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Abstract

A previous derivation of formulae for calculating the growth rate of resistive balloon-
ing modes which are described by a simple model equation is extended here to a large class

of general tokamak and stellarator equilibria.

Resistive ballooning modes in general two- or three-dimensional MHD equilibria are
described by two coupled, second-order, ordinary differential equations for the eigenfunc-
tions F' and D. Using the standard notation introduced and explained in detail in [1, 2],

one can write these equations in the dimensionless forms,
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A powerful method of solving these equations in many interesting situations is afforded

by the theory of matched expansions. The application of this method in [1,2] yielded an
explicit expression for the normalized growth rate @ of resistive MHD equilibria which
are at, or near, marginal ideal stability, provided that the Mercier exponent sps does not
exceed the value 1/2, as is the case in numerous configurations, including many tokamak
equilibria. There are, however, other cases (such as some tokamak configurations near the
second ideal stability limit and many stellarator equilibria) for which the Mercier exponent
exceeds the value 1/2. In this case, the correct application of the method of asymptotic
expansions requires the inclusion of higher-order terms (in an expansion with respect to
the small parameter which appears in the problem). This situation was treated in detail

in Appendix B of [2] for a model equation of a class of tokamak equilibria, and it is those

results which are now extended to general tokamak and stellarator configurations.

As in previous work, the quantity G (roughly the inverse plasma £ ) is considered to
be a large number. Since the normalized growth rate @ is not small for equilibria which
are at, or near, marginal ideal stability, it is possible in this case to simplify the treatment
of equations (1), (2), as explained in [1,2]. Following the same approach as in Appendix B
of [2], one obtains an ezplicit expression for the normalized growth rate of general three-

dimensional configurations which have spr > 1/2.

For equilibria with marginal ideal stability the growth rate Q is given by
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where [y is the solution of the marginal ideal ballooning mode equation. This expression

corresponds to equation (B.40) of [2].



Near ideal marginal stability, the growth rate is given by
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Equation (6) corresponds to equations (B.37) and (B.38) of [2].

The generalizations (5) and (6) allow relatively easy computation of growth rates for
a wide class of tokamak and stellarator equilibria and are a natural complement of previous

results.
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