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Entropy Relaxation of ASDEX Plasmas

Abstract

In tokamak discharges with improved ohmic confinement (IOC) in ASDEX a transition
is observed from flat density profiles towards more peaked ones /4/, while the normalized
temperature profile is preserved. For this behaviour of the radial profiles it is shown
that the entropy of the plasma increases during the IOC phase. Hence IOC and entropy
relaxation are closely related. If the IOC phase is long enough, one finds stationary plasma
states, which are compared with the relaxed state described in theory.
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1. Introduction

The second law of thermodynamics predicts that temperature differences between in-
teracting parts of a system should relax to zero if certain constraints are satisfied (see
Sec. 2 and Appendix A). This process is called “entropy relaxation” because the entropy
increases until the temperature difference vanishes. The state with maximum entropy is
called the “relaxed state”. For example, the entropy of two glasses of water with different
temperatures which are isolated from the rest of the universe is approximately of the type

S = So — Sy exp(—t/trel) (1.1)

(see Appendix D), where the relaxation time ¢,.; depends on the geometry, length, heat
conduction of the glass, specific heat of the water, etc.; So is the entropy of the relaxed
state.

Entropy behaviour according to eq. (1.1) is often observed in systems which are not
isolated, e. g. in the case of plasmas.

In this paper we investigate the entropy relaxation in tokamak discharges in ASDEX.
For this purpose we have to determine the plasma entropy from the radial profiles of the
electron density and temperature at different times and look for time intervals in which
the plasma entropy is approximately of the “water glass” type in eq. (1.1).

In Sec. 2 we write down the equations for the plasma entropy,

in Sec. 3 we briefly outline the theories of the relaxed state,

in Sec. 4 we describe how the space-time averaged data are obtained for ASDEX,
in Sec. 5 we present the time evolution of the entropy in some ASDEX discharges,
in Sec. 6 we compare the experimen‘tal results with the theoretical results of Sec. 2,
in Sec. 7 we present some approximation formulas on radial profiles,

in Sec. 8 we define plasma parameters depending on time similarly to eq. (1.1)

and in the Appendix we present formulas, auxiliary computations and other details.



2. Plasma Entropy

The plasma entropy is
S = / d3z n. s. (2.1)

plasma

(see Ref. /1/, eq. (4) and our Appendix D), where

1—9
Se = Sp + E_fi_(.:l:efle—) (2_2)
4—1

is the entropy per particle of the electron component of the ideal mono atomic plasma gas;
ne is the electron density;

T, is the electron temperature;

So is the entropy constant.

For the adiabatic constant we have

v=15/3 if 3 degrees of freedom are assumed,

~ =2 if 2 degrees of freedom are assumed.

It will be assumed that v =5/3. (2.3)
The subscript “plasma” in eq. (2.1) stands for the plasma volume 27 R ma?;

a is the minor plasma radius;

R is the major radius;

d3z = 27 R 2nr dr is the volume element; (2.4)
r is the radius of the flux surfaces.

All quantities are assumed to depend on space only via r.

Inserting eqs.(1.3-8) in eq. (1.2) gives

a
Se ~ Soe + /dr T Ne ln(Ten:2/3) . (2.5)
0 .

In theoretical work the normalized density and temperature,
n= ne/neo ) T= Te/Tt‘.O ) (2‘6)

are used almost exclusively, where
neo and T,y denote the density and temperature at the centre.

Replacing n. and T. by the normalized n and T in the entropy equation (2.5) yields

a

S ~ So + fdr rnn(T n=2/3) . (2.7)
0



3. Theory of the Relaxed State

In this section we try to determine the “relaxed” state from the entropy principle
68 =0, (3.1)

which states that the variation of the plasma entropy in eq. (2.7) must vanish in the
relaxed state. Pfirsch has presented two different theories /1/ and /2/ which differ in the
constraints on the entropy principle. Both theories have serious disadvantages; in order
to avoid theses the author modified theory /2/. Formal details are given in Appendix
A. In this section we briefly describe the results and the constraints. We begin with the
constraints for an isolated gas.

For an isolated gas we have the constraints

constant volume, ' (3.2)
constant particle number, (3.3)
constant energy. (3.4)

Introducing these constraints into the entropy principle §.5 = 0 yields constant temperature
and density (see Appendix A, egs. (A1-A8)).

Plasmas are, however, not isolated systems. The constraints (3.2) and (3.3) of constant
volume and particle number are satisfied in ASDEX plasmas at least in the relaxed state
- but there is a serious difference between experiment and theory:
in ASDEX we have a particle flux from sources (gas puff) to sinks (divertor) which may
sometimes cause the constraint of constant particle number to be satisfied. Formally, the
particle flux would yield additional source terms in /1/, eq. (7) and similarly in theory
/2/ and its modification given below. These source terms are neglected: in the theories
particles are not allowed to vanish or to be generated.

The constraint (3.4) of constant energy is not satisfied in the plasma case und must be
replaced by other constraints. Every theory does this in a different manner.

In his theory /1/ Pfirsch introduces the constraint that the relaxed states
“are characterized by such functions p(n) (p = pressure) for which the entropy no longer
changes when the plasma performs arbitrary internal motions which are slow enough so
as not to alter the relation between p and n.”
The resulting T'(n) relation for the relaxed state is

T — n2/3 ea-—a/n’ (3.5)



where @ is a constant parameter describing the deviation from the state with constant
entropy per particle.

Relation (3.5) has a serious disadvantage: for vanishing density near the plasma bound-
ary the entropy per particle (2.2) becomes singular. We now postulate that the entropy
per particle must be regular; hence « is in general no longer constant if we use eq. (3.5)
for defining a. Let us write « as a function of the density n. The limit n = 0 approxi-
mately corresponds to the plasma boundary and the right limit n = 1 corresponds to the
magnetic centre. Owing to the postulate of regular entropy per particle a(n) must vanish

for n = 0; hence we have

a=ocn+en®+..... (3.6)

and perhaps terms of the type n In n , which are neglected because ansatz (3.6) describes
with sufficient accuracy the theoretical and experimental data as yet available.
Let us look for theories satisfying postulate (3.6).

In /2/ Pfirsch introduces the constraints

pressure balance (Ref. /2/, eq. (9))
Spitzer-Ohm-Ampere’s law (Ref. /2/, eq. (14))
variation of the poloidal field and (Ref. /2/, eq. (24))
variation of the toroidal field. (Ref. /2/, eq. (25))

The result is radial profiles of temperature, density and magnetic field with the plasma f
being the only free parameter. For a we have

~a(n) = 048n (3.7)

(see Ref. /2/, eq. (33)), which satisfies posulate (3.6), where g is the ratio of plasma
pressure to magnetic pressure; this means that plasmas with # < 0.1 in the relaxed state

are nearly isentropic. This case is not found as yet in ASDEX data investigated by the
author.

Let us look for other theories.

In Ref. /1/, Appendix B, we solved for slab geometry the corresponding problem of theory
/2/. The result is as follows:

if the poloidal and toroidal fields are varied, as in /2/, we get T = n*/3 |, a = 0;

if only the poloidal field is varied and the toroidal field is kept constant, we get relation (3.5)
with freely choosable constant parameter « . The addition of the constraint of constant
B, to the constraint of constant particle number treated in /2/ might thus be expected

to yield freely choosable a values for circularly cylindrical geometry as well. We therefore
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introduce the postulate
B, = By = const (3.8)

into theory /2/. The basic equations of this modification are given in Appendix A. The
numerical result for « is given in Fig. 1. It can be seen that « has zeros at n = 1 and
perhaps at n = 0.

The zero at n = 0 agrees with postulate (3.6) of regular entropy,

the zero at n = 1 comes from the radial profiles of density and temperature given by the
theory (see egs. (A20) and (A21)) for small r:

T=1-010r% — ... (3.9a)
and
n=1-015r — ... (3.9b)
if r is normalized so that
By = —;— - .. (3.9¢)
From eqs. (3.9a-b) we have
T = n?3 4 ... (3.9d)

and hence @ = 0 from eq. (3.5). The entropy per particle (2.2) is constant in second
approximation; thus the plasma central region with small r is in higher order isentropic in

the relaxed state than in the non-relaxed state when egs. (3.9) are not satisfied.

Fig. 1 X
/N
avs. n
according to theory /2/ 0.5
modified by introducing
Bs = By
0 —N
0 1



4. Technique for n.(r,t) , Te(r,t) Measurements

In ASDEX, the plasma density and temperature are measured simultaneously by an-
alyzing Thomson-scattered laser light /3/. This allows theoretical temperature-density
relations to be compared with experimental ones. Let us consider Fig. 2, which shows the
radial profiles of the density (top) and temperature (bottom) for ASDEX shot no. 23349
at three different times. The numbers 0, 1 and 2 in the plot denote the experimentally
measured points, and the dotted curves are profiles fitted with the functions

ne = exp( Ano + Anir? + Apar* + Ansr®) , (4.1a)
Te = C.’L‘p( Aro + AT1T2 + AT2T4 + AT3T6) 5 (4.15)
r being the radius of the flux surfaces.
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The measurements are made at equidistant times M At . The coefficients from egs.
(4.1) are obtained from the signals ny, and T, by minimizing the error squares

16 2
Qn = Z(Ano + Anl 7"% + Anz T’i - An3 ri — In nL) , (4.2&)
L=1
16 2
Qr = Z(ATD + Am r% + Ao r% + Az r% — In TL) ; (4.20)
L=1

where L denotes the 16 polychromators used for the measurements.

Furthermore, we need time-averaging according to

1 M+H
nr,t] = ol T 1 N=§_H exp (Anl,N r? + Anan r* + Apan ra) , (4.3a)
1 M+H
T(T,t) = Z exp | Ar1.n r? + Aro N o+ Ara N 7© ; (4.3b)
2H +1 Nl ! ! !

where H is approximately the half-length of the time integration interval in units At ,
and

M = time in units At .

The difficulty is the choice of the integration interval H :

if H is too small, the inaccuracy is often too great;

if H is too big, the time development itself is averaged away.

In our figures we have At =16 ms and H =3 ;
hence the total length of the time integration interval is about 0.1 s.
For more details see Appendix B and Ref. /3/.



5. Entropy Evolution in Different Ohmic Confinement Regimes

Recently, a new confinement regime was found for stationary deuterium OH discharges
with high densities and peaked density profiles (see Ref. /4/). Let us first characterize
the different “regimes” of a discharge by the behaviour of the energy confinement time 7g
with density 7i.:

At small densities g is proportional to 7. , i.e. we have “linear ohmic confinement”
(LOC).

At higher densities 7 saturates with fi, . This regime, which is called “saturated ohmic
confinement” (SOC), has flat density profiles.

In the same density range a new confinement regime with 75 again proportional to fi.
was found. It is called “improved ohmic confinement” (IOC). The density profiles in this
regime are more peaked than in SOC.

These confinement regimes are found on ASDEX in the following density ranges:

TE ~ fie in LOC, fie < 0.2 10'% em ™3, (5.1)
e = const in SOC, fie > 0.3 10 ¢cm™3 (flat density profiles),
g ~ fie  in IOC, fie > 0.3 10 ¢cm™2 (peaked density profiles)

(see Ref. /4/, FIG. 2). Let us consider some examples.

Figures 2 - 4 show the time development of ASDEX shot no. 23349, which is described in
Ref. /4/.

Figure 2 (Ref. /5/) shows the transition from flat density profiles at ¢ = 1.0 s in the SOC
phase to the more peaked density profiles for ¢ > 1.6 s in the IOC phase.

Figure 3 (Ref. /7/) shows the gas flux, plasma current, 8, etc. versus time, furthermore,

the entropies
a

Fe =05 + 75.[dr r ne In(T. n73) (5.2)
0

S =1. + 50./dr r nln(T n~%3) (5.3)
)

(see egs. (2.5)-(2.7)). The additive constants (0.5 and 1.) and the proportionality factors
(75. and 50.) are chosen such that the plots are reasonable for n. in 10'* em™2 and T.
in keV. The solid and dashed entropy curves are obtained by inserting into egs. (5.2-3)
ASDEX data space-time averaged according to Sec. 4.
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The IOC phase beginsat ¢t = 1.17 s (dashed vertical line). (5.4)

Fig. 3

Time evolution of the gas flux, OH power Poy , electron density 7. ,

poloidal 3, and plasma current I, in OH discharge shot no. 23349.

Ip plateaw =380 kA, By =2.17T , g(a) =2.75 (5.5)
Bottom:

Entropy S, (solid), S (dashed) and the approximation

1.16 — ¢

Sﬂ.pp = 0.5 — CIP(W)

13s<t<23s (5.6)
(dotted), which is of the water glass type eq. (1.1). All times are measured in seconds;
the time 1.16 s occuring in eq. (5.6) approximately coincides with the begin of the IOC
phase.

TIME

(s)
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Equation (5.6) is obtained by a least squares fit taking into account the sharp peak of
the entropy S near ¢ = 1.8 s which indicates the change of the sign of the relaxation in
the time interval (1.6 s <t < 1.8 s),This can be seen in Fig. 2, where the density profile
is more peaked at 1.6 s than at 1.8 s. By neglecting this sharp peak we then have instead

of eq. (5.6): —

0.1
which approximates the steep increase near ¢ = 1.4 — 1.5 better than eq. (5.6). Again all

times are given in seconds. The relaxation time 0.1 s is approximately equal to the energy

Sapp = 0.5 — ezp( ) 5 l4<t<23, (5.7)

confinement time:
trel = TR , . (5.8)

if the interpretation according to eq. (5.7) is used.
It cannot be determined as yet whether eq. (5.6) or eq. (5.7) is the correct interpretation.

Fig. 4
Entropy S. (solid), S (dashed), S.pp (dotted) acc. to eq. (5.7)
for ASDEX shot no. 23349.

.
Teo".
1 .
0 TIME
0 o5 U5}
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In Fig. 5 we present the time evolution of shot no. 24707 (Ref. /6/). This discharge has
two IOC phases with constant density and increasing entropy which are too short for the
relaxed state to be reached. It can be seen that the entropy begins to rise after transition to
the IOC regime and saturates during both LOC and the stationary IOC phases according

to eq. (1.1) with ¢, = 0.1 —0.2 s . This may be interpreted as entropy relaxation. - In
contrast, during SOC the entropy decreases.

Fig. 5

shot no. . —
24707 &

plotted cE: __‘_f‘.

analogously 5-:3 °:c=_

to Fig. 3 = -
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Figure 6 presents a discharge without IOC:
in shot 24147 (Ref. /8/) the continuous, high gas flux from the wall after carbonization
prevents the IOC transition; hence the discharge remains in the SOC regime at high
densities. It can be seen that the entropy decreases as observed in the SOC phase of the
preceding shots (see Figs. 3 - 5)). The entropy does not, however, increase again, as is
typical of IOC phases, but saturates at a low value.

Considering Figs. 3-6 one finds that the entropy strongly increases only in the IOC regime.

Fig. 6
Teo i Bag 5 Sz and & w8 1

analogously to Figs. 3 and 4; perhaps entropy relaxation for ¢ > 2.

TIME

(s
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6. Comparison with Theory

The theories presented in Sec. 3 yield & as a function of the normalized density. In order
to check the theoretical results against ASDEX data, we resolve eq. (3.5) with respect to

a,
—2/3
1 - 1/n
and insert the space-time averaged radial profiles into the right-hand side of eq. (6.1).

This yields the solid curves in Fig. 7 , which are called “experimental a”.

Theories are only available for the relaxed state. The results of the foregoing section
indicate that the relaxed state might be the steady-state phase of the IOC regime found
in, for example, shot 23349 for ¢t > 1.6 s. Let us therefore consider « vs. n at various times
as shown in Fig. 7. It can be seen that the time evolution of a runs
slowly fort <14 s,
quickly neart =1.4—1.5s, (6.2)
slowly fort > 1.6 s .

For t > 1.4 s except 1.7 < ¢ < 1.9 (see interpretation (5.7))  «a can be described by

1.45 -1t
ar agp = 1.3 (n—n?) + n? ea:p(w) (6.3)

(dashed in Fig. 7), which can be obtained from the experimental « (solid) by cut-off
expansion (3.6) after the second-order term and a least squares fit described in Appendix
B for the coefficients ¢; and ¢2 as functions of time. ¢; is found to be approximately
constant and c; to be approximately of the water glass type (1.1):

g = f
c1(t) = c1ap =¢, co(t) caap= —c¢ + ¢ e:r:p( g ) . (6.4)

relaz

The coefficient ¢ describes the deviation from isentropy in the relaxed state in eq. (6.5);
see below.

The relaxation time ¢, = 0.12 s is approximately the energy confinement time for I0C;
see FIG. 2 in /4/;

the time to = 1.45 s with maximal increase of the entropy is approximately the limit of
the range of validity for the water glass entropy, if interpretation (5.7) is used.

The relaxed state is defined by very large ¢; in this case we have
cap = ¢ (n — n?) with ¢ ~ 13. (6.5)

Equation (6.5) is approximately the experimental result, which we have to compare with
theoretical ones. In Sec. 2 no a(n) similar to the parabola (6.5) is found. The modified

14



theory predicts the two zeros of a(n) at n = 0 and n = 1, but is only valid in the central
region, where the assumption of constant toroidal magnetic field is at least approximately
valid. For other shots with long IOC intervals the a(n) diagrams look similar to those in
Fig. 7.

Fig. 7

a vs. n during entropy relaxation for ASDEX shot no. 23349:
solid: a(n) as taken from the experimental data,

dashed: agp(n) according to

1.45—1

aa_p =: 1.34 (n — n2) + EIP(W),

t21.4s P (6.3)

forthe times #=10,; 1.1, 1.3; 14; 155 1.6, 2.03 4
Interpretation (5.7) is used; t = 1.8 is omitted.

Approximation (5.3)
is of no use
for t=1.3 s.

> K
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Fig. 8 shows T versus n for ASDEX shot no. 23349 at the same times as in Fig

dashed curves are obtained by inserting approximation (6.3) into eq. (3.5)
T = n2/3 is the isentropic case.

. T; the

Fig. 8 T

AN

1

The results can be given in the form of the following table, a being defined in eq. (3.5).
Table 6

a(n) for various theories and experiments

theory /1/: a = ¢o = const s. (3.5)
theory /2/: a=ocn (3.7)
regular entropy per particle: a=cn+cani+.... (3.6)
relaxed state, schematic: a =cn(l—n) (6.5)
ASDEX shot 23349, ¢t = 2.0 s: a = 1.2n—11n?
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7. Radial Profiles

In this section we describe the radial profiles of the normalized electron density and tem-
perature by approximation formulas which contain a time-dependent parameter causing
the plasma entropy to be of the water glass type (1.1).

The density is approximated by
ne =1 — % 4+ 012, F=rli (7.1a)

with

E =2+ exp(tot-—t) ; t =il (7.10)
Equations (7.1a), (7.3) and (7.4) (below) hold more or less well in all discharges at almost
all times,

eq. (7.1b) only in IOC phases;

tr ~ to limits the range of validity for eq. (7.1b);

t, is the relaxation time and is approximately equal to the the energy confinement time
if interpretation (5.7) is used.

The time evolution of the exponent E describes the transition from flat profiles at the
beginning of the IOC phase towards more peaked ones later ;

the term 0.1 #!? approximates the density near the plasma boundary.

In the case of radial profiles of ASDEX shot no. 23349 taken at the times
1.0,11, 13,14, 1.5, 1.6 and 2.03 s interpretation (5.7) is suitable with

tr =t =14 s, t,=01s. (7.2)
The normalized temperature is approximately
T. = exp(—2.47%) (7.3)

independently of time (tested for ¢t > 0.7 s ).
Inserting egs. (7.1a) and (7.3) into eq. (5.3) for the plasma entropy yields with an inaccu-
racy of about 0.003 for 1 < F < 4

1
Sa =1+ S/df # ng In(T, n7%3) = 0.5 (3—}«3 + 0.1 (E—2)2) : (7.4)
o]

Equation (7.4) correlates entropy relaxation with the time evolution of the radial profiles
at almost all times, not only in IOC phases. In IOC linearization of eq. (7.4) gives together
with eq. (7.1b) the water glass entropy of eq. (1.1) with t,. = t,.

17



In the following figures we compare ASDEX radial profiles space-time averaged according
to Sec. 4 (solid) with the approximation formulas (dashed).

Fig. 9
Radial density profiles
solid: space-time averaged data from ASDEX shot no. 23349
at the times 1.0, 1.1, 1.3, 1.4, 1.5, 1.6 and 2.03 s;
dashed: according to the approximation formulas (7.1a), (7.1b) and the data given in
(7.2).
The plot of n, is omitted for ¢ < 1.3 because ¢t < 1.3 is outside the range of validity of eq.
(7.1b); the solid curves for ¢ = 1.6 and ¢ = 2.03 coincide.

The approximations (7.1-2) show the transition from flat profiles for ¢ < 1.3 towards more
peaked ones for ¢ > 1.6 s by varying the exponent E in eq. (7.1b) from about 3 to 2.

18



Fig. 10

Radial temperature profiles

dashed: T, = exp(—2.4 2)

solid: space-time averaged data from ASDEX shot no. 23349
at the times 1.0, 1.1, 1.3, 1.4, 1.5, 1.6 and 2.03 s;

Approximation eq. (7.3) does not yield the behaviour for small r:
in the relaxed state we have T =1—0.66 #2 — ...

from egs. (3.9a-b) and (7.1-2).
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Also in other shots the normalized temperature is approximately constant:

Fig. 11

Radial temperature profiles

dashed: T, = ezp(—1.9 R??)

solid: space-time averaged data from ASDEX shot no. 24147 (see Fig. 6)
at the times 1.1, 1.4, 1.7, 2.0 and 2.3 s.

20
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Equations (7.3) and (7.5) are special cases of the more general rule
2 v
TzTa:e:cp(—gUR), (7.6)

with U,V being time-independent parameters. Equation (7.6) also contains Coppi’s Gauss
temperature /9/ as the special case V' = 2, where U is essentially the safety factor ratio.

In our Appendix C we determine the safety factor ratio for the more general case in eq.
(7.6). The result is

G, o I 3 (7.7)
90 Ic) 1 — e F
with
G = P=iuv (7.8)
= % 3 = 2 ) .
and with II(C) = T'(C + 1) being the factorial.
Inserting the values U = 2.4 and V = 3 of shot no. 23349 (see eq. (7.3)) yields
L2~ 26, (7.9)
90

which approximately agrees with g,/go = 2.75 given in eq. (5.5) in connection with
Fig. 3. Most shots have V values of about 2.8.
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8. Relaxation Parameters

Looking at the preceding sections, one finds besides the plasma entropy two parameters
depending on time similarly to the water glass entropy in eq. (1.1), namely the parameter
¢ occuring in eq. (6.4) and the exponent E describing the time evolution of the radial
density profiles (see eqs. (7.1)). From these we define so-called “relaxation parameters”
with approximately equal time behaviour.

In order to do this we linearize eq. (7.4)
1-28, = E—2 (8.1)

and resolve eq. (7.1a) for E by integrating over 7 from 0 to 1:

1
¥ 3 0.1 .
E = = o g /-na d . (8.2)
0

Now we replace in eq. (8.1-2) S, by S and n, by n and define the left-hand side of eq.
(8.1) by Us :
Us =1—28 (8.3)

and the right-hand side of eq. (8.1) by Ug :

1
F 0.1

U = —— — 2 F = — df . 8.4
E 1-F ) 13 + /n r ( )

0

Furthermore, we define
e == AEE, (8.5)
C1

where ¢; and ¢y are obtained by the least squares fit as described in Appendix B. We
expect from egs. (5.7), (6.4), (7.1b), (7.2) and (8.1) that

to—t
US ~ UE ~ UC ~ UA = ea:p(o ) t> 1o (8.6)
describe at least in crude approximation the entropy relaxation in sufficient long IOC

phases; Us , Ug , Ugc and Uy are the “relaxation parameters” mentioned above;
furthermore, we use in the plots the arithmetic mean

1
Upy = 3 (Us +Ug + Uc) . (8.7)
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Equations (8.6) denote three more or less well-satisfied relations and one definition,

namely
to —1
Ui = exp ; (8.6a)
tr

describing entropy relaxation of water glass type. Let us discuss the very different ranges
of validity occuring in egs. (8.6). The relation

Ug~Uyk for t>to (8.6b)

means relaxation of the plasma entropy analogously to the entropy (1.1) of water glasses,
which is often observed in the IOC regime of ASDEX discharges. The interpretation
may be that the plasma relaxes more or less undisturbed towards the state with largest
probability ~ and entropy. For ¢ < to relation (8.6b) fails; this might have to do with
external influences causing the entropy to decrease or to increase slowly as compared with
eq. (8.6b). - The relation

Us =~ Ug or 1 -28S ~F — 2 (8.6¢)

correlates the entropy with the exponent E of the radial density profile and has a much
larger range of validity including also SOC and other regimes, except some small time
intervals with “exotic” profiles.

The parameter Uc shows much more irregularities than Ug and Ug; this has to do with
fact that
Uc contains two parameters ¢y, ¢ defined by a least squares fit which is sensitive against
inaccuracies, while
Ugp and Us depend on only one parameter ( F in the case of Ug and S in the case of Us)
, which are much less sensitive against inaccuracies.

Figures 12 , 13 and 14 show examples:
In the case of ASDEX shot no. 23349 (Fig. 12) the relaxation parameters coincide fairly
well and go to zero according to

14—t
Usg = ezp( 53 ) for t>14s (8.8a)

for t > 2 s the plasma state becomes relaxed.

At the end of the discharge shot no. 24707 (Fig. 13) the parameter Uc has strongly
decreased but not to zero. The interpretation is that the IOC phase is too short to become

a relaxed plasma state. Furthermore, the ¢; , ¢z computation breaks down near t =1 s.
For U4 we chose

99—t
Uy = ea:p(102 ) t>19s (8.8b)
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Fig. 12

Top: relaxation parameters Ug (solid) , Us (dashed) and U, (dotted) vs. time;

bottom: U, according to interpretation (5.7)
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Fig. 13
Top: relaxation parameters Ug (solid) , Us (dashed) and U, (dotted) vs. time;

bottom: U, according to

s U = eﬂ:p(l'gmt) (8.8b)

and the arithmetic mean Ups (see eq. (8.7) vs. time for ASDEX shot no. 24707
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Fig 14 shows the relaxation parameters for shot no. 24147 (see Fig. 6). This discharge

remains in SOC; all relaxation parameters are far from zero. Thus we have the rules:

Strong decrease of the relaxation parameters — > 10C

Saturating of the relaxation parameters near zero — > relaxed state, stationary IOC
No strong decrease of the relaxation parameters — > No IOC.

Fig. 14

Relaxation parameters Ug (solid) , Us (dashed) and U, (dotted) vs. time

TIME
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8. Summary

In the IOC regime of ohmically heated discharges on ASDEX the plasma entropy is
found to behave similarly to the entropy of an isolated thermodynamic system with regions
of different temperatures relaxing towards equilibrium. This is interpreted as “entropy
relaxation”. Theories of the relaxed state are checked against ASDEX data; theory /2/
was modified. The modified theory yields the radial profiles of the normalized density and
temperature in the relaxed state for small » and predicts

The experimental data suggest that a(n) should be approxiraately the parabola
a ~n(l—-n), (s.6.5)

n is the normalized electron density.

Besides the entropy S itself, there are two other parameters which depend on time
similarly to the water glass entropy in eq. (1.1): the parameter ¢z from the a expansion
and the exponent E describing the time evolution of the radial density profiles,

n,=1—-7% + ..., P e (s.7.1a)
while the normalized temperature remains approximately constant near
T. = ezxp(—2.472). (s.7.3)
From this behaviour of the radial profiles and the equations for the entropy we have
1-2S=FE -2 (s.8.6c)

correlating the relaxation of the entropy S and the profile evolution described by E.
From S, ¢, and E we constructed so-called “relaxation parameters” (see Sec. 8), which
coincide well in the case of ASDEX shot no. 23349 and less well in the case of ASDEX
shot no. 24707. All relaxation parameters decrease in the IOC phases, sometimes towards
zero, which indicates the relaxed state, as in shot no. 23349.

The entropy increases in the IOC regime; if the IOC phase is long enough, the entropy
saturates; the stationary IOC regime is the relaxed state with maximum entropy.
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Appendix A: Entropy Principle for an Isolated Gas

The entropy is a thermodynamic potential if the energy, the particle number N and

volume V are taken as thermodynamic variables. The constraints

energy = /pdV = const , (A1)
v
N = /n dV = const , (A2)
v
V = const (A3)

define an “isolated system”, e.g., an isolated gas-containing box. The entropy principle

defining the relaxed state reads for this case

éf(nln(pn_'}')-%Anﬂ—up)dV:O, (A4)

where the first term
nin (pn77) = n(y—1) (s—so) ; (45)

~ = 5/3 is the adiabatic constant for the ideal plasma gas;
)\ contains the entropy constant and the Lagrange multiplier arising from the constraint

(A2) of constant particle number;
4 is the Lagrange multiplier arising from the constraint (A1) of constant energy.

Let n and p describe the relaxed state and ép a small deviation. We then have

6/ (n!n(pn“") + An + ,up) av

=/(n@+p5p)dV=0.
P
.

This must hold for every choice of §p at every point of the volume; hence the integrand

must vanish:
— = = = —u = const; (A6)

hence the temperature is constant. - Analogously, for a small density variation we have

5V/ (ntn(pn"f)+)\n+,up) dvV = J én (In(pn"f) ~fy+,\) dv = 0. (A7)
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This must hold for every choice of én at every point of the volume; hence the integrand
must vanish:

In(pn~7) = In(T n'~7) = y— A= const. (A8)

T is constant, hence from eq. (A8) n also.

Modification of Theory /2/

As already discussed in Sec. 2, we introduce the postulate
B, = By = const (A9)
into theory /2/. We now have to determine the quantities p , T', By from the three

equations
pressure balance

1 dr!
p:l._igg_ ?Bg_ (A10)
0
(see Ref. /2/, eq. (9)),
Spitzer-Ohm-Ampere law
1 d
(see Ref. /2/, eq. (14)),
and the entropy principle
f r oL oL
6/a!rr L = /drr (a—pﬁp + 5Tz 6;{‘3/2) = 10, (A12)
0
with
2 5
Lz-%(-—é-lnp—i—glnT—i—m) (A13)

being proportional to the entropy per volume; p; is a constant parameter containing
the entropy constant and the Lagrange multiplier arising from the constraint of constant
particle number.

In eq. (A12) only By is varied; 6p and 6T%/? can be expressed by § By via egs. (A10
and All) to yield

d oL oL 2 [,, ,dL
EFM—SN‘B¢("$+?5deTBE

) (A14)
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(see Ref. /2/, eq. (24));. 6By drops out similarly to ép and én in egs. (A6-A8).
It seems that system (A10)-(A14) holds well in the central region of the plasma and less
well near the boundary; let us therefore consider the second-order expansion for small r.

From the normalization 7= p = 1 at r = 0 we have from Spitzer-Ohm’s law (A11):

By = (A15)

1
p=1- -r*. (A1e)
4
Introducing eq. (A16) and the ansatz
T=1-Er? (A17)

into eq. (A14) for the Lagrange density L yields two cases: either

E =01 w1 freely choosable (A18)
or .
m o= 3 E freely choosable . (A19)

Case (A19) gives negative a value and is not used in this paner.
Case (A18) yields
T =1 - 010r? (A20)

and from the state equation p = nT

n=1- 015r? (A21)

2/3

ot T = n*/° ; hence

a=0 at n=1. (A22)
Case (A22) is often observed in the stationary phase of IOC discharges.

Numerical computations yield approximately

n(l-n) /01— 0.14 0.10 1—n)?
a = aappr = ( ) il - £ ( n] . (A23)
0.054+n 1 — 05 J75) 1 — 0.2 H1
Replacing the parameter 0.05 by a big number, say 100, and p; =0
and the parameter 0.1 by 130 in eq. (3.6) gives approximately the rule
a ~ ap = 1.3n(1—n) (6.5)
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obtained from experimental findings. From this we learn that the theoretical boundary

parameter 0.05 is much too small. This might have to do with the fact that sources and
sinks are neglected in the theory.

Appendix B: Computer Program

We give here the part of the computer program which computes the

averaged experimental data N(J), T(J) according to eq. (4.1)
at 20 equidistant meshpoints R(J),

a according to eq. (3.5) ALPHA = A(LK) ,

the coefficients C1, C2,

and the entropies (5.2) and (5.3) SU ~ S and SE ~ S, .

R(J) is the radius of the flux surfaces in m;

JMAX = 20 corresponds to the ASDEX plasma radius a =0.4 m ; (B1)
GW = length of the time integration interval = 2H + 1 in eq. (4.3); HW=H+1;
GW =T in our plots.

ZEITQ = averaged time in ms.
The DO-5 loop contains the least-squares fit determination of ¢; and ¢ of

Oapp = €1 1 + €2 n? (B2)

(see eq. (3.6)) with weight = GEW = 1-n for R > 0.12, GEW = 0 otherwise,

and, furthermore, the integrands of eqs. (5.2) and (5.3) for the entropies.

The DO-6 loop compares the experimental A(I,K) = a with the ansatz B(LK)=cpp (see
eq. (B2)),

the quantities U(LK)=s and V(I,K)=aqapp(n —1)/n which are proportional to the entropy
per particle, and

the normalized experimental temperature Y(LK)=T with Z(LK)=n?3ezp(ctapp(1 — 1/n))
(see eq. (3.5)).

The two-dimensional arrays are used for the plot routine.

In the following we present the program without input/output statements etc., further-
more, the ASDEX data used for the example ¢t =2.03 in Fig. 7.
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? o d e ¢

Do 3 J=1,20 Part of Program

R{J) = 0.02% J
R2(J) = R{J) * R(J)
Bed i} = REUE ROL 2. 0222 EiNGSEIRBENINsmINTIRE:
3 R6{(J) = R2{J)* R4(J)
SE = 0.
SU = Q.
All = Q.
Al2 = Q.
A22 = Ce
Bl = 0.
B2 = (.
DO 5 J=1,20
ST = 0.
SN = Qe
NEC = 0.
TEQG = 0.
D0 4 1=1,GH
NEQ = NEO+EXP( AQONI(L))
TEQO = TEO+EXP{ AGT{L))
ST = ST+ EXP{ ALIT{L)*R2(J) + A2T{(L)*R4({J) + A3T(L)*R61J))
4 SN = SN+ EXP( AIN(L)®R2(J) + A2N(L)I*R&4(J) + A3N(LI*R6(J))
NEO = NEQ /7 FLOAT( Gh)
TEO = TEO / FLOAT{ 1000%*GHW)
T{(J) = ST [/ FLOAT{ GW)
N{J) = SN / FLOAT( GhW)
S{J) = ALOGU TI{J)) — 0.666667 * ALOG( N{J))
ALPHA = S({J) /( 1l.— 1./N(J)]
SU = SU + S{J) = J = N{(J)
TE = TEO * T(J)
NE = NEO * N{J)
SE = SE + J®NE*{ ALOG( TE) - 0.666667 * ALOG{ NE))
IF { Je LEs 6) GO TO 5
GEW = le—N{J)
All = All + GEM
Al2 = Al12 + GEW* N{J)
A22 = A22 + GEW* N(J)**2
Bl = B1 + GEW* ALPHA/ N{J)
B2 = B2 + GEW* ALPHA
5 CONTINUE
DET = All®A22 - Al2%A12
Cl(I) = ( B1* A22 — B2* Al2) / DET
C2{1) = { B2* All — Bl* Al12) / DET
SP = Q.
DO & J=7,20
K = J-6
X{I.K) = N(J]}
Y{I.K) = T{J)
UlI.K) = S{J)
AlI«K) = S{J) /( le= 1./N(J))
BUI,K) = N(J)*({ C1l(I) + C2(I)% N{J))
VII+K) = (N(J)=1)%( C1{I) + C2(I) — C2(1I) *(1.—-N{J)))
Z{IsK) = N{J)**0.666667 *EXP{ V(I.K))
SP = SP + (T(J) = Z{1,K))*=*2
6 PRINT 308, IsK
o w 8§ @
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Input Data

As an example, we present the coefficients AON(M)... A3T(M) for the relaxed plasma state
of shot no. 23349 at t = 2.03 s, which are used in Figs. 6, 7 and 8.

The first column is the time in ms ; 1982 to 2082 is the time interval used in Sec. 3 for
time averaging; the interval length of 100 ms corresponding to GW=7 is used for all plots
in this paper.

The second column is In Teo (eV) ;

the sixth column is In n.o (10'* cm™3) .

Large stochastic oscillations of the higher coefficients are found - nevertheless, the ampli-
tude of the stochastic oscillations of the temperature and density are only about 3 - 10%

of the temperature and density values.

Table B1l: Coefficients for ASDEX shot no. 23349 at ¢t = 2.03 s.

2.03 SEC
23349 T 2.03 [0C

1982.6 $.90 -3.62 -103.C 167.8 —0.358 -7.19 —4.9 -—179.4%
1969.2 6589 —5.79 -56.0 =442 —0.381 =—4.95 -40.3 —-59.7
2015.8 6.84 —3.48 ~76.0 0.4 —0.466 —2.65 -60.8 -12.7
2032.3 6.89 =-3.93 -87.0 110-.€ —0.312 —-7.70 2.7 —-196.1
2048.9 .91 -5.62 —-44.7 —48.7 —0.433 =2,.77 -65.1 274
2065.5 .92 —3.42 —80.4 68.9 —0.354 —6.32 =27 a3 -G7.6
2082.0 6.88 —2.93 —89.4 104.6 —0.364 -7.96 3.8 =209.5

ZEIT AOT AlT AZT A3T AON AlN A2N A3N
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Appendix C: Safety Factor Ratio

In the case of circularly cylindrical geometry the safety factor ratio is defined by

i T T 2
2 f di ¥ 3
0
with 7 = r/a; .
7 = normalized current density component parallel to the axis,
B, = toroidal magnetic field component at the plasma boundary,
By = toroidal magnetic field component at the plasma centre.
If Spitzer conductivity
j =1 (C2)
and small plasma f
B, = Bg (03)
are assumed, we have
fa _ : . (C4)
d0

1
2 [df £ T%?
0

Inserting T = ezp(% U #V) into eq. (C4) with +co instead of 1 as upper integration limit

yields exactly
9a _ PU G )

o = 0 ()

this can be obtained by introducing X = % U RV as integration variable instead of R.
P and C are defined in eq. (7.8). Equation (C5) is the main part of eq. (7.7) for ¢a/qo.
Furthermore, eq. (7.7) contains the factor

1

e C6
= P ° (Ce)

which arises if the correct integration limit 1 is used in eq. (C4) instead of co. Factor (C6)
exactly desribes the Gauss case V = 2; otherwise factor (C6) is only approximately valid,
the inaccuracy being a few per cent.

In the range of interest —0.5 < C < 0 the factorial can be approximated by

oo
Inc) = de XCe X » 1-}—% — 043C — 0.1C3, (Cc7)
o]

the inaccuracy is about 0.001 .
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Appendix D: Explanations, Auxiliary Computations, etc.

Re. eq. (1.1) Water Glass Entropy

Given:
two water glasses
with temperatures

Ty =T — AT
To =To + AT,

heat flux proportional to
the temperature difference

dAT AT

dt 2 trel '

Solution:

t
AT = Al ezp(—zt 1
re

) s
Entropy:

S = [(dQi/T1 + dQ2/Tz)
S =b [(dTy/Ty + dT2/T:)

S =b (ln(To — AT) +n(To + AT)) ;

development for AT /T < 1:

AT\? 1 /(AT
g B~ il - (==
° ((To) +2(T0

)+

Waber fjfass Water

Fig. 15
Two water glasses

and their temperature

Cut-off after the second-order term and inserting the exponential for AT yields eq. (1.1).
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Re. eq. (2.2) Entropy per Particle

Given: N particles in a volume V.
Then we have:
particle density n = NIV
state equation pV = N kT
8 = n kT
Normalization pra= P m=gy =} at r=0
Boltzmann const k=1
total energy U= pV /[ (y-1)

energy conservation dU = dQ — pdV

(Feynman lectures, eq.(39.11))

verbal: the total energy U increases by addition of heat d@Q and by compression — p dV.

Def. of entropy:- dS =dQ /T
special: isotherm: dU =0
dS = pdV/(pV/Nk)
S = NklilnV + f(T)

special: adiabatic: S = const
dQ = 0
dU - p dV =0

pdV + Vdp + (y—1)pdV =0
dp/p + ~vdV/V =0
p V7T = const
T VI~ = const
Hence
1.) S mustbe = NkiInV + f(T)
2.) S must be a function of T V71 ;
hence for £ = 1 we have
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