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INTEGRAL CONSTITUTIVE RELATION
FOR THE INVESTIGATION OF ION BERNSTEIN WAVES
IN NON HOMOGENEOQOUS PLASMAS

MARCO BRAMBILLA

ABSTRACT

By integrating the linearised Vlasov equation, we derive an integral form of the
constitutive relation (the relation between the h.f. electric field E and the h.f. current J' )
valid to all orders in the Larmor radius in axially magnetised inhomogeneous plasmas.
It has the form of a convolution integral in Fourier k | —space, whose Kernel can be
expanded in Bessel functions, or put in a form analogous to the Gordeev integral form
of the usual uniform plasma conductivity tensor, to which it reduces in the uniform
plasma limit. Alternatively, it can be formulated as an integral equation in real space.
Both formulations can be useful for the investigation of ion Bernstein waves near ion
cyclotron resonances and near the Lower Hybrid resonance, where a WKB analysis

-

alone is insufficient.




1. — Introduction.

Ton Bernstein waves (IBW) [1] are of considerable interest in plasma h.f. heating.
In harmonic ICR heating at w = 2Q,; and in ICR minority heating they are excited
near resonance as a result of linear mode conversion of the externally launched fast
magnetosonic wave [2]; they are usually assumed to damp mainly on the electrons at
some distance from the conversion layer. In the Lower Hybrid frequency domain it is
also in principle possible to excite high order IBWs by mode conversion of an externally
launched slow cold—plasma wave; in this case they are likely to damp on the ions at
the nearest cyclotron harmonic [3]. Alternatively, direct launching of IBWs has been
proposed as an independent h.f. heating scheme [4], which has been tested with some

success on Alcator C [5] and PLT [6].

The physics of mode conversion near the first IC harmonic is well understood [7]. To
model this process it is sufficient to solve the wave equations in the finite Larmor radius
(FLR) approximation, which can be obtained from the linearised Vlasov equation by
expanding in the ratio of the ion Larmor radius to the typical wavelength to order k2 p?
[8-10]). Thank to the availability of the FLR wave equations, direct launching of the
lowest IBW has also been modeled in details [11-12].

By contrast, the theoretical description of the excitation of higher order IBWs, either
directly or by mode conversion, is much more difficult. In the familiar Bessel function
expansion of the hot plasma dielectric tensor (13], the n—th IBW (whith frequency close
to (n + 1)Q;) enters the dispersion relation to order n in k% p?. As a consequence, the
FLR expansion describes only the lowest IBW, n = 1; except for some ad-hoc model

[14], a set of wave equations adequate to describe higher order IBWs is not yet available.

The situation and the kind of problems one would like to solve can be illustrated with
the help of Fig. 1. In this figure we have plotted the solution of the full hot—plasma local
dispersion relation in the scrape-off of a hypothetical Tokamak, at a frequency between
the third and fourth IC harmonics. Under these conditions, the cold Lower Hybrid
resonance is situated quite close to the plasma boundary (in fig. 1 at 7 = 42 cm). For

nj 2 2 > 1 the slow cold plasma wave propagates from the edge to the LH resonance, and is
evanescent at higher densities. Finite temperature effects on the other hand connect this
wave to an IBW which propagates with a much shorter wavelength further inside the
plasma, where it should be damped either linearly at the nearest cyclotron harmonic,
or via parametric decay for example near half-harmonics [15]. For nﬁ < 1 the slow cold

plasma wave is evanescent on the low density side of the LH layer; the IBW branch
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on the other hand is practically unaffected by the value of n|. Also shown are the
solutions in the FLR approximation. While giving a correct result up to astonishingly
large values k% p? < 2, the FLR dispersion relation fails completely to describe the
IBW, as expected; instead, it predicts a spurious pressure-driven branch propagating
back towards the plasma edge, grossly violating the conditions for the validity of the

FLR expansion itself, and having no counterpart in the exact disperion relation.

It is manifestly impossible to use the FLR wave equations to evaluate coupling in
this situation. For example, an adaptation of the Grill code to take into account FLR
corrections [16] predicts essentially total reflection in a two—waveguide launcher under
all conditions, because waves with nﬁ > 1 appear to come back along the spurious FLR
branch (for nﬁ < 1 it is very difficult to match the exceedingly short wavelength of this
wave, and in any case the surface admittance of the plasma tends to zero for nj — 0).
By contrast, the conventional Grill code [17], which takes into account only the cold
plasma slow wave, predicts good coupling in a broad range of the density gradient
near the plasma edge (Fig. 2). One can argue that the results of the cold plasma
approximation are likely to be more realistic than those of the FLR model, since the
LH layer, where the cold approximation breaks down, is already in the far-field region.
Nevertheless one would like to be able to investigate theoretically the complicated mode
transition occurring near the LH layer, to ascertain how far the expectations of the IBW
heating scheme, based partly on the inspection of the dispersion relation alone, can be
trusted in practice. For example if the wave field becomes very large near the LH
resonance, stochastic ion heating [18] could severely spoil further penetration. Note
that the situation illustrated in fig. 1 is quite representative of direct launching of
IBWs, since in the low frequency domain (w/Q.; < 10), the LH resonance density is low

and insensitive to the harmonic number, as shown in Fig. 3.

The constitutive relation capable of describing higher order IBWs is necessarily
integral in nature. Indeed, a differential expansion to order n + 1 in k3 p?, as would be
needed to describe the n—-th IBW, would in addition include n—3 spurious waves without
physical reality. How these spurious solutions arise is easily understood by coinsidering
the corresponding expansion of the local dispersion relation. Although convergent for
all values of k% p?, this expansion replaces the trascendent dispersion relation containing
Bessel function, which has normally 3 (and at most 4) roots, with a polinome having
n+ 1 roots. While it is relatively simple to exclude the wrong roots from the solution of
an algebraic equation, a systematic procedure to avoid spurious waves from a differential

system of large order is not available, particularly if the range of integration is large
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and includes nearly singular layers, as near the cold LH resonance.

In this note we present an integral formulation of the plasma wave equations in
slab geometry valid to all orders in the Larmor radius, which could provide a starting
point for the description of higher order IBWs. It is derived directly from Vlasov equa-
tion, generalising a method first developed by Yasseen and Vaclavik for electrostatic
waves [19]. These integral wave equations, although complicated, are not hopelessy
so: Sauter and Vaclavik [20] have actually solved them numerically in the electrostatic
approximation, in a simple geometry showing the excitation of the IBW just below
w = 4Q,;. In addition, the WKB theory of integral wave equations of this kind is avail-
able [21], allowing the imposition of appropriate radiation conditions far from singular

layers (LH and IC harmonics).

Here we show that these equations can be put in the form used by Sauter and
Vaclavik [20] in the general, fully electromagnetic case. This is useful, because the elec-
trostatic approximation, although accurate for most purposes, overestimates electron
Landau damping of IBWs by about an order of magnitude [12]. Moreover we give other
equivalent formulations of the equations which could be useful as starting .point for
further approximations. Although we do not attempt to solve the equations here, we
put into evidence some of their properties, and suggest some approach for their solu-
tion in particular cases. It is hoped to give thereby a contribution to the investigation
of h.f. waves of very short wavelength in non—uniform plasmas in domains where the
WKB approximation is not valid, a situation in which has received little attention until

recently.

2. — The constitutive relation in the Fourier space representation.

We consider a plane-layered plasma with gradients in the (z, y) directions, perpen-
dicular to the static magnetic field (along z). The z—direction is ignorable, so that we

can consider fields of the form

—

B(F,t) = E(7yL; k) 2570 (1)

where 7, = (z,y). Using primes to denote unperturbed orbits
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we can solve the linearised Vlasov equation to obtain the following integral form of the

constitutive relation:

=+ 2 2 t . 7 —
FFuk) = -y e f 7di / dileiwkeon -0 Bt gy e (g

My ov'!

In writing this equation I have neglected very small v x B, terms arising because of the
inhomogeneity. More important, I have assumed the drift velocity arising due to the
magnetic field inhomogeneity to be negligible, so that (2) is an adequate representation
of the particle motion. This assumption concerns only the equilibrium configuration,
and could be easily relaxed if needed; it is however adequate for frequencies of the order

of Q; or larger.

We restrict our considerations to a Maxwellian ion distribution function,
Ha =nchﬂda(vzng) ) (4)

where %
=g up o gmr s L ADRIKD
Tg=T1L TPy =TL:t 3 (5)

is the guiding center position, and b= T — go/Bg. Then
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ROt _tha ) F
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where n = (dlnT/dlnn) and vy defines the direction of the gradient. Hence

=y 26222 = =3 2 ﬁ' £ P E t—t'
Jir k) = Z - = /dv na(7g) Faa(v )v - / dt' e}(@ ks v:) (=)
(o4 tha —00

- (5)

—

o' Viha v? 3 - -
{vma o T [1 +7 ('02 = 5)] (b x uv)} E(F, k)

tha

In a plasma of finite cross-section, it is always possible to write

—

E(L, k) = / diéy e+ Bk, k) (6)

Tl B = f L e®e s F(RL k) 1)
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Substituting for E into the previous equation, and inverting the Fourier transform for
J we obtain:

- - 1 T - —_
J(kL k) = o /d’?e—'h " I(FLy k)
1 = o w2, (7y) ] -
- dr —tk) Ty v pa\' g E . 2 /dkl ik, T
(277)2] 5 /v ( )U:fm .
k X

t — - "y (8)
’exz' w — v —- ! - i'(’Ui—UJ_) b
f dt' exp {( k.v,)(t—1t") SN }

v’ Viha vl gyl o )
EES LG e - E(K k.
(Utha s 2chLn I:l ol (Uz 2)] ks uv) ( ar! )

tha

Shifting the argument of the FT space integration by p, disentagles completely
the space and velocity integrations, and makes the k 1 and Ej_ integrations symametric.

Interchanging the order of the 7 and %', integrations gives:
ging 1 g g

- 1 - s it S i) T v
J(kJ_,kz)za;-)?Z/dkl/due (ki=ky) LPT_/'@FMQ(U?)

Vtha
l_c‘ (v b £ 1, 7
expi{*lx)} / dt'exp {i(""’_kzvz)(t—t’)_ k_]_ s’;)J-Xb}
TH Viho v2 3 5 . B
[vtha + 29301‘1“ [1 + n (U;Zha = 5)] b X UV] .E( 15 kz)

| 0 L iRy =B )7 WralTL) (©)
=Gy 2 / dky / AT

/dﬁﬂwa(vz)vg exp { k;ivj' sin (¢ — TP)}

ca

o0 L
/ drexpt {(w — kavg)T — L&'vl sin(¢ —¢' + Qcar)}
0

cx

v’ Vtha v? 3 a5 o
e E(Fy,k
[vtha T QQcaLn [1 1 (‘02 2)] b x U'V] E( L z)

tha

where 1 = tan™!(k,/k;) and ¢' = tan~!(k}/k;). Note that 7, should appear also
in vie and in Q.q; this is no more indicated explicitly to avoid overcrowding of the
formulas. In the following moreover I will for simplicity assume n = 0 (i.e. neglect
temperature gradients with respect to density gradients), but this approximation can
be easily avoided if required. The terms proportional to vipa/280caLin, Wich we will call
"drift” terms in the following, are anyhow very small in the ion cyclotron frequency

range, and are usually neglected. We nevertheless keep them in this formal derivation,
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because they might be interesting to investigate wether ion cyclotron drift instabilities

might play some role in the damping of IBWs.

In the following, we will make repeated use of the fact that Eq. (9) is of the form

e

FRuk) = / dR g(Fy, B) - B(FL, k) (10)

The dependence of the Kernel g on k. will be omitted when not required for clarity.

Our next goal is to give explicit expressions for this Kernel.

~

2.1 - Bessel function expansion. Using the generating function for Bessel

functions, we have:

F— ]_ — S i3 T ot T w2a
J( C 1, kz) =(2ﬂ.)2 E /dklfdrle (kr=ky) J"‘.:)‘fw_
(=] 5} 2
/ vidv, / dvy Fare(v?) / d¢ {v, [cos ¢ii, + sin ¢u,] + )} -
0 —00 0

0

P | (11)

+oo kf
S Jn,( L”L)e—fn'(qs-w'wmr)
Q

co

[v (cos (¢ + QeaT)z +sin (¢ + QeaT) ) + vy U,

Vb o2 owin |y 5 o
+ 2QcaLn(b X uv)] E-L(kli kz)

Assuming that the equilibrium gradients make an angle § with the z-axis, and perform-

ing the ¢ integrations, we get:
dmi = 1 2 o iR —F))F

w2 oo 5 +oo e——u2
po —w
{ —4—-—2— : e " wdw /;oo 7= du (12)

Z I #:# w) —in($—9') [—zw/ dr e'(w—lca—k; "ll)"}}

n=-—oo

where we have defined the dimensionless quantities

kivipha ’ k,J_Utha Vtha
e el e 7= Ml
Qca Qca - ca+~n
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The matrix II" has the form
0" =R() 7 A{RTI (W) -7 (p'w) + L) - T
where R is a rotation by the angle ¥,
—siny 0 )
cosyp 0

cos P
R(y) = | sin®
\ 0 0 1

(1'w)}

(ﬁ_l is obtained changing the sign of the angle), and
n
w7 = —Jn(pw
1= Jn(pw)

Further the "drift” term is
0 0 —~sin @
(8).= 0 0 7 cos 8
~4sinf —ycos#@ 0

n_ .n __
=71y =0

w5 = —iwJy (pw) 73 = uJn(pw)

1=

with
3 = Jo(p'w)

The components of the matrix [I" are listed explicitly in Appendix A.

(13)

(14)

(15)

(16)

(17)

The integrations over T and u (parallel velocity) are elementary. The integrations

over perpendicular velocities can also be performed with the help of Weber Bessel func-

tion integrals,

S™(u,p') = 4] ™ To(pw) Jn(i'w)wdw =
0

-2 () = {- (=)

D™(p, p') E4f ™" Jn(pw) (1 w)w? dw =
0

- (o (5) - (1)) oo {- (507)

D" (p'\p) = 4/0 e T (pw) T (p'w)w? dw =

- (v (5) - (5)) = (- (5))

T"(p,p') = 4_/ e~ Jh (pw) Jh (' w)w’ dw =
0

22
p!

AN e N cofdab et
)I"(z) 5 kg | (P 4

(18)



The result can be written

. +m
4 - = 1 o 5 R e R e wga . N e—in(p—y")
*'w—O':'j(kJ.,k’_L) = _(211.)2 Za:/dm_e e —w_2 n;maii(‘u”u )e
. (19)
where the matrix 6‘,-"1- has the form
g = E®) - {"" (1) - B (#) ~ (1) - LO)} (20)
The main term is ,
oot = —S™(u,u') (—z52(z3))
Tzy = i;D“(#, 1) (—z52Z(z7))
n ! B0 1 o
it . _Qn ——-Z
oz = 257t (L 2/a2))

.n o o
a;,zn = _EETD“(#’:#) (—30 Z(‘tn))

oot = T™(p, 1) (—z5 Z(5)) (21)

i n ma o
ot = —iD™(p, p') (TOZ’(%))

a

o,n n n xa
o2 = Zsnuit) (B2

o
Lo

oy =0 (B 260
o2 = S™(u i) (2532"(23)

and the drift term is

TO,TI —_ TO,‘R - 0

T zy

o,n n (s
T = =28 () (~e3 2(e))
Tyr =Ty =0

Tyy =1D"(u', p) (-5 2 (7))

on __ _o,n __
Tz;;: _Tz';f "_0

Ia ! o
rer = =) (B2

where Z is the plasma dispersion function, and z, = (w—nﬂc,-)/k"vth,-. The components

of the matrix &" are listed explicitly in Appendix B.




2.2 - Gordeev integral form [22]. Alternatively, we can sum the Bessel series

before performing the vj and 7 integrations:

4mi 2 e—i(FL—F)F oo g’
_....or(k_L,k) ( ) dr 11—k J-Z f \/_

[— z'wf dr e'(@—Fk= ””‘““)"exp {—- [P + pl? — pi cos Q] } (23)
0

4 2
BOY) - (L0, Vo) B ) = 780 Vo) 1O |
where Q = QeaT + % — %', and
Ty = cosQ — "‘T”"sinﬂQ
Typ = {1+ p (1 - %)] sin Q

2
T3 = —tup'sin Q

1
T21=—[1+&(1—ﬁ,)]sing
2 p

Ty = (1_ H2z#'2)COSQ+E§.’.(1+cosz Q) (24)
T3 = iu(p — p' cos Q)
T3 = —tupsin Q
T3y = —iu(p' — pcos Q)
T33 = 2u’
and
t13 = —ip' sinQ tys =i(pu—p'cos Q) -ty =2 (25)

Taking advantage of the periodicity of the factors depending on .7, we can
rewrite (8) (assuming to begin with with Im(w) > 0, pending the usual analytic contin-

uation with the Landau prescription) as:

4771 % 1 =2 —I(EJ_—E' )F_L
TJ(kJ-ik_L) W/dTLC 1
2 +OO ——uz

Yz ¢ i du
= gy V7 sinw(w — Eu)

—0o0

/tirexp {- [#2 ol ol s cos(T + —1})’)]}
A 1 D)

R() - [, w',7) - B (") = 7E(m, 1, 7) - L(6)]

(26)
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where %

!

Ty, = cos ((w — &u)(r — ‘JT)){ cos(t + ¢ —¢') — Eg—-sinz(‘r +Y— t,[;')}

Tyy = —isin ((w — Eu)(r —r)){ {1 + ’”T”' (1 - %)] sin(r + ¢ — ¢’)}

’f‘ls = —‘uﬂ’ sin ((=w — fu)('r E= ﬂ—)) Sin(‘r +— ¢:)

T = isin (@ — eu)(r = )] |1+ 45 (1= £)] sin(r+ - 91}

*#2_{_”!2

T = cos (@ - €u)(r = m){ (1= 25

- p_p.'(l + cos®(T + 9 —¢’))}

) cos(T + ¥ — ') (27)

2
Tys = iucos ((w — €u)(r — 7)) (p. — p' cos(T + P — ¢'))
Tyy = —usin ((@ — €u)(r — m))psin(r + ¢ — ')
T = —iucos (= = €u)(r =) (4 = poos(r +4 — )
Ts3 = 2u? cos (@ — &u)(r — 7))

and

{13 = —#' sin ((w -_ fu)(q- - ﬂ-)) sin(‘r +9— ¢:)
f23 = i cos ((w — &u)(r — 7)) (p — ' cos(r + % —¢')) (28)
t33 = 2cos ((w — &u)(r — 7))

Here we have put
w _ Fyyy

T R

The Bessel series expression for the Kernel g could be useful near low order isolated
cyclotron harmonics. The Gordeev form derived in this section on the other hand
could be useful as starting point for asymptotic approximations in the limit k 1pa Pl

particularly when also w > ()., as near the Lower Hybrid resonance.
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2.3 — Discussion of the Fourier space representation. As already stressed, in

the Fourier space representation the constitutive relation is of the form
FEr,ke) = [ dy g(F, Byl - BEL ) (29)

with
g(l—(:‘l,gl)zfdr e i(FL—FL)T1s (kl,k_L,k,,rJ_) (30)

Note the symmetry of the conductivity Kernel,

oii(ks, Ky) = (kL k) (31)
where | denote the hermitean conjugate

In the uniform limit the 7} integration gives a factor 6(];:]_ - i;:"i_), and v = 0; then
the Kernel g(E J_,l_c"J_) obtained in this section reduces immediately to the usual h.f.
conductivity tensor, either in the form of a Bessel function series, or in the Gordeev

integral form:

a(ku, Bz, g = g(k) (32)

1 -

Linear space variations in the plasma parameters can also be treated easily. Taking

into account the form of the conductivity Kernel, we can write:

5=g(ks, ¥ )+Z 7L )t (kL kL) (33)

where j runs over the plasma parameters X; (density, magnetic field strength, temper-

ature, etc.), whith

% =VX =X 9% (34)
R = VX; g =X,—=
7 7 = ]a]{j
Then _
- . 0d? e -
(kv k) = {Q(k) + K +) } (kL —K,)
- Ok / ku=F,
. (35)
= . Od’ = =,
= { g(k) — iK; _B—k:’— . 8(kL — k')
17 k=K

Hence this case can be exhamined by solving an algebraic equation which is a gen-
eralisation of the local Dispersion Relation. This particularly simple approach to the
investigation of wave propagation in non-uniform plasmas is closely related to recent

work by Lashmore-Davies and Dendy [23].
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3 — Configuration space equations.

In the general nonuniform case, Eq. (29) is of the convolution type in k 1 space. It

is however immediate to transform it into a convolution equation in physical space:
J(71) = s 420,71 B (36)
(27)2S s
where S is the area of the plasma cross-section, and
g(FL,7) =8 [dkye*r ™ / k' e *LTLg(ky, k) (37)

According to the results of the previous section, this can be written

—
=g T [
g -7 = = - U= - TT AN g -
JaRy e faRy g R

where the dependence of 3% on 7} is through w AT )02 Qea(FY); eto

In general the multiple integrations (including those over the angles 1 and ') are
quite complicated. In the one-dimensional case (gradient only in the z—direction, and

ky = 0), we have the somewhat simpler result

J(z) = 27r£ dm'g(;c,x')-ﬁ(:c') (39)

with
__{:_Z/dz”
o (o4

+co

! (40)
dhy 27 [ R 3 ")

—0Co

where L is the thickness of the plasma slab. We can write in this case

4m 5 S %
w (kza k;:! ) o] *_‘f;' a?j(#$ ,Lﬁ‘) (41)
n=—co
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with
~n 112 Svn( r) . { az( o-)]
Ozrz ! By M To Thn

" n .. n n o o
Ozy =; [ED™ (i, 1) + vS™ (1, 1)) - [—25 Z(27)]
~n _E n n . Ig e o

o-::z_,us (,U”U.) [ 2 Z(ﬂ:n)]

~n ! n n o
Oyz = — ""ILTD (1) - [—25Z(z7)]

oy, =—1[T™(u,p') —yD™ (W', )] - [—25 Z(27)] (42)
Gy. =—1D™(u', ) - [?Z'(ﬂri)]

~n _T_T'_ n n o, ﬁ 1 o3
azI“,U-S (:uﬂu) [2 Z(xn)]

57, =60 ) + 75" ] - | B 20|

Frn=S"(p, ') - [z§ 272" (23]
In this case of course g = kzViha/Qca, ' = kiViha/SQea. These equations are easily

generalised to the slab case with ky # 0.

The integrals over wavevectors can be simplified using the identity

+oo +co p ‘
PTI- = / d”et#E/ d‘u'e'—'l_u,e’ In (%) e_ﬂztﬂ 2

— o0 -0

_ o f* . cos(nd) _ et . (E-=CT)
—4f0 Y exp{ 4sin” (8/2) 40052(3/2)}

which can be obtained substituting into the r.h. side the integral representation of the

(43)

modified Bessel functions,
Tl B)= —/ e”<°%? cos nf)do
0

With the help of elementary properties of Bessel functions, we also have

gn = pr—1_ pn+l _
= 4/ df sin (nf)exp {—
0

Dn = I‘;';n—l +_1"jn+1 —

_ 4 [T ggc0st o (B &Y% ST (6 - £)°
=4 /u dgsinec‘)s("g)exp{ 4sin? (8/2) 40052(9/2)}

(€+€)?  (E-¢) }
4sin®(0/2) 4cos?(6/2)
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Since
-t =z—2 E+¢ =z+2' — 25"

we can then write:

2 +o0 '
g(z:,a:')z—/ dm”g(ﬂ}—-m',x-i-x ‘

7L J_o 2
with
dmi . ! z+2 1" L£2Q2 (J"H) wga(mn) = "
s (5"*“” =) = - g n;mﬂ?(ﬂ 1)
where

i| ~. .0%8" s
Ty, = s [nD“_ 5 + 29 6&’} (—z0Z(z4a))
n_ 05" (2§, 4
Tzz =1 aéf ( 2 Z (xn))
. 1 925
Tyzz—-—é D™ — o (—z0Z(z,))
n an  JOPPT 173 BN =,
v (D™ opn
+§(—a?-+2-¥):| (—z0Z(zn))
a L 9D% T GPH] el
Ty,_ = 2 { 6{;" +2—'a—§—' ( 2 Z (.’L‘n))

i 5o 00T o
Tzz_zua_éT (TZ (‘rn))

_1(aD"  oP"
2

T =
= o€ e ¢!

) + 2*}’13"

TZ, = P [s§ 2y 2'(a})]

(45)

(46)

This form of the constitutive relation is identical with the one used by Sauter and

Vaclavik [20] to solve numerically the wave equations in the electrostatic limit. More-
over, Eq. (44) is in the form considered by Berk and Pfirsch [21], who have developed a
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WKB approach for its asymptotic solution. Thus, in spite of the apparent complication
of the conductivity Kernel, Maxwell equations with this constitutive relation could be
used as starting point for the investigation of IBW propagation in non homogeneous

plasmas.
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Appendix A

The explicit form of the matrix IIF; is

Iz = E cos 1 Jn(pw) + twsin ¢ J:,(#W)] :

(Gt =250 100 s 5]
12, = [ 2 cos s ) + iwsin T3 )|

[iw cos ¥’ T (u'w) + (5—, siny’ + v cos 9) Jn(,u'w)]
7, = B cos ¥ Jn(pw) + iwsin ¢ JL(#w)] - Tn(p'w)u
15, = [=iwcos 2y (uw) + oinp Jn(uw)

[(3 cos ! — ysin 9) Ta(u'w) = iwsin g’ JL(M’w)]
15, = [=iwcos 7y (uw) + Lo Ju )| -

[z'w cosp’ Ty (pn'w) — (—57 siny’ + v cos 9) Jn(u'w)]
oy, = [—iw cos P Jy (pw) + Z—sin@b Jn(uw)] T (p'w)u
17, = Ja(pw)u - [(f cos ' — 'rsinﬁ) Ja('w) — iwsin g JL(#'w)]

07, = Ja(pw)u - [iw cos ' J,(p'w) + (% siny’ + v cos 3) Jn(ﬂ'w)]

17, = Ju(pw)u - Jn(p'w)u
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The explicit form of 77} is

Q»

= {%cosgb [(Ecosgb —’ysmﬁ) S™(p,p') —isiny' D™ (p, p )]
+isin¢[(%cos¢'—751 9)]3 (' p) —isinp"T™(p, )] }
. (——a:OZ(:ca))
65y = {Ecoszb [z cos ' D™ (p, p') + (;7 sin ' +70059) 5“(#,#')]
+ isin [z' cos ' T™(p, p') + (%sin ¥’ + ycos 9) D"’(,u',,u)] }
(-e520)
G n n ! G504 ng ol 138! (Yo"
@ = {L-cosqbs (u,p') +isiny D (#,#)} ‘ (72 (mn))

“;‘z={—icosd)[(%cow’wvsinf’) D™y, p) —ising' T™(p, )]

—smw [(—cos¢'—73m9 S™(py 1) —isin¢'D“(y,p’)] }
©

2(:0)

Gyy = { —1cos [z cos ' T™(p, p") ( sin 2’ +7c059) D™y, ,u)]

‘:‘| 3

+ %smd) [zcosd) D™(p,p') — (IL-;SiIl'l/J,-{-’yCOSH) Sn(p,,u')] }

(-ac)

—icos$ D" ) + Zesinps™ () - (B 202

icosyp' D™ (p, p') + (E,sinqb' + 7y cos 9) S"(y,p')} : (-éuZ'(mﬁ
7

19

O = { (-E cos Y’ —7sin9) S™(p, 1) —isin¢’D“(#,#')} - (73'@3))
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Fig. 1 - Dispersion curves in the scrape-off of a
Tokamak (B = 8 T at r=0, f = 450 Ghz; at the limiter,
r=40 ¢cm, n = 10A13 cm-3, with e-folding length of 2 cm;
Te = Ti = 100 eV, with e-folding length of 5 cm.
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