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Abstract

A sufficient stability condition with respect to purely growing mo-
des is derived for resistive MHD.Though it may be,in general,violated,
its ability to reduce in the appropriate limits to known necessary and
sufficient stability conditions makes it instructive and conceptually
useful.

In a previous note [1] the author derived a sufficient condition for the
stability of purely growing modes, valid for general dissipative systems and
general geometries. This condition is applied here for resistive MHD equili-
bria. These equilibria generally have a flow which, for simplicity, we neglect
in the equation of motion, but which we keep in Ohm’s law. It will be seen
later that the inclusion of the flow in the momentum equation could be ta-
ken into account but leads to cumbersome contributions which vanish with
resistivity. The equilibrium equations are given by

IxB = VPR (1)
V-B = 0 (2)
E+VxB = noJ (3)

As usual B is the magnetic field, J = V x B, E is the curl-free electric
field, V is the flow velocity due to resistivity 7o and Py is the pressure.The



"existence” of magnetic surfaces is assumed and the resistivity is taken as
constant on these surfaces. The equations of the linearized perturbations
are

pE+ VP —jxB—-Ixb = 0 (4)
et+éxB+Vxb—mJ—nj = 0 (5)
Vxe = —b (6)

Vb = 0 (7)

j = Vxb (8)

B-Vimi+b-Vn = 0 (9)

P, = —yPV-£—£-VP  (10)

where p is the mass density, P, j, b, e and 7, are the perturbations of,
respectively, pressure, current, magnetic field, electric field and resistivity.
The boundary conditions are n-b = n - £ = 0, where n is the normal to a
perfectly conducting wall.

Let us express e and b in terms of the vector potential A and take the
gauge of zero scalar potential,

e = —A
b = VxA

with the boundary condition n x A = 0. we insert j from eq.(5) into eq.(4)

to obtain a system written in terms of ¥ = ( i
NU +PU +QU =0 (11)

where N, P and Q are given, respectively, by

v=(51)
P:(Bﬁfgﬁaﬁ(mzimw)



[ V=1V «..s)) I x(Vx--)

~V(...:VB) =1/nVPy(B-V)" YV x...-Vno)
+B/nox (VX Vx--)

and Q =

0 VxV---
+JI/n0(B - V)YV x ... Vno)

_V/no XV X-:--

The first two matrix operators are symmetric and positive. The last
operator Q is obviously not selfadjoint. For this reason we cannot find a

Lyapunov functional which would lead to a necessary and sufficient condi-
tion for stability as in [2] or [3] for example.

As shown in [1] one can, however, write a sufficient condition for stability
- against purely growing modes in the form

§W = (T,Q¥) >0 (12)

where the scalar product is defined with purely real quantities. Only the
symmetric part Qs of Q survives in eq.(12), but if a symmetrized form for
eq.(12) is wanted, it is easy to construct @, the adjoint of Q, by integration
by parts, and use Qs = (@ + Q*)/2 instead of Q in eq.(12).

Criterion (12) implies volume integrations which can be reduced to inte-
grations in the magnetic surfaces and integrations across them. The opera-
tor (B-V)~! in eq.(12), which comes from integration of eq.(9), is singular
across the rational surfaces (1/z singularity). This singularity is physically
prohibited by the breakdown of eq.(9) due to a finite heat conduction &
(k — // is assumed to be infinite for eq.(9) ). In fact ; should not become
infinite on the rational magnetic surfaces, but small. It is then natural to
define the integrations across the surfaces in the sense of Cauchy princi-
pal parts (no delta functions) as in [3]. Note here that these singularities
are not aggravated by the above-mentioned symmetrizing integrations by
parts, because they occur in the surfaces.

Let us now write 6W explicitly:

W = / dr(YPo(V-€)? + (£-VPy)V-£)
+fdr(VxA)2—de§xJ-VxA+
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+p-p- [drd(A - € x B)(B-V)"'(1/10)(Vno- ¥V x A)
= /dr(A —¢x B)V x (V x A)l/no (13)

If we choose in éW the MHD test function A = £ x B, then §W reduces
to 6Warmp. In the tokamak scaling (large axial wavelength and magnetic
fields) and for J = e, J, noJ = ct+, £ = e; x VU, V =0, §W reduces to the
necessary and sufficient condition found in [3].

It is more convenient to treat §W in Hamada-like coordinates especially
for the term (B-V)~!, which also appears in [3]. The symmetrization of Q,
if desired, can be done either analytically in the same coordinates by inte-
gration by parts or after discretization in the case of numerical evaluation
by computing the adjoint matrix.

The equilibrium quantities in eq.(13) should satisfy equations (1)-(3).
To determine the contribution of the last integral in eq.(13), one requires
a knowledge of unavoidable [4] Pfirsch-Schliiter- like flows, which are im-
portant especially for stellarators. The flow in a tokamak can probably
be neglected if the aspect ratio is large enough and the poloidal currents
are weak. One can then take V X 1oJ = 0 as in [3]. Unfortunately the
positiveness of éW with respect to all

(4

of L? with the boundary conditions at the wall cannot be fulfilled, in general.

Finally, let us note that the addition of resistivity-driven flow terms in
the equation of motion would not alter the structure of the equations, so
that a sufficient condition can also be derived as explained in [1]. Contrary
to the flow term in eq.(13), which does not vanish with resistivity, all other
contributions to W coming from the flow are of higher order in resistivity.
Similarly the addition of the viscosity tensor to eq.(4) would not affect
the sufficient condition. More sophiscated dynamics such as 2-fluid theory
could also be treated according to [1].

References

(1] H. Tasso. Phys. Let. 94A, 217 (1983)

4




[2] H. Tasso. Plasma Phys. 17, 1131 (1975)
(3] H. Tasso, J. T. Virtamo. Plasma Phys. 22, 1008 (1980)
[4] H. Tasso. Lectures on Plasma Physics IFUSP/P-181- Sao Paulo (1979)



