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ABSTRACT

A simple numerical method has been devised, for deriving the generating func-
tion of an arbitrary, one dimensional Hamiltonian system represented by its Poincare
plot. In this case, the plot to be numerically processed is an area preserving transfor-
mation of a two-dimensional surface onto itself. Although the method in its present
form is capable of treating only this case, there are no principal restrictions excluding
the analysis of systems with higher dimensionality as well. As an example, the gener-
ating function of the motion of alpha particles in a nonsymmetric, toroidal magnetic

field is derived and studied numerically.




INTRODUCTION

In very loose terms, systems of classical-mechanics are those which can be mod-
eled by setting up a well-behaved system of differential equations, which in turn is
equivalent to defining a vector field over an even-dimensional phase space with local
coordinates (p;, ¢i). Here the p’s and ¢’s are canonical momentum and space variables
respectively, (z € 1...n), and n is the number of degrees of freedom of the system.

Although this “definition” is anything but one which satisfies the requirements
of precision and generality, it reflects the fact that the notion of a “system of classical-
mechanics” unifies a wide variety of physical problems, and allows us to investigate
them by using general and standardized methods.

This Hamiltonian analogy has been succesfully applied for instance in the field
of controlled thermonuclear fusion, and has found widespread application in studying
the structure and evolution of the confining magnetic field. (Refs. 1....3.) Formal
derivations of this analogy, however, suffer from certain problems, which prevent
them to be sufficently precise and general. (An analysis of the situation and strict
demonstration of the equivalence will be the subject of a subsequent paper [4].)

Studies of stellarator vacuum fields with the effects of modeled physical pertur-
bations [5] have shown that it is of practical interest to extend the possibilities of
these investigations beyond the existing ones.

Generally speaking, there are two basic problems which have to be solved in
order to attain the necessary progress. First of all, the lack of a generally applicable
numerical procedure, which would be able to deliver the equivalent Hamiltonian, or
the generating function of the associated Poincaré plot (in many respects of equal
importance with the Hamiltonian function) of a given magnetic field and specific,
realistic perturbations thereof, imposes obvious limitations on the investigations. It
results in the necessity of solving the system of equations defining the problem nu-
merically. In many cases this is a time consuming procedure, sometimes beyond
practical possibilities, because of the large CPU time needed to complete the study.

On the other hand, there are very interesting problems, which can be investigated
only indirectly by restricting oneself to the numerical solution of the mathematical
problem. For instance the behaviour of the trajectories in the vicinity of fixed points
of the Poincare plot can be characterised with the trace of the matrix representing the
linearised Poincaré plot. The derivation of the numbers involved is very complicated
using the method of direct integration, but it is straightforward if the generating
function of the Poincareé plot is known in any suitable form.

If one has been given a Poincaré plot of a Hamiltonian system with a single
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degree of freedom (which in this case is an area preserving transformation of a two-
dimensional surface onto itself) it is possible to construct a numerical procedure
which delivers the generating function of this map in the form of a Fourier series.
This possibility is the main topic of this paper.

Toward this end a brief summary of the relevant results from the theory of
classical mechanical systems will first be given. After this rather short summary,
the numerical procedure is presented. As will be clear after this description, the
Poincaré plot under study must be numerically described by storing the coordinates
of the starting and the corresponding image points of trajectories in the phase space
over a set of initial conditions, which covers with a high enough density the entire area
of interest. In the case of a system with one degree of freedom this is conveniently
achieved by using two-dimensional arrays which contain the canonical momentum
and space variables of the corresponding points.

The origin of these arrays is completely arbitrary (it may be devised by solving
numerically the system of equations describing the mechanical problem and following
the phase trajectories emerging from a suitably chosen set of initial conditions, or can
be numerically derived from actual measurements, etc.). In describing the procedure,
it is therefore assumed that these matrices have already been given.

The presentation is followed by a numerically analysed problem, borrowed from
the transport theory of alpha particles in nonsymmetric confinement geometries.
Trajectories of the guiding centres of alpha particles with suitably chosen parameters
approximately follow the lines of forces of the confining magnetic field. Taking into
account the affects of the finite Larmor radius, this behaviour (which can be described
by an integrable Hamiltonian problem) is perturbed due to the drifts of the guiding
centres in inhomogeneous fields. By solving the corresponding system of equations,
one can easily derive the necessary arrays, following the trajectories of the particles
during one transition around the major axis of the torus. Having obtained the arrays,
the problem is numerically analysed with respect to the applicability of the method.

The reproducibility and the precision attainable is subsequently investigated in detail.




ANALYTICAL BACKGROUND

As has already been mentioned, the procedure in its present form is only suitable
treating an arbitrary system with one degree of freedom. Therefore, in what follows,
the description is presented in a form which is restricted to this case. It must be
stressed again, that this limitation is rather practical then principal, and the extension
to higher dimensionality involves no greater complexity.

There is a strict correspondence between the Poincaré plot of the Hamiltonian
system and a specific, area preserving plot generated by the magnetic field defined on
a torus. This transformation is generated by the lines of force of the magnetic field as
follows: taking a poloidal section of the magnetic field, the map under consideration
is defined by bringing into correspondence the start- and endpoints of the lines of
forces after one transit around the torus.

Because of the strict analogy of the two transformations, in constructing the
numerical procedure it is possible to refer excusively to the results of classical me-
chanics. In other words, the procedure devised in this way is a general one, suitable
to treat any Hamiltonian problem with one degree of freedom.

Let us assume, that a one dimensional, integrable Hamiltonian system is repre-
sented by its Poincaré plot A, in a surface lying transverse to the stable periodic,
or quasiperiodic orbits. Furthermore, the existence of a coordinate system in the
extended phase space is assumed in which one period of motion along the KAM tori
is equivalent to a coordinate change of 2.

Because of the fact that the transformation A represents an integrable Hamil-
tonian system, the effect of this transformation is only a shift of the canonical space
coordinate of the starting point and the canonical momentum remains constant; that
is, the trajectory remains on the same invariant surface. The amount of this shift

can naturally depend on the actual stable surface. That is:

A= po—=p=ps; Go—q=4qo+ Aq(p) (1)

In the numerical procedure this integrable part does not play any specific role (beyond
the necessity of taking it into account in the corresponding steps). In what follows,
therefore it will not be further specified.

Perturbing this system with a momentum- and space-dependent transformation

C the perturbed map (the product of these two maps):



CA maps the point with coordinates (po,g,) onto the point (P, Q) as follows:

CA = (po-; qo) 7 (P': Q)
A= (pOa Q'o) = (P, q) (2)
C= . (n49)i s (P, Q)

where p is the canonical momentum variable and ¢ is the canonical space coordinate.
(In what follows, we shall concentrate ourselves on the transformation C. There-
fore capital letters denote transformed quantities in general and the small ones are
used for the starting values. This role naturally can be changed in a sequence of
transformations.)

The generating function of a given canonical transformation (which will be de-
noted by using the corresponding letter with a tilde) is a scalar function defined over
the Cartesian product of selected coordinates defining the phase space of the system,
which has the property, that certain derivatives of it deliver the corresponding values
of untransformed and transformed coordinates. The Poincaré transformation — as
with any canonical transformation — can be generated by a suitably chosen scalar
function, without the necessity of following the trajectories between the initial and
transformed states of the system.

This can be readily shown by plausibility arguments, based on the actual, strict
mathemathical proof.

The Poincare plot (as any area preserving transformation) has the property:

[ podar = [ Pag (3)

when one is integrating along a closed line around the same bundles of trajectories
in the initial and the transformed states. Because the infinitesimal differences of the
form p,dg, and PdQ@ can be treated as linear functionals on the tangent vectors to the
trajectories, the difference of them is a complete differential of a continuous function
d(C A), where:

d(CA)(po, 40) = Podgo — PdQ (4)

If we rewrite this function C A using the arguments P and g, — which under certain
regularity conditions is always possible — the remaining coordinate values p, and Q
are delivered by the partial derivatives of C A with respect to the arguments. [6]

In these relations, the “time” difference elapsed between the two states is ap-
parently not present, which in other words means that one can determine the corre-
sponding {p,,¢,} and {P,Q} pairs without following the trajectories of the system
once the generating function of the Poincaré plot has been given.
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Finally, if the perturbation C depends on a parameter, €, and when the perturba-
tion is not very much different from the identity transformation, that is C = (1+¢€)C,,
(here 1 is the identity transformation), then the partial derivatives of the transformed

variables Q and P with respect to € obey the Hamilton equation,

i

£| _ AC A(po,g0,€ = €)
de.” > . g,

(5)
Q aé-"i(po: go, € = Eo)

ge le=e = dpo

(Ref. 6). This has the consequence, that once the generating function has been de-
termined, it is possible to study the evolution of the trajectories by a simple rescaling
of it by the parameter ¢ in an entire vicinity of the parameter value known, (e,),
which — as it will be seen later on — can be advantageously used in the numerical
calculations .

There are most diverse possibilities to define a suitable generating function [6],
but we have chosen the case treated above, namely the one, which is defined in
dependence of the transformed momentum P and the “old” g angle variables.

The generating function of a specific perturbation C (of the form mentioned

before eq. 5.) can be put in a form:
~ m .
C(P,q) =P q+ > Ci(P)e*? (6)
k=—o0

(where the parameter ¢ is understood to be contained in the coefficients, Cx(P)) and

the following relations hold:

2 9Cy ;
Q=q+ Y Wa;e'” (7)
k=—o0
m .
P=p— Y ikCye'*? (8)
k=—oco0

The examination of eqs 6 to 8., show, that the factor Pq is actually the generating
function of the identity transformation, which means that the transformations A

and CA are the same, if all the Fourier coefficients are zero.



NUMERICAL PROCEDURE

The Poincaré plot of the system under consideration has to be discretised and
stored in a way accessible for the subsequent numerical study.

This immediately leads to the conclusion that the original (untransformed) and
transformed-coordinate values can be stored in, suitably sized matrices containing the
coordinates of the starting points of the trajectories and the corresponding endpoints
after one transition around the major axis, respectively.

With a simple normalisation, the Poincaré plot of a compact set on the plane
can be redefined in most cases within the limits

0<p<land0<qg<2n7 (9)

therefore it is possible to construct a general procedure which treats numerically only
this area.

Within the limits specified, one has to define a set of equally spaced meshpoints.
The necessary density depends on the nature of the problem to be solved, but numer-
ical experience has shown, that in a good deal of cases a mesh with a total number
of ~ 10000 points is sufficient: that is, one has to store approximately 100 x 100
matrices, in which the coordinates of the initial- and the corresponding transformed
points are to be found. The correspondence is established by the row- and column
indices.

For the sake of convenience, the “radial” (p) and (P) variables and the ”angular”

(¢) and (Q) variables are stored as complex numbers, that is:
Re Zij)=pi; 1<§<101; Re Z{, =P 1<i<101 (10)

and
Im Z(i,j) =gqj; 1< 7 <101; Im Z(I,;‘,J-) =Q;; 1< J <101 (11)

Z and ZT are the matrices containing the starting points and the corresponding
transformed points respectively.

The structure of the generating function (eq. 6.) shows, that one is able to
treat the P and ¢ dependences separately. Furthermore one has to consider that
the generating function chosen depends on the “old” angular variable and the “new”
momentum variable. These two characteristics of the problem profoundly affects the
numerical algorithm to be followed. Based on these characteristics one has to locate
at first the P = const lines in the transformed matrix Z7 at a set of appropriately

chosen, constant values, and store them in one-dimensional arrays.
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Doing so, one has to Fourier analyse the differences:

Q — Qpmonse = Im ZT y—Im 7 (12)

along the P = const lines, where the correspondence is established via the radial and
angular indices.
The relation
27

ex(P) = - /(Q = Dlrmconee € dg (13)

0
delivers the coefficients sought for.

In choosing an appropriate set of P = const. lines one has to consider that the
generating function values have to be interpolated among this predefined constant
values, and the acceptable modeling requires a certan density of these lines. In
general 25 ~ 30 equidistant values are appropriate, but it is only a rough estimate.
The density needed can be determined on the basis of numerical study.

This way one arrives at a set of Fourier coefficients depending on the frequency
parameter k, and the P = const values. However egs. (13), (7) and (8) show, that
the coefficients determined (cx) are the partial derivatives of the coefficients required
(Ck).

Furthermore it is to be note, that the subsequent numerical procedure requires
the values of the Ck(P) coefficients and its derivatives not only at the previously
chosen, discrete P = const. values, but continuously, at any particular P value,
therefore one has to chose an appropriate representation of these coefficients.

After some considerations the choice of using a cubic spline representation turned
out to be natural. It has the advantage too being able to determine in the same
procedure the necessary integrals and derivatives easily.

Still one circumstance has to be mentioned in this context. As the transformation
is stored in a finite set of mesh points, the @ — ¢ differences determined numerically
follow a complicated pattern consisting of finite number jumps, and between them
the function is chaniging slowly (see Fig. 6.a). This fact results in enhanced Fourier
coefficients at higher harmonics, introduced by the finite resolution of the procedure,
and by the resonance of specific members of the Fourier series. This may lead to
substantial deteriorations in the reconstructed Poincaré map. (See Fig. 7.).

After a longer search for a suitable procedure, the polinomial smoothing proved
itself to be suitable to tackle the task.(See. Fig. 6.b )

Having got the spline coefficients (C) in the generating function (eq. 6.), there

are two basic possibilities for further numerical calculations.
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At first it is possible to determine the corresponding pairs of the coordinates of

the starting- and transformed points value using the:

p— 2100 (14)
_9C(Pq)
¢=XE (15)

relations (which correspond to egs 7 and 8).

This makes it possible to either follow a trajectory with given initial coordi-
nates (field-line tracing) under repeated transformations, or to effectuate the Poincare
transformation of the surface as a whole. Because of the mixed dependence of the
generating function on the old angular and the new radial variables, these operations
can be performed only after inverting the transformation.

Giving a general method for inverting the transformation results in unnecessary
complications, therefore we have chosen a different approach. If the generating func-
tion is known, and coordinates of the starting point (p,q) have been given, one is
able to construct an approximation for the corresponding P radial coordinate using

eq. 8, which turns out to be:

_9C(P,q)

o5 Rrit=gp

|P=p (16)
The error due to this approximation is measured by the deviation,

_9C(Pq)

A(Po) = Po - (p aP

lp=p.) (17)

and the corresponding p and P pairs are found by searching for the zero of this
deviation A(P,).

NUMERICAL EXAMPLE

The example used to illustrate the applicability of the procedure described here
and to test the precision requirements, is one pertaining to the case of the circulating
a-particle in a strongly nonsymmetric stellareator vacuum field.

In what follows, we identify the canonical momentum variable of the corre-
sponding Hamiltonian system with the radial coordinate of the magnetic field and
the canonical space variable with the poloidal-angle coordinate on the magnetic sur-
face. Therefore we replace the corresponding symbols of the canonical coordinates

by their corresponding and widely used symbols; p — % and ¢ — 0.
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Using a coordinate system, in which the lines of force of the magnetic field are

straight, the equation of motion of the a particles can be cast in a form [7]:

d __smie i)

W e et 5

dp b 90 (18)

1/2

o=+ S |28 (19)

where: p is the gyroradius of the particle, R is the major radius of the magnetic

surface, 9 is the flux coordinate of the magnetic surface, ¢ is the toroidal coordinate

which corresponds with the canonical time variable, ¢ is the rotational transform,

and finally A is the pitch angle variable of the particle. On the magnetic surface the

magnitude of the magnetic field (B) is supposed to be known in an appropriete form
for the subsequent numerical study.

It is easy to see, that in the limiting case of p = 0, the system is an integrable
one; that is the Poincaré transformation generated by the trajectories is a simple
“twist” map.

Referring to the already mentioned transformations A and C, the ¢(¢) term in
eq. 19. represents the “integrable” part of the map, and the factors containing p
represnt the perturbation C in the case of nonzero Larmor radius. The drifts caused
by the finitness of the Larmor radius can substantially deform the trajectories of the
corresponding solution.

In practical calculations the factors containing the magnetic field, B, are written
in the form:

[1 _ f]1/2
and:
4
f=A[1—€cosf + Z ep/ 2 sin(l0 — mg)] (20)
=1
here ¢; and A are constants determined from the actual magnetic configuration and
the characteristics of the particle. [7]. For a given set of these constants, it is

possible to construct the two 100 x 100 matrices needed by direct integration, and

these matrices serve for the subsequent numerical analysis.
NUMERICAL TESTS, PRECISION REQUIREMENTS

In assuring the numerical reliability of the method arriving a sufficiently reliable
numerics, the first question to be answered is, how many Fourier coefficients are

needed for an acceptable description of the system? Naturally the answer depends

10



on the spectral composition of the perturbation. (eq. 20.) The Fourier coefficients
of an analytic function limited from above are monotonically decreasing for large
frequencies as the frequency parameter tends to infinity. Because of this fact one is

able to determine the length of the Fourier series from
|k-Cr|<A-C-n"! for every | k|> ks (21)

where n is the desired number of repeated Poincareé tra.nsformations, A is a parameter
which depends on the required resolution of the plot, and C is a parameter less than
unity which takes into account the “stability” properties of the domain in the phase
space to be investigated. (See later.) The parameter C is necessary because As
a second parameter, the length of the Fourier series depends on the properties of
the phase space and where the analysis is being done. In a stable region where
the invariant tori still exist, the stability of the trajectories is better than in the
“stochastic” region, or in the vicinity of hyperbolic points. Experience has shown
that the range 0.5 < C < 0.1 is in general a satisfactory one. On the basis of the
features given, the necessary length of the Fourier series in the cases investigated

varied between 6 and 10 members with nonzero frequency parameter.

As has been already mentioned, there is a sensitive property of the procedure,
which deserves further clarification. As the function to be Fourier analysed is evalu-
ated in discretised form in a sequence of jump function, the smoothing of the data set
to be processed is essential, because the Fourier series of a step function has a very
broad frequency spectrum which can introduce unwanted resonances. However, the

smoothing can result in unwanted secondary effects with the same characteristics.

If the smoothing is done by using polynomials or splines, one has to impose
constraints on the procedure, because the peaks must be reproduced very precisely.
This means that one has to use polynomials of fairly high degree, or a large number
of interior knots are needed in the case of splines. As a consequence, the fitting
curve contains a residual fluctuation which is in resonance with the very important
frequency range of k = 5 - 10. The Fourier decomposition of such a function is very
imprecise, and the error in the coefficients derived can amount to several orders of

magnitude, even using an adaptive integrator.

The problem has been circumvented by using a numerical procedure which deliv-
ers the necessary Fourier coefficients by a mimisation procedure. Namely the sum of
the quadratic deviations of the harmonic functions from the function to be expanded

into Fourier series in dependence of the Fourier coefficients is sought for. Actually
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the minimum of the sum

k=oco
D e, =0 enetHHE)? (22)

i k=—o00

is determined in function of the ¢ coefficient. (The y above is the function to be
expanded into series.)

The precision of this decomposition method is sufficiently high; with analytical
test function at least the first nine significant digits of the coefficients are precise.
This degree of the precision is inevitable in this context.

Finally the flux conserving property of the Poincaré map is to be rigorously
insured. The main parameter in this context is the precision of the local inversion of
the map. (eqs 16, 17.). In Figs. 8.a and b. two examples are to be seen, which differ
only in the precision of the inversion.

As an exotic example, the case with deliberately distorted flux conservation is
shown on Fig. 9. This actually indicates, that the simulation of dissipative systems
is also ensured by the method described, which substantially enlarges the field of
possible applications.
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FIGURE CAPTIONS

Fig. 1. a - The solution of the system of equation 6. and 7.
with A = 0.05. &% = A.
Fig. 1. b - The results of the field line tracing with the numerically determined

generating function, using the same starting points for the trajectories.

Fig. 2.a. The direct integration of the system at the parameter value: A = 0.01.

Fig. 2.b. The results of numerical simulation of the same model.

Fig. 3.a. The structure of the phase space of the model at
parameter value A = 0.05.

Fig. 3.b. The numerically simulated phase space of the system
using the generating function of Fig. 2.b., but rescaling the
coefficients of the Fourier series by a numerical factor equal to five
times the original ones. This possibility of rescaling of the
generating function of the model contributes to the substantial

economy of computer time.

Fig. 4.a. The solution of the system at parameter value A = 0.1.

Fig. 4.b. The simulation of the trajectories with the generating
function of Fig. 2.b, multiplying the coefficients by a factor of 20.
The similarity of the phase spaces is acceptable for most

studies of practical interest.

Fig. 5.a. The phase space of the system with A = 0.15, in the
vicinity of the stochastic region.

Fig. 5.b. The same part of the phase space as simulated numerically.

Fig. 6.a. The Q — q|,_,,,,. function of the system of
equations 6 and 7 at the parameter value of A = 0.1, before smoothing.

Fig. 6.b. The effect of smoothing of the curves presented on Fig. 6.a.

Fig. 7. Resonance effects of the enhanced Fourier coefficients
without smoothing. The small islands around the two big ones are

results of the unwanted resonances mentioned in the main text.
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Fig. 8. a and b. The effect of the precision of the inversion. (eq. 17.)
In Fig. 8.b. The tolerance of the inversion is 1000 times as large

as in Fig. 8.a.

Fig. 9. The effects of the non area preserving character of the
generating function.
a and b: the unstable trajectories of the system just outside and
inside of the limiting cycle of the resulting classical mechanical system;

c: the corresponding limiting cycle of this specific system.

Fig. 10. a,b,c. The Poincaré plots of the system with parameter value A = 0.08.
a - after one transition of the trajectories;
b - after 15 transitions;
¢ - after 30 transitions.
The formation of the two main chains of islands and the secondary

islands may be clearly seen.
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SUMMARY

A numerical method has been described which is capable of deriving the gener-
ating function of a Poincaré plot defining a Hamiltonian system with one degree of
freedom. There are only very loose conditions to be fulfilled. For instance there has
to be found in the mapped region reasonably large intervals in the direction of the
canonical impulse coordinate with unbroken KAM surfaces.

The method allows us to follow a trajectory with given initial values of
momentum- and space coordinates. The trajectory tracing is approximately ten to
fifty times as fast as the direct integration of the corresponding system of differential
equation, depending on the actual circumstances.

The possibility of rescaling the generating function by a numerical factor with-
out loss of precision means that the total computer time economy in an extended
numerical study of a complicated problem can amount to two orders of magnitude.

It is possible to carry out the Poincarée transformation of the plane of interest at
an arbitrarily chosen set of starting points. The time economy in this case is similar

to that mentioned above.
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