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Abstract

The quasilinear diffusion coefficient for the inherently space-dependent diffusion in lower
hybrid heating and current drive experiments is derived; it coincides with the usual
space-independent approximation where the RF field amplitude is almost constant.
The form of the distribution function in the ‘plateau’ region and for large velocities
(where the quasilinear diffusion coefficient seems to lead to unphysical results) is ob-
tained. The position and width of the ‘plateau’ (which are essential quantities in the
theoretical description of LH experiments) are derived and their dependence on the RF
field amplitude gradient is stressed. Finally, the ponderomotive effect (which plays a
substantial role in LH experiments by causing large gradients of the electrostatic field
amplitude) has been derived, allowance being made for distortions of the distribution

from a Maxwellian.

Introduction

In lower hybrid heating and current drive problems it is generally considered to be
an excellent approximation if the wave effect on the plasma is represented as induced
diffusion in velocity space (see Ref. [1]); indeed, the LH experiments seem to afford
no indication that one should distrust the quasilinear description of the plasma-wave
interaction. On the other hand, the currently used quasilinear diffusion coefficient (QL
DC) in LH problems is space-independent, although the LH field is well delimited in
space, not only at the antenna mouth but also in the plasma, owing to the ‘resonance
cone’ structure exibited by a LH field in the plasma. The QL DC is usually obtained

by superposing the QL DCs corresponding to the &k, components of the LH field

I
according to the given k” spectrum of the wave amplitude. This procedure is only a
good approximation in a region where the field amplitude is almost constant; however, it
disregards, or at least badly describes, the effect of the field amplitude gradients, which
extends the spectrum to higher k" values, although it is the very k” values higher

than those corresponding to the flat part of the field amplitude that are necessary to

explain the observed power absorption and current drive. As was shown in Ref. [2], the
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pondéromotive effect produces strong gradients of the density and electrostatic electric
field amplitude. It is thus necessary to establish the form of the QL DC (if it exists) by
considering also the presence of gradients of the field amplitude, and, on the other hand,
to show how far the ponderomotive effect is influenced by the presence of a ‘plateau’ in
the distribution function, which follows from the QL DC in the LH heating and current
drive experiments. The width of the ‘plateau’ is essential for explaining the observed
phenomena; usually a QL DC that is non-zero only in a limited k“ interval, and hence
in a limited v, interval, is considered, an assumption which does not correspond to
the experimental situations, where a ‘square profile’ is rather a good approximation for
the field amplitude in space. However, with any reasonable assumption for the field
amplitude in space the QL DC does not decrease faster than 1/ ‘vl?l’, as it should if the
effect of the field can be neglected in relation to collisions, so as to make the distribution
function become Maxwellian at large velocities. The paper shows that this theoretical
difficulty disappears if the space dependence of the QL DC, and hence of the distribution
function, is properly taken into account. The paper is organized as follows:

In Section 1 the basic equations and a necessary condition for the existence of diffusion.
coefficients (DC) are derived. The aim of Section 2 is to derive the ponderomotive effect
in a plasma with a distribution function which possibly deviates from a Maxwellian in
some velocity intervals whose contribution to the density is negligible (an example of
such a deviation is a ‘plateau’ in the LH regime). An averaging process is introduced in
Section 3 for situations where Larmor radius effects are important. The collision term
appropriate to our problem is explicitly given and averaged. A formal expression for
the quasi-linear DC is derived, and also the effect on power absorption of the sign of
the QL DC (when it is smaller than the DC due to collisions, so that the total DC is

positive). In Section 4 the explicit form of the QL DC and some approximating formulae

are derived, both for ions and electrons, in the intervals where the QL DC are smaller



than the DC due to collisions. A comparison is made with the usual approximation
of the QL DC for a localized RF field and a relevant example is given. In the same
section it is shown that when the velocity is large enough the QL DC is larger than
the collision—induced DC, a property shared with the usual approximation of the QL
DC; this, at first sight unreasonable, property seems to extend the width of a ‘plateau’
to infinity (a problem discussed in Section 6). When the QL DC is larger than the
collision—induced DC the definition given in Sect. 3 is no longer valid. Expressions
appropriate to this situation are derived in Section 5, where it is also shown that the
new definitions give positive definite DC. Finally, in Section 6 it is shown that, although
for large velocity the QL DC is larger than the collision-induced DC, the ‘plateau’
interval of the distribution function has a finite width, which is derived. Moreover, it
is shown that after a ‘plateau’ the distribution function is a Maxwell-Boltzmann-like
distribution, with the electric potential replaced by an integral over velocity of the QL

DC.

1. Basic equations

We consider particles moving in a temporally constant and spatially uniform magnetic
field B perturbed by an electrostatic field (E:(z1,z3)e*t+c.c.); let the phase space be
referred to Cartesian coordinates (z;,v;) with z,; along the magnetic field and, with-
out loss of generality, the electric field in the plane (zi,z3). The Boltzmann equation
then has the form

of

Qug— -0 —
+ {lvs V2o v,

af+ af af af + (4
ot Ja dva 61)3

et +c.c.) —— = C(f) (1)

where A; = (¢/m)E;, Q = ¢B/mc and g¢,m are the charge and the mass of the
particles; repeated indices have to be summed. The explicit form of the collision term
is given in Section 3.

The discussion is conducted mainly in the reference system defined by the unperturbed
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particle trajectories in phase space described as functions of z;; we denote the new

variables by (¢;,w;), with ¢; = z; and w; = v;. In this reference system one has

a 0 0 0
vj a%; + Qg Bos Qvy E Y (2)

an equivalence which can be considered as the definition of the new system. The for-

mulae which relate the two reference systems are

wy = —arctg(va/v2) — 10 /vy, vz = w3 cosy,
wi = vi + v, vs = —wgsiny
i . (3)
§2=$2—03/n, I22651n¢+§2:
w3
¢s = z3 +v2/0Q, :1:3=—--§cos¢—|—§3,

where ¢(§1,W2) = (glﬂ/wl) + U)2).

The connection formulae for the derivatives in the two reference systems are

17 0 +glﬂ a
6v1 Bwl w% auu,

i . _smt,b 0 +cos a & 1 0
Ovg wz Ows ¢ ow 10¢3 ’
a cosy 0 . a 1 0
3 ( s B T ¥ Gy ﬁ@) - (4)
The inverse formulae are
d T bs) a d 0 a
o1 e + Qya— — - -
ow, - o1 (”23 2 v33:1:3 + o 2 9”23u3> + ovy’
d 1 a d o 0
e N SRR AR X AN s
dws Y (U23 s Ozs R v, flvz 3U3) ’

9 ﬁi(_ﬂii_”jiJr & gl
dws  ws \ Ndzs N0z 28uy @ 8wg)°

In the reference system (¢;,w;) the Boltzmann equation takes the form

d d : 9
A vudl [t ee) 2L = o,
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where the brackets indicate that the quantities they embrace ha.ve to be taken in the
new reference system.
Let us now formally develop f in the following way:
F(&i,06,8) = fo(@i,vist) + Y fulzi,vi,t)e™F, (7)
n#0
where the time scale of f, is small in comparison with 1/w. By neglecting f, with

n larger than 2 one can write eq. (7) in the form

dfo dfo 0f-1 L0f1]
ot + w; 9 + [Aj"g;}j—} + [Afa_v,-] = [C(fo)] )

; /1 df1 Ofo| _
o+ )+ G L [4,802] o ®)
dJy af-1 +9fo
g TWiaL Y [AJ' 81},‘]

(—tw+rv)f_1 +

=0,

where C = —vfy; has been substitued in the equations for fi; because v < w.
Note that f_; = fi{; consequently, we only need to consider the equation for f;. The
time derivative will be neglected with respect to wfi;; thus in the reference system
of the unperturbed particle trajectories the equation for f; is immediately integrated

and the solution has the following form for v; > 0:

$1
o= —emitemitnson [tomigorn [41.9 1] 4 ©)
dv;

U1
— 00

(the solution for v; < 0 is obtained by putting the lower limit of the integral equal

to 0o). For the sake of brevity, an operator § is introduced for the RHS of eq. (9),

el k]

The application of eqs. (4) (note that the electric field does not depend on z2) now

ad 1 @
ot =S4 (g~ S ) o -
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—5{[A3] (WQ% +sing(o, wa) 5~ ) fo} : (11)

The process described by f, when fi, given by eq. (11), is inserted in the first of
egs. (8) is diffusion in velocity space if the effect of the application of the integral
operator § on df,/dv; is to multiply 8f,/dv; by some factor; in other words, the
interaction of the particles with the electric field in the interval (—oo, ¢1) (for w; > 0)
approximately has to depend on the value of df,/dv; at the point ¢i, and should not
appreciably depend on the previous interaction in the interval (—o0,¢1). In order to
determine the conditions under which f, describes diffusion in velocity space, and the

corresponding diffusion coefficients, we integrate by parts in the operators ${} of eq.

(11):

a 0 fo
wify = ${A]) 32 + Ly St} Goe -
afo
" C fo .
+ terms containing the dertvative of f, and of o with respect to o. (12)
1

Equation (12) shows that the scale of variation (in the variable ¢1) of f, is either
the scale of A;$ { [A;‘]} (and similar terms), or the scale due to collisions. When
collisions dominate, and Larmor radius effects can be neglected, 8f,/dv; can be taken
out of the operator §, because the logaritmic derivative of df,/dv; with respect to
¢1 is sufficiently small, the solution f, being approximatély a Maxwellian. In this
case the process is diffusion in velocity space and from the first of egs. (8) and eq.
(12) one can easily derive the diffusion coefficients. They are given explicitly later, in
the form which takes into account Larmor radius effects. Also the change necessary
in the discussion of eq. (12) when the effect of f; dominates over collisions and the
distribution function f, appreciably deviates from a Maxwellian is shown later. We

now derive the ponderomotive effect.



2. Ponderomotive effect

Before we proceed with the deduction of the diffusion coefficients, we deduce the effect
of the electric field on density (the so—called ponderomotive effect) for frequencies in the
lower hybrid (LH) range and in the small Larmor radius limit. The last assumption is
not necessary for ions; the result is also correct outside this limit provided that (w/k,)
is larger than the ion thermal velocity. The essential approximation will be that for most
of the particles collisions dominate over the effect of the electric field, limited deviations
from a Maxwellian being allowed, e.g. a ‘plateau’ in the velocity distribution such as
is produced in LH experiments. The ponderomotive effect produces strong gradients
of the density and amplitude of the electrostatic electric field, as was shown in (1] (see
also references therein). As a consequence, it modifies the k”—spectrum injected into
the plasma and is therefore essential for the comprehension of LH experiments.

The system of equations (8) is written in the reference system (¢,w;) for f, and for
f+1; however, for the discussion of the present problem it is better, after integrating the
equation for f; in the system (¢,w;), to introduce cylindrical coordinates (vi,ws, )

in velocity space. By using egs. (4) and (5) and by noting that

0 )
—035;; + vza—ua =% a‘f’,
vy — + ‘Ugi — w3 g (13)
ab‘g 603 3w3
one can write eq. (12) as
fo= 2o (sqany -
vifi = avl( [41]})
cos¢p O sing 0 1 4
N ( Q dzz ' 0 Oz3 w_e,%) (foS{cosplo =21, ¢) [4al}) -
1 i a ) ) :
= (51;‘15 o “03‘?5 3t 6w3) - (wafoS{siny(c — z1,¢) [A3]}). (14)
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By noting that nothing depends on z; and by collecting the terms proportional to the

z3 derivative one gets

df. 19
vifi = 502 (S{AY) = -5 (foS{eos p(o — 21,6) [4al}) -
—wia—afv—a (wa oS {sin (o — 21,) [As]}) + %3% (foS{sin (0 — z1,0) [4a]}) . (15)

Since [A;] do not depend on ¢ when Larmor radius effects are neglected and the
distribution function f, is approximately a Maxwellian, except possibly in velocity

intervals whose contribution to the density is negligible, one gets

af,
avl

vif1=

S{[Ad]} - £§ (foS{sin (0 — 21,6) [4s]}) +

oo (foS (sin (o - 21,0) [As]) (16)

Note that all the terms proportional to (w3/f1) which appear owing to the zz deriva-
tive have to be neglected; otherwise the derivative of ¢s with respect to ws, which is

identically zero, and which in the new coordinates is given by

sing 0 1 0 ws
( Q 3—.’1:3-+w_3%) (-'1734‘—"]‘00595)1

would be different from zero.

The acceleration due to the electric field in the electrostatic limit with charge neutrality

can be written as
4y = e HIP e Ram o (1 — (k1 /k,)as) /1), (17)

where kJ_/k“ is approximately given by wp./w./€11, with €3 = 1 + (wge/ﬂg) -
(w;‘:‘- /w?); a is areal, bell-shaped function suitable for describing the ‘resonance cone’
structure of the LH field in the plasma; Az is equal to Ak, / k”.

Since we are looking for a solution with a time scale smaller than that characterizing the
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energy deposition, the equation for f, (the first of eqs. (8)) once written in cylindrical

coordinates in velocity space takes the form

dfo k, @ *
gl )= 18
dzy (am T 61}3) whiu i eie) =4, (18)

ki
( + k—"‘Ua)

the collision term being identically zero for a Maxwellian. In order to deduce the
ponderomotive effect we have to integrate over the velocity; hence the terms of eq. (16)
proportional to the ws derivative of f, disappear because they are proportional to
wzcos¢ and to wzsing. The contribution of (Ajfi + c.c.) to the ponderomotive

effect is therefore

zi

o}
(Ajf1 +ec)= —-ng- a{)M cos(A(o — z1))a((o — (kj_/k")z3)/l) do
1ov J
2a k a ;
_FZF: Mg / Ao — 1)) siny (o — z1,0)) (o — (k,l_/k“):z:;;)/l) do, (19)
—0o
where A = (w/vy) — k,; thus A = 0 gives the Cerenkov wave-particle resonance

II’
condition. Since the ponderomotive effect is a global effect in velocity space and not

a resonance effect, for the frequencies under consideration the quantities A e (A +
(Q2/v1)) are much larger than one, both for ions and electrons; thus integration by parts

of the integrals of eq. (19) yields

2 2
(A1f1 +ce) = —ai (ﬁan P EC—J—'-f—Mm) . (20)

dz; \ w? dv k2" w2 —

Before introducing this expression in eq. (18), let us note that the solution to eq. (18)
cannot be a Maxwellian in the velocity region vy + %‘IL["‘U:J, < vy, whose contribution,
however, can be neglected, since the ponderomotive effect is a global effect in velocity
space. Outside this region one gets, by dividing the equation by wv; and then by

integrating over velocity and over =z,

n o [ 1 k2 1 2qV 2qV
—'=—-—2(*+— nz)+ =N+, (21)

2 2 2 —
no v \w k% w mu; mu;
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where the ambipolar potential has been added as last term. This equation is now written
for ions and electrons, and V is determined by means of the neutrality condition; in

this way one gets

Me _ TeNe + TiNi

£ = 22
Mo Te‘l"Ti ( )

It follows that

n 1 1 Ef 1 1 k2 1
il E.)? ... il .
noe Te+T; (1) (mew2 k2" m (12 T miw? T k:zu'm.;u.:2 (23)

The definition of k, / k, (see eq. (17)) now yields

2 2
Ne 1 Wpe . Me Wpe Me
———————(Eu— +—=-2 4 =

noe Mew2er 02 m; w2 my

= : : + = 24
w2£11 mMe my ’ ( )

which is the classical result (see Ref. [3].) With our rather general derivation we have

shown that the ponderomotive effect and a possible ‘plateau’ in velocity space, as is

produced in LH experiments, can coexist.
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3. Introduction of the diffusion coefficients

Let us come back to the deduction of the diffusion coefficients. When Larmor radius
effects are not negligible, in particular for the ions, the scale of variation of f, in ¢,
being of the order of the Larmor radius, is much smaller than the scale of variation
of [A;]. It is then usual to introduce some kind of average which cancels small-scale
effects and allows introduction of diffusion coefficients; we take the mean over ws. Let

us introduce the function

2m
90 = o= [ fodus = (1. (25)
0

Then from the first of eqs. (8) one gets the following equation for g, when the terms

which do not appear explicitly in eq. (12) can be neglected:

9, a9, 2
dt + a1 i 8w1(

(2t 2y i wn) o ) (311 +eed) = (D, (29

[A;] fi + C.C.)—

which can also be written as

9o g0 a

o g T 3w1([/1’i]f1 +ee)—
~tlb‘iac'n'aTa(ws sin¢(§1,w2) ([A;] fi + C-"-)) = ([C]) (27)

One can now substitute g, for f, in ([A}]f1) if the mean value (over w;) of the

deviation of f, from g, is negligible, as we assume. Then eq. (12) simplifies to

99, : dgo
wify = {4} 5> — ${[As]sing} 5 (28)
and eq. (27) becomes
ag, dg, ad 2 1 4 & .
ot 50 T or (AN — o5 (ws(4ifi]sing +ee)) = (C).  (29)
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The appropriate approximation of the collision term in the electron equation, in the
regime of LH electron current drive we consider here, is the linearized, high velocit limit

(see, for example, Vedenov [4]) :

C(f) - yvf% [ 1 (ZU‘f+ (|U| 6Jk — Vg — 2ivl261k - 3'UJU]¢> af )] (30)

v |v|? Ovk

where v = wjln A/87nv}. The term proportional to (Jv|?6jk—vjvk) is the contribution

of the electron—ion collisions. By averaging eq. (30) one gets

(10 = wod o | oz (200 + (wd = (o /2w) (il = 3u) 52> -

S

— wiwg(1 — (307 /2[w|? )

1 0 1 2 g,
t o2 [ (sulso - wdn(0 - (ot 2P 322 +
+ w1 - (2/20) 2 —uf - /2PN 2 )|,

where a term proportional to the second derivative of g, with respect to ¢3 has been

neglected, because it is smaller than the others for a factor v;/IQ}. With the notations

Dyi = vy (vl - wf = (wF/200f*) (] - 3u}) (32)
and
Dym = u|”|3w1w3( — (3v2/2|w|?) (33)

the averaged electron collision term can be written

0 ag, Zvvt 99,
= — |Dy17— o — Yvm g —
€)= 7 [ “ow; | Twp M Dvmws | T
1 9 g, 2uvt 2 99,
+w3 Bws [waDus Pinrs g | |3 T3 Wado — w3Dvm'cm (34)

The e-i collisions are the origin of the term proportional to (|w|*> — w?) in D,; and

of the term proportional to wywz in D,,.
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For the collision term in the ion equation we only need to keep the self—collision part
of the linearized, high velocity approximation. It has therefore the same form as the
electron term, where the e-i contributions are neglected.

The definition of the diffusion coefficients follows from egs. (28) and (29); one gets:
—wi Dy = (([A]] ${[A:1]} +ec.c)),

w1 Ds = ((sing(¢1, w2) [A3] S {sin (o, w2) [As]} + c.c.), (35)
w1 D13 = ws([A]] ${[A4s]sin¥}),
w1D31 = w:-;([A;]Sini,bS{[Al]}).

If Larmor radius effects are neglected, the quantities [A;] do not depend on w; and
thus D;3 and D3; are zero.

The equation for g, can now be written

89, . ag, 2uv, 99,
o 8¢ Ow [(Dl i Dyl)a wy & lw[? Tupe 190 + (P13 — Dum) dws T
1 8 99, 2V”t . 990
+;3.E {w3(D3 + Dy3) — Bws + PE wago + w3(D13 — Dym) dwy | (36)

In accordance with what was stated when deducing eq. (12), these expressions are
correct when |D;| < D,;. On the other hand, from their definitions it immediately
follows that the diffusion coefficients are proportional to 1/w; when |w;| goes to
infinity, and that therefore for large velocity they no longer satisfy the condition |D;| <

D,;, under which they were derived. The first two of equations (35) can also be written

in the form
—uiDi = o f S{[Aul} [ dus,
2w
k¥ 1 98 . 2
Ry = ﬁm}" |${sin¥(0, w2) [41],} |* dws. (37)
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Equations (35) and (37) show that the D; are not positive definite. An unreasonable
consequence, at first sight, of this property is that the absorbed power, which in this

case (g, ~ fa) is proportional to
/ (w2Dy + w2Ds) far dwy ws dws, (38)

can be negative. However, by using egs. (37) it is easy to see that the integral over
¢1 from —(|w;|/wi)oo to ¢ is always positive. The oscillations of the diffusion
coefficients only cause oscillations of the absorbed power around a value which depends

on ¢;, but is positive.

4. Explicit form of the diffusion coefficients

We give a more explicit form to the diffusion coefficients in the LH case. By using egs.

(3) one gets from eq. (17)

[A1] = exp {—ik 1} exp {i(kLws/Q) cos(s1 /w1 + w2)} (1/1, 63 /1), (39)

where it has been assumed that w3/ < I. First of all let us discuss the equation
for D;. By expanding the exponentials in eq. (39) in series of Bessel functions with

argument (kjws/(l) one gets

2T

eiw(a—g;)([Al] [AI]) — azeiw(a—-gl) Z: /(_l)nin-’f—pJaneiA(cr—gl)ei(pa—ngl)ﬂ/wlet’(p—n)wg do
0

s azeiw(a_gl) ZeiAu(O'—sl)J: (kJ_WS/n) P (40)

where A, = A — nfl/w;; the condition A, = 0 gives the wave-particle resonance
condition with Doppler effect.

With the definition of the operator S given by eq. (10) the first of egs. (35) becomes

S1
w1 Dy =2aZJ’;‘: /acos(An(o—»gl)) do. (41)

—00
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The limit (kjws/0) = 0 yields the onedimensional case, because J, =0 for n # 0
and J,(0) =
Asymptotic forms of D; in different intervals can easily be deduced. When ¢; — —oo

one has o'/a > A,, and thus integration by parts yields

S1 S1

wlDlzZaZ.ff_ /ada ~ 2« fada. (42)
—o0 —oo0
When (¢ — (k_L/k")g‘g,) < | one gets
wy Dy = a(0) Y J2a(An), (43)

where & is the Fourier transform of a(¢1 — (k.i/ k“)§'3) L)
When |[¢;/l] > 1, and if r is the value of n such that /A, <1 while IA, > 1 for
n # r, by partial integration of the terms n # r one gets (note that |w— Q|/w; isin

any case larger than v/w;)

S1

. J?
wyDy =2a| o E Z’i— + J? f ado (44)
n#£r T o

and, finally, for ¢; — co one has
w1 Dy & 20{2 J2&(lAy) cos(Ang). (45)

An explicit form can be given to the first of egs. (37) by introducing the quantity

$1
H(¢1,Ap) = /‘cxem"‘r do, (46)

—00o

whereby one can write

4w Dy =) J} |H§1, w2 (47)
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This equation shows how D; is modified by the gradient of the electric field amplitude,
a crucial point for the LH wave—plasma interaction picture; let a? be proportional to
1/l, so that T a?do remains constant when [ va.fies; then |H|? has the form
IF(¢1/l,1A) ;rc:i D; depends on the gradient through [A,.

Before discussing eq. (41), let us recall that when w, is sufficiently large D; is pro-
portional to 1/wj; it would follow that the elettric field effect dominates over collisions
when w; is sufficiently large, because collisions are proportional to 1 /|w|®. This un-
acceptable result is due to the fact that for large velocity it is not permissible to neglect
the ¢; derivative of g,. This problem will be discussed later. The same problem
is also posed by the usual diffusion coefficient for a non-homogeneous plasma derived
from that for a homogeneous plasma. Indeed, let « be constant; then from eq. (41) it

follows that

D; = 2ma? z J26(w1A,) (48)

(for the usual derivation see, for example, [5]). With &(lk) for the Fourier transform of
a, the diffusion coefficient is usually defined as the linear superposition of the diffusion
coefficients corresponding to the different k—-components of the electric field, although

the diffusion coefficient (48) is quadratic in the field amplitude:
Do = 225" 72 [ |a(k) 26 (w1 A) dk. (49)
l

Since |&(k)|? in general is not such that the limit for w; going to infinity of w?|&(w/w1)|?
is zero, one can only deduce the lower limit v,, of the interval of w; where D, > D,
(i.e. the interval where the distribution function g, has a ‘plateau’ in w;, as we shall
see). This difficulty can be avoided by choosing a particular form of &(k); a spectrum
different from zero only in a finite k" —interval (not containing the origin) would do it,
but would otherwise correspond to an unsatisfactory electric field in real space. The

spectrum corresponding to experimental situations is in fact the Fourier transform of
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a square profile in ¢;—space (‘grill’) rather than a square profile in k”—space. Let us

consider the example

«x

2 {~6 = (a ko) 1} (50)

which gives a gradient-independent (i.e. independent of ) total electrostatic energy.
We get
w1 Dy =21a? Y J2e~ (12n/2) (51)

and for the diffusion coefficient given by eq. (41)

wiDy = exp {~2(ct — (ka [k )oo)2/12} 3 2 Tm { 2((18n/2) ~ il — (k1 /) 1)}
(52)
where Z is the ‘plasma dispersion function’. Where (¢1 — (k1/ kli)§3) < 1, from the

known properties of the Z function and eq. (49) we have
D, = D, /2/x. (53)

The gradient of the electric field amplitude modifies D; through [A, at the exponent;
an increase of the gradient moves wv,, towards smaller velocity, thereby increasing
the number of particles which interact with the electric field. The value of wv,, for
(¢1—(k1/ k“)gg) < | is easily deduced from eq. (43) in the case of a sufficiently rapidly

varying function «; in this case v,, is given by [A =~ 1, i.e.

lw
1+1k

i~
~

Um

(54)

Moreover, | also modifies the quotient D;/D,,, i.e. it changes the relative importance
of quasi-linear diffusion and collisions. Let us consider it for the example (52). When
lk is smaller than /2 (large gradient) the diffusion coefficient is larger than D; at

all v > v,,. When [k increases (small gradient, in particular « = constant) D; is
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larger than D, in a region whose relative amplitude (var — vm)/vm is proportional
to 1/lk; it then becomes smaller than D,;, and finally larger than D, when v is
larger than approximately exp [I%k?].

When (¢1 — (k1/ k”)§3) <1, D; is very different from D,; indeed, if one considers
the case n = 0, which is the approximation of choice for the electrons, one gets, by

assuming [A > 2 in order to use the asymptotic formulae,

g ) 2(¢1 — (kL/k)s3) /!
wiDy ~ exp {~2(61 = (kL/ky)52) 3 (16/2)2+ (a1 — (icl/k“)fs)z/lz' (59)

It follows that D; can be much larger than D,, and thus v, for D; can be smaller
than the value of v,, for D,. Leaving the resonance condition ( A =0) has a much
less drastic effect on D; than on D,. Whereas for electrons n = 0 is the correct
approximation, for ions one also has to consider values of n different from zero. Let r
be the value of n which minimizes the difference w —n{l (and hence minimizes Ay,
which is zero for wave—particle resonance); then v, =I(w—rQ)/(1+1k) is the smallest
of all v,, and is the required value. Note that JZ(k w3/Q) (r # 0) is proportional
to (kLws/Q)?" when the argument is much less than r, rapidly reaches the maximum
(~1/r) when (kiw3/Q) ~r, and then decreases as (1/k  ws.

We now consider the equation for Dg3; a Bessel functions expansion gives

k? 1 : . .
w1D3 = _k_-]2_8_ﬂ- f(_l)uin+pJane:A(o'—§1)et(pa—ngl)ﬂ/wl et(p—n)wz_
[ 0

. (ei(a+g,)n/w1 e2iwa | o= i(0+61)R/wi g=2iws _ gis1—0)0/wy _ e—-i(gl—a‘)ﬂ/wx) diits 4 B

(56)
After integration over wo only the terms n—p—2=0, n—p+2=0 and n—p=20
remain and eq. (56) gives
S1

k2
4w1D3 = ‘k%zaz-]n(-]n + Jn+2) _/ acos(ArH-l(a - §'1)) do+
Il

— 00
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S1
k2
+k—"2‘2az Jn(JIn + Jn—2) / acos(Ap—1(0 — ¢1)) do. (57)

— 00
Let us put r =n+ 1 in the first series and r =n — 1 in the second one; the r—terms
of the two series can be summed up to give (Jr—1+ Jr4+1)?cos(A, (o —¢1)), so that eq.

(57) becomes
02 1
w1 D3 = W2a2n2.],f f acos(Ap(o — ¢1)) do. (58)
"3 “oo

From now on the discussion is similar to that for D;. In particular, eq. (47) is replaced

by

n? 0
wlDS == zkzwg E :nz‘]-: as.l IH(gl,An)P- (59)
Il

The conclusions are however different; in the case of the electrons the values of n of
importance are now n = +1 (owing to the presence of the functions nJ, instead of
the functions J,), for which v,, is a factor Q/w larger than the values given in eq.
(55); hence the effect of D3 on the electrons can be neglected. On the other hand, for
the ions the presence of the factor k32 / kﬁ makes the effect of D; negligible in relation
to the effect of Ds.

It is not difficult to see that eq. (35) gives D;s = D31, and that

1

<
wiDss = 2 ‘Laaznﬁ / oicos{B [ = &)} do, (60)
Il -

co

which is zero when (kjws/Q) is zero.
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5. Quasi-linear diffusion coefficients dominate over collisions

Let us consider the intervals of w; and ¢; where the effect of g; dominates over
5

collisions and thus the distribution function g, deviates from a Maxwellian. Let us

first of all consider the case of an almost Maxwellian distribution function in the wj

variable, whilst D > D,; (the electron case with n =0). The equation for g, (see

eq. (36)) then reduces to

ago o Bgo ZV'Ut ago ]
D D o — D . | T
w1 7 6w1 [( 1+ yl) By + I |3 —a wig vm Bws
1 a 99, 2””? 2 990
w_3%; [ws(Dg E Dua)a i ;o w[3 W3go WSDV"!TWI ’ (61)

D;s being zero for n = 0; here the ws—derivative of g, has to be replaced by
—(2ws/v?)go. Since the RHS is negligible, and if the ¢;—derivative can be neglected,
one immediately gets

2

3
w vy Dywa/v
gy B em =2 (wivv}/|w’) + Dymws/vi 4 (62)
vf Dy + Dy w;

0
which, by taking into account the definition of Dy, can also be written

2

w 2 D, w
Ing, = — 3 it dwy . (83)

‘I'.It2 'Utz J Dy + Dyywq

This equation exhibits a dependence of g, on w; weaker than that of a Maxwellian,
the so—called ‘plateau’, for w; larger than v,,. The condition for the ¢;—derivative of
go to be negligible (a necessary condition in order that the terms not explicitly written

in eq. (12) be negligible, i.e. in order that diffusion coefficients can be defined) is

39, 4D,
69 < ‘— (902D, w1 [vd)| = —2=. (64)
€1 Yi

Since from eq. (62) it follows that the value of the ¢;—derivative increases with velocity,

the restriction imposed by eq. (64) is such that eq. (63) describes, strictly speaking,
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only the beginning of the ‘plateau ’.
The ‘plateau’ in ws, the ion case, is analogous to the previous one. The approximate

distribution function is given by

2
w? 2 Dy 3wz — Dizw;

vtz Utz Ds + D, sws

Wm

Ing, = — dws . (65)
The beginning of the ‘plateau’ is determined by Dz =~ D,3, because Djsw;/ws <
D,3.

Let us see in detail the consequence of egs. (62) and (65) on the derivation of the
diffusion coefficients. Equation (62) shows that the logarithmic derivative of dg,/dw:
with respect to ¢;, which is (599—‘}@ - —g—;;) , is of the order of D}/D;, i.e. not much
smaller than , but of the order of the logarithmic derivative of |A;| (i.e. of the order
of 1/l). Hence we cannot neglect the terms of eq. (12) which have not been explicitly
written.

On the other hand, where D; > D,; the logarithmic derivative of D;d3g,/0w; with
respect to ¢; is of the order of dlng,/d¢1, which is much smaller than 1/, as we
shall see at the end of the next section. We conclude that where D; > D,; the
quantity which varies slowly with respect to |A1| is (D;+ D,1w1)(8go/0w1) and not
(8go/0w1). Since a similar argument is valid also for D3, instead of eq. (35) we can

write for every value of D; (we do not write the equation for D3)

—w1Dy(¢1) = (Di(61) + Dul)% -7([14’{] S{m [Al]} + c.c.) dws,
wiDs(6r) = (Da(s1) + Dua) k-
I
2_177- 7r(sin‘¢‘(s'1awz) (A7) S{msmﬂb(“’wz) [AI]} + C-C-) dwy.  (66)
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With egs. (40) and (57), egs. (66) can be written

S1
_ 2 (o)
w1D1(61) = 2(D1(¢1) + Du1)e(s1) Z Jn / Balo) 3D cos(An (o — ¢1)) do,
Ds( )——n—z—Z(D (¢1) + Duse( )an.fz f—aga)———cos(zl (0 —¢1)) do
wil/3($1) = kﬁwg 3(1 v3(S1 ,,,_oo Ds(0) + Dua n $1 .
(67)
The latter two equations can both be written as
§1
pmmgzafq@m@—mm@, (68)

—00
where h; = D,;/D; + D,i¢; and K; are the corresponding kernels. In the interval

where h; varies slowly with respect to a and K; integration by parts yields

§1

1—hi(¢1) = ahi(¢) / a(o) Ki(o — ¢1) do, (69)
or 5 1
mmy=1+a/q@m@—gua . (70)

Owing to the definition of h; one gets

€1

:a/q@mw-ng (71)

—00

D;
D vi

which are the same formulae as eq. (41) and eq. (58).
Equation (70) shows that the variation of h; cannot be neglected in the neighbourhood
of the zeros of the denominator, i.e. in the neighbourhood of the zeros of D; + D,;¢;.

The appropriate approximation of eq. (67) is then

To §1
uwmg=a]q@mw—gmwwo+&mm/ﬁ@wm (72
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where z, is taken as the limit of validity of eq. (70), and in the first term of the RHS

one can take eq. (70) for h;. Equation (72) is easily integrated and it is not difficult
i

to see that if z, is such that 1 — a [ a(0)K;(o — ¢1)hi(0)do is larger than zero

the solution to eq. (72) is positive and finite, so that the total diffusion coefficients

D; + D,;¢; are positive definite.

6. Plateau width and large velocity region

In order to deduce a better approximation to g, for velocities larger than wv,,, in the
case where the distribution function is almost a Maxwellian in the w3z variable but D,
can become larger than D, (the electron case with n = 0), let us write the equation
corresponding to eq. (61) for the logarithm of g,. By taking into account the definition
of D,m (see also the derivation of eq. (63)) and by neglecting the RHS (which is a

correct approximation, as is not difficult to see) we get

a8 B 3
wla_g'l = a—‘wlF aw1 F, (73)

where
wi

2 (74)

a
F= (.Dl + DVIWI)B_tfl + 2DV1 :
t

Equation (73) can be formally considered as a first order linear equation for F, which

has the following solution for positive w;

ad
F=¢P /”a_geﬁ dv (75)
oo .

Since we are considering velocities much larger than thermal velocity and f is negative,
eq. (75) can be approximated by
~ a result which, together with eq. (74), yields
(D1 + D ) 98 +2D (77)
wy)— — | =— =w;—.
1 viwi Bw, v Ve wi

23



It the highest order one has ;—‘% = —2w; Dy /v:(Dy + Dy1wy), whereas the square

bracket is equal to zero; it the next order one gets the following approximate equation

for B:

88 v?D;+ D, w, 88 wy
R Tl R B . .o TN, .
(D1 + D“w‘)awl t3 Doy e Y12

(78)
When the ¢;—derivative can be neglected, one again gets solution (63). Equation (78)
shows that at large velocity B (and therefore g,) obeys a first—order differential equa-

tion whose characteristics are given by the equation

d§'1 1)‘22
CLIp—— 79
dw1 2Dy1 ( )
The reference system of the characteristics is then given by the equations
2 ¥ d‘U’
Vi
_ g VE [, T8 80
0
with the inverse relation .
2 !
Uh dv
=2t [_— _ 4y 81
1 2 D,1(v") tvy (81)
0
It allows one to write the solution of eq. (78) in the form (compare with eq. (63))
I Dy (v)
2 vDy1(v
B = 2 T Y dv. (82)
© o Di(s1 + (v7/2) [(1/Dua(v")) dv’, v) + Dy

wy

Equation (82) describes the logarithm of a Maxwellian up to the value of w; where
D, ~ D,;. Then it describes a (more or less flat) ‘plateau’, whose width can be
deduced by the following argument. We have previously remarked that w;D;(¢1,w1) is
approximately a constant for velocities larger than wl, and that therefore D; is larger
than D, for sufficiently large velocity. In eq. (82), however, the velocity also appears

v

in the ¢;—dependence, so that vD; decreases exponentially when (v?/2) [(1/D,1) dv’
Um

is larger than [. In other words, D; in the integrand of eq. (82) can become smaller
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than D,;, and therefore [ is approximately equal to w%, for two reasons: the first
is a change of the order

Av ~ w/lk? (83)

of the w; variable of D;; it is comparable with the quantity (vas — v,,) introduced
in Sect. 4. The second reason is a change of the order [ of the ¢;—dependence, which

is induced, owing to the characteristics, by a change in velocity given by

2l
Vi

In the one-dimensional case eq. (83) has the more appealing form (6v/v:) = (I/A(vm)),
where A is the free path of a particle at w; = v,,. The smaller of the two quantities
(6v, Av) determines the width of the ‘plateau’; for I2k? > (w*/k®vv), which is a
quantity much larger than unity, one has év < Av. In this situation (spatial gradient
of o small with respect to wavelength and mean free path, in particular « = const.)
eq. (80) is valid in (vm,var), and the ‘plateau’ extends over the whole region (vym,var).
When 1%2k?% < (w?/k%vv}) (spatial gradient large with respect to wavelength and mean
free path), the width of the ‘plateau’ is smaller than the preceding one; in particular,
it is smaller than (vasr — vys) (in the case where a region (vm,vns) exists) and is
proportion#l to the collisions. It is recalled that when [ decreases the ‘plateau’ moves
towards lower velocity (see eq. (55)).

When D; is smaller than D,;, eq. (82) is approximately

2 b Dy
ﬁN_';:’? ‘U(l— DV]_) d‘U, (85)

which, by using eq. (79), can be written



Whereas for small velocity the quantity w;D; goes to zero (see eq. (41) and example
(52)), so that g, is a Maxwellian, for large w; it can be writtenas wiD; = ao(¢1,ws)+

a1(¢1,ws)/wy + .... The quantity [ (a./v{)dz is much smaller than unity, because
—o0

it is of the order of magnitude of (¢®/muv?)?, where ® is the electrostatic potential
associated with the amplitude of the waves. In conclusion, the function g, is, for large
velocity, a Maxwell-Boltzmann distribution with the electrostatic potential replaced

by 4 [ (vD1/v{)dz. Moreover, Ing, is such that Igg < 1, thereby allowing the
—Oo0
introduction of diffusion coefficients (see Sect. 5); it is obviously sufficient to show it

where D; > D,;. In this case from eq. (82) it follows that

3ﬂ 2 wlD.,l
— | = — 87
l|3§1 o7 Dy (6v or Av), (87)

which is much less than one, as can be seen by using eq. (83) or eq. (84) for év or

Av, depending on the value of lk.

Conclusions

One of the purposes of the paper was to investigate the possibility of describing the effect
of the waves on the plasma in LH heating and current drive experiments as induced
diffusion in velocity space, also when the RF field is limited in space (‘resonance cone’)
and therefore the field amplitude gradients should not be neglected (which, however, is
done in the usual approximation, where the QL DC is constant in space). We established
the condition which has to be satisfied in order to define a QL DC. A QL DC was then
derived for the regions in phase space where it is smaller than the collision-induced DC;
the usual approximation for the QL DC coincides with our result where the RF field
amplitude is almost constant. When the QL DC becomes larger than the collision—
induced DC, the previous definition is no longer valid, essentially owing to the space
dependence of the diffusion. The correct, positive definite, form of the QL DC in

such a region (where the distribution function becomes flattened to form a ‘plateau’)
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was derived. An interesting theoretical problem posed by the QL DC (also by the
usual approximation, except when unphysical assumptions are made) is that it does not
become negligible in relation to the collisions for large velocities—a fact that, at first
sight, seems to extend the ‘plateau’ to infinity. We have shown that in general the width
of the ‘plateau’ is determined by the space dependence of the field amplitude and the
collisions, and not by the width in velocity space of the QL DC. The general expression
for the distribution function in the ‘plateau’ region and approximations for the ‘plateau’
width (an essential quantity in the theoretical description of LH experiments) have been
given. We have also shown that in the limit of large velocities the distribution function
is a Maxwell-Boltzmann-like distribution, where the electrostatic potential is replaced
by an integral over the velocity of the QL DC.

As was shown in Ref. [2], the ponderomotive effect plays a substantial role in LH
experiments by causing large gradients of the electrostatic field amplitude which modify
the QL DC, thereby strongly enhancing power absorption. For this reason special
care has been devoted to deriving the ponderomotive effect, allowance being made for

distortions of the distribution functidn from a Maxwellian.

27



REFERENCES
[1] N.J. Fisch: Rev. Modern Phys. 59, (1987) 175
[2] E. Canobbio and R. Croci: Z. Naturforsch. 42a (1987) 1067
[3] G.K. Kentwell and D.A. Jones: Phys. Reports 145, Na6 (1987) 319
[4] A.A. Vedenov in Reviews of Plasma Physics, ed. by M.A. Leontovich (Con-
sultants Bureau, New York 1965) Vol.3, p.248
[5] C.F.Kennell and F. Engelmann: Phys. of Fluids 9 (1966) 2377.



