to be performed by fitting the calculated energy density to the course of a test pulse.

The measured raw data of the surface temperature 6(0,¢1),6(0,t2)...6(0,tx) are line-
arly interpolated between the samples taken and the integral in Eq. (30) is analytically
evaluated. This technique yields much better results than a purely numerical integra-
tion. The analysis techniques of section 1 and 2a are sufficient for the thermographic
diagnostics and were exclusively used to analyse ASDEX data.

2b) The temperatures at the front and rear of the plate are measured

Usually, the temperature distribution at the rear of the plate is not accessible. But

in order to complete the analysis of the cooled plate we shortly treat this special case
which considerably simplifies the analysis.




The boundary condition of Eq. (20b) simplifies to

o a
a0 e dy £ id: 31
H(s) =~ 26(dy) = 5-5(z,5) 2= (31)
where the function H(s) is known and we get the Laplace-transformed of the energy
density

W () = 60, F(6) - 2K it (32)
The solution of Eq. (32) is
W(t) = /Ot F(t — T)6(0,T)dT — K /Ot A(t — T)H(T)dT (33)
o 4 X (=" 2 Lo
a0 =113 grlgyeenl-Gank )

and the integrals of Eq. (33) are analytically solved as is described in section 2a. F(t)
is given by Eq. (18).

The main advantage of this method is the simple calibration of the diagnostics with
regard to o. Only H(t) = —&6(d,t) depends on « while the poles s, are independent
on o.

3. Derivation of the Absorbed Power Density P(t) from W (t)

The power density P(t) is derived from the energy density W(t) by differentiating the
computed W(t). In order to avoid the numerical problems which are inherent to the
various differentiation methods we tackel the problem differently.

The surface temperature of each plate element is sampled with a frequency f,. In order
to eliminate aliasing effects a limitation of the bandwidth of the measured signal to f, /2
is demanded by the Nyquist theorem before sampling.

We introduce a mathematical filter function SM(t, f;) with a 3-db bandwidth f; < fs
and process the sampled raw data W(t) with the filter function SM(t, f,) like

WGt = [ SM(-T, f)W (@)ar (54).

There will be no loss of information in W, (¢, f;) compared to W(t) if f; > fo/2. With
fq < fs/2 the function W,(t, fg) represents the smoothed energy density W(t).

A similar integral relation is valid for the n-times differentiated energy density w () (t)
t t

WG, gp) = [ SME-T, WO @)r = [ sMPe-T,f)W@T (9
0 0
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The differentiation is swopped from the processed function W(t) to the filter function

SM(t, fs). A prove of Eq. (35) can be performed by using Laplace-transformation
technique. '

We choose a filter function which can be represented in an analytical form. This allows
the n-times differentiation of W(t) to be performed by a n-times analytical differentiation
of the filter function SM(t, f;) and then unfolding W(t) with SM (™) (t, f,). SM(t, f,)
and its derivatives have to be calculated once and are then filed in a table.

W(t) is only smoothed if n = 0 and f; < fs/2. Smoothing and additional n-times
differentiation of W(t) is performed with » > 1 and f; < fs/2. Good results are
obtained with a filter function which corresponds to a Bessel-filter. These so-called
”minimum phase shift” filters show a constant group velocity and an optimum response
to pulsed functions.

The filter function is represented by a sum

N
SM(t, f,) = a(fy) - Y _ €U0l te;(f,)cos(di(f,) - 1) + el fy)sin(fi(fy) - )] (36)

=1

SM(t, f,) and SM(M) (¢, f,) are shown in Fig. 4 for a sample frequency f, = 1 KHz, a
bandwidth f; = 500Hz and the index N = 5 (10-pole Bessel-filter).

8(") (¢, fg) is calculated at each sample time (Eq. (35)) with a very limited number of

multiplications. M = 7 multiplications are necessary in order to evaluate W,(t, f,) for
fg = 500Hz, N = 5 and M = 16 multiplications for Ws(l)(t, fg). This follows from the
shape of the filter functions in Fig. 4. The presented differentiation and smoothing tech-
nique is accurate, stable and has no numerical problems at all.

II. Results
1. Test of the numerical method

The numerical method is tested for the thick plate with a simulated function for the
absorbed power density P(t). We assume that the test power density is switched on from
zero to 1 W/m? at t = 0 and remains then constant. Eq. (1) predicts the elevation of the
surface temperature in response to the power test function as 6(0,t) = 2+/%/ (v/m™K).
N samples are taken from 6(0,t) at times ¢, = (n — 1) - 1073s (n = 1... N) with a
sample frequency f; = 1 KHz. The set of N samples 6(0,¢,) represents the ’measured’
test surface temperature. We retrieve the energy density from {6(0,¢,)} with

W(tn)zK\/g/Otn \/tl__Té(O,T)dT (37)

and the test power density with

Pegre )

0

tn
SMM (it —T, f, )W (T)dT (38)




P(tn, fy) is computed with the Simpson formula which yields sufficient good results.

Fig. 5 compares the test power density with the result of the computation {P(t,, fg)}
without smoothing (f; = 500 Hz).

A small overswing at the beginning and a small drift of the computed power density is
observed at full bandwidth. The drift can probably be reduced further by introducing
an improved integration method for the unfolding integral in Eq. (38) similar to the
method which is already described in section 2a for the integral in Eq. (37). Smoothing
reduces the drift and almost completely eliminates the overswinging. Fig. 6 shows the
result with strong smoothing (f, = 30 Hz) and unveils a delay time 7p(f;) of the filter
function which has to be considered in Eq. (38). The corrected formula for the power
density is

P(tn = tplfo); o) = f SM®M (¢ — T, f)W (T)dT (39)

and is exclusively used for the analysis of ASDEX data.

An analytical formula supplies the delay times for the various bandwidths and 7p(f,)
is filed in a table, too.

2. Analysis of experimental ASDEX data

In order to demonstrate the applicability of the numerical method on experimental data
of the ASDEX thermographic diagnostics we analyse the measured surface temperature
of one plate element S;. Profiles of the power density on the divertor plates of ASDEX
and parameter studies of the total deposited power will be published elsewhere.

Three examples for the divertor I of ASDEX with 0.2 cm thick titanium plates are
presented. Fig. 7a shows the measured temperature elevation of the representative
surface element during neutral beam injection with Pypr = 1.7 MW and ion cyclotron
resonance heating with Prcrg = 1.7 MW for the discharge # 16080. The duration of
the heating pulse At = 0.6 s is somewhat shorter than the heat diffusion time 7p =
B2/2 = 0.7s. It follows from Fig. 2 that the ’thick plate’ approximation is useful. A
nearly linear rise of the absorbed energy density with time is deduced from Fig. 7b.
Small oscillations indicate the presence of sawteeth. This becomes more obvious in Fig.
7c where the power density is represented. Good agreement of the calculated power
density with the result of a different computational technique /1/ is obtained but the
new method is much faster. A reduction in CPU-time of at least 10 was estimated for
the new method.

Another neutral-beam heated discharge (# 16084) with Pypr = 1.7 MW and Picry
= 1.2 MW is shown in Figs. 8a, 8b and 8c, but with a shorter duration of the heating
pulse. A sample frequency of 250 Hz is used in either example. The drift of the power
density after switching off the heating is proved to be not a numerical error but seems
to be a drift of the thermographic diagnostics. Very high power densities are deposited
on the divertor plates during a disruption (# 15779). A temperature rise of several
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hundred degrees in a few milliseconds is observed in Fig. 9a. This results in a step-like
elevation of the energy density (Fig. 9b) and a huge spike in the power density up to
500 W/cm?. But the maximum power density is probably much higher and its real
value is masked by the relatively low sampling rate of 250 Hz.

Conclusions

A fast and simple numerical method is presented which computes the absorbed po-
wer density on surfaces of solids from the measured surface temperature alone. A
one-dimensional description with constant thermophysical coefficients has been used
which covers most of the experimental situations for the divertor plates in ASDEX and
ASDEX-Upgrade. The method is useful for all kinds of inertial cooled and actively
cooled plates and comprises two computational steps.

First, the absorbed energy density on the plate is computed by unfolding the measured
raw data of the surface temperature with an analytical function which is derived by
solving the equation of heat conduction with Laplace-transformation technique.

In the second step the power density is calculated by differentiating the energy density
with an unfolding technique. This method of differentiation is numerically stable and
allows for differentiating and smoothing in one step. An analytical unfolding function
which simulates a 10-pole Bessel filter yields good results and needs only the 3-db
bandwidth as an input. Compared to differentiating techniques which fit splines or
other functions into the raw data there does not exist any possibility of falsification of
the physical information which is inherent to the signal. Good agreement was obtained
between the results which are derived with the new computation method and a previous
technique /1/ which is already mentioned in this report. A CPU-time of 28 seconds is
needed on an IBM 3090 computer in order to calculate the power density on 50 surface
elements at 1000 sample times each.
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Figure Captions
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Fig.

a) Schematic view of a discretisized plate.

b) Ti(z,t) = temperature distribution across the plate of thickness d at
time slice t. T, = const (x) = initial temperature profile.

2 Comparison of the unfolding functions for a 8 mm thick copper plate in the
divertor II in ASDEX.

3 Positions of the first 4 poles on the negativ real axis in the complex plane s.

a) Analytical unfolding function SM(t, f,) for exclusively smoothing (10-
pole Bessel filter). The sample frequency is f; = 1 KHz and the 3-db
bandwidth f; = 500 Hz.

b) Representation of SM(M(t, f;) = £SM(t,f;). The differentiation of
SM(t, f,) in Fig. 4a is performed analytically.

5 Comparison of the test power pulse P(t) = 1 W/m? (t > 0) and the result of
the computation without smoothing.

6 Test power pulse and computed power density with strong smoothing (f, = 30
Hz).

7
a) Measured surface temperature
b) Computed energy density
c) Computed power density during neutral beam injection for # 16080 in
ASDEX.
8

a) Measured surface temperature
b) Computed energy density

¢) Computed power density during neutral beam injection for # 16084 in
ASDEX.

13




Fig. 9
a) Measured surface temperature
b) Computed energy density

c) Computed power density for an ASDEX discharge which is terminated
by a disruption.
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a)

Fig. 1: a) Schematic representation of a discretisized plate
b) T,(x, t) = temperature distribution across the plate
of thickness d at the time t. T, = const = initial
temperature profile. P, (t) = power density on
the plate.
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Fig. 2: Comparison of the unfolding functions for a 8mm thick
copper plate in the divertor Il in ASDEX.
The three curves for t/f% < 0.4 are falling together
in one curve.

-16-



101 100 0t 10 ad/nK_

-100 ;

120 °

-140 ° oo S,

160 |

-180

-200 5 s

220}

-240} s

260} > Sy
8=0.79

S 4
(e]
o
(o}

T

T

T
>

S=X +i0 (S

Fig. 3: Positions of the first 4 poles on the negativ real axis
in the complex plane S.

2517 -




316.8

S
S,
234.0
151.2
68.4
-14.4 | L L . 4y
0.000 0.003 0.006 0.009 0.012 0.015
time (s)

Fig. 4a: Analytical unfolding function SM (t, fq ) for exclusively
smoothing (10-pole Bessel filter). The sample frequency
is f, = 1kHz and the 3 db bandwidth f = 500 Hz.
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Fig. 4b: Representation of the differential unfolding function

SM® (t, f) = 5, SM(t,f).
The differentiation of SM (t, f)) in Fig. 4a is performed

analytically.
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Fig. 7a: Measured time evolution of the surface temperature
during neutral beam heating in ASDEX
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Fig. 7c: Calculated power density during neutral beam
injection for shot no 16080 in ASDEX
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Fig. 8a: Measured time evolution of the surface temperature
during neutral beam heating in ASDEX
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Fig. 8c: Calculated power density during neutral beam
injection for shot no 16084 in ASDEX

-25%




318.0

250.6

183.1

temperature rise (K)

15.6

481 1 —1 1
0.00 0.61 1.22 1.83 2.44 3.05

time (s)

Fig. 9a: Measured time evolution of the surface temperature
for an ASDEX discharge, terminated by a disruption
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Fig. 9c: Calculated power density for an ASDEX discharge
which terminated by a disruption
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