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The validity of macroscopic models in the limit of large mean-free path is
examined by solving a one-dimensional model equation, where the term
v - V f; is retained in the kintic equation. A standard thirteen-moments
approximation yields accurate results in all collisionality regimes if the
fluid velocity is sufficiently small. In contrast, the Chapman-Enskog
scheme is only accurate in the collision-dominated regime.

1. Introduction

The gross macroscopic properties of laboratory plasmas relating to equilibrium,
stability and transport are of special interest. Tokamak transport and confinement
are major concerns of theory. A new approach taking flows consistently into account
was recently presented by Weitzner and Kerner /1/. In this model the Grad-Liist-
Schliter-Shafranov equilibrium relation for tokamaks

A =—4m (rp () +I(¥) I'(¥)) ,

relating the poloidal flux ¢ , the pressure p = p(v) and the poloidal current profile
I = I(y) , is generalized to include a pressure tensor as well as small but finite mass
flow. The density, pressure and flow profiles are then no longer surface quantities
but vary on a flux surface poloidally up to the order of the inverse aspect ratio. This
anisotropy is sustained by transport which can be compatible with the observed mag-
nitude. Naturally there exist numerous extensions of the standard ideal MHD theory,
such as the Braginskii model /2/, the moment approaches of Grad /3/ and Schliter



/4/, the double-adiabatic theory /5/ or the neoclassical MHD model of Callen et al.
JG.

Since relevant tokamak devices operate in regimes with large mean-free path, the va-
lidity of macroscopic models is discussed here, particularly with respect to collision-
ality. It is recalled that the fluid description yields a set of equations in configuration
space for the velocity moments of increasing order obtained from the appropriate ki-
netic equation. This infinite chain of equations is terminated by introducing specific
closure schemes. Since the Larmor radius is small compared with the plasma radius,
the validity of macroscopic models need only be discussed in the direction parallel to
the magnetic field. When the mean-free path length [ is smaller than the connection
length [., the collision-dominated fluid regime applies. However, we shall prove the
extension of fluid models for large collision times. Assuming that the distribution
function is close to a local Maxwellian, we apply Grad’ s moment approach /3/. By
solving a one-dimensional model equation in the parallel direction exactly we can
discuss the accuracy of Grad’s moment method, which for the one-dimensional case
coincides with Schliiter’s method, and compare it with the usual Chapman-Enskog
scheme. It is noted that the effect of trapped particles is not included in this model.

2. Model Equation

Following the standard derivation of macroscopic models we begin with the
Boltzmann equation for the single-particle distribution function f = f(r,v,t) :

of of

- Vf+F- -V, f= — ,

ot TV i f En )c (1)
where m - F is the force and the right-hand side is the collision operator. If the
collision operator is simplified to —(f — fo)/7 , where 7 is the average collision time,

the kinetic equation assumes for f = fo + f; the form of the Krook model

%-l—v-vf-i-F'Vuf:—fl/T : (2)

In the Chapman-Enskog expansion the terms containing f; on the left-hand side are
dropped. However, the term v - V can become as large as 1/7 when the scale length
of the variation becomes comparable to the mean-free path ( K. Lackner /7/ ). It
is an essential point of Grad’s and Schliiter’s moment approach that this term is
automatically included. It is noted that the collision operator in eq. (2) does not
conserve mass, momentum and energy. This is easily improved, however, by adding
appropriate constants. For example, the form
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%)c:—f/r+n(r,t)'fo(V)/f=—f1/T+nT_1'f° ! ()

+co +oo

where n(r,t) = [ fd®vand1= [ fod3v, trivially conserves mass. In Ref. /8/ a
—oo —oo

representation in which mass, momentum and energy is conserved is given. Since the

objective of the paper is to study the validity of different fluid models with respect
to collisionality , but not specific applications, it is sufficient to treat the collision
operator in the simple form of eq. (2).

On the assumption of steady state and zero-force term the problem asumes the form

v-V(fo+fi)=—fi/T . (4)

It is emphasized that this equation still contains the critical term v-V f; and therefore
allows to discuss the validity of the moment approach with respect to collisionality.
Further simplifications are made in order to make the model tractable for complete
analytical solution. The problem is therefore reduced to one dimension. Then fy is
given by a local Maxwellian with inhomogeneous flow u(z) :

fo=1/(@m03) /2 ezp—1/2 (“—“) - (5)

Vth

The problem may be further simplified by introducing a typical wave vector k for
the variation of f; with respect to x ; i.e. by replacing V f; by 1k f1, which yields the
following model equation

dfo

(tkrv+1)f1 = —1v 2z (6)

The velocities from here on are normalized to the thermal velocity and the length x
to the scale length k1 . Then the collision time 7 is replaced by « and in these units
the model equation assumes the form :

(Fvv+1)f1 = —qv (v —u) g—z fo . (6b)

The dimensionless parameter v = k7vy, is the ratio of /¢ to the typical plasma length.
For v = 1 the mean-free path [ is equal to the scale length £~! which in a tokamak
would be given by the connection length [, . It is assumed that the confinement
time is long enough to allow some ( not necessarily very many ! ) collisions for
relaxation towards a Maxwellian distribution function. The velocity u is restricted

in the collisionless limit such that - u is bounded , i.e. lim |y-u| < K < co . This
y—00
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implies that the distance u(7 - v¢3) has to be smaller than the product of K and the
scale length k7! .

The exact solution of (6) is obvious. Grad’s and Schliiter’s moment methods consist
in expanding f; in Hermite polynomials with the argument at the shifted velocity :

du yv(v — u)
_foaz: W_fo Z In .Henv—u(z)) ‘ (7)
The polynomials He,(z) are associated with the weight function w(z) = e~="/2 and
obey the orthogonalization relation
+oco
/ e /2 Hen(z) - Hem(z)dz = 6pm n! V21 (8)
— 00

with the Kronecker symbol é,,, . The Rodriguez formula yields the following repre-
sentation for the Hermite polynomials

2 n 2
Hen(z) = (—1)* e=/2 & o2 )

dz™

+o0
Since the integral [ |
— 00

verges, see e.g. Batemann chapter 10.19 Ref. /9/.

" (v—u) %g |2fo dv exists the expansion (7) for f; con-

In the following the exact solution is derived together with an approximate one ob-
tained by applying truncation in the expansion (7) and corresponding equations for
the coefficients g, . This allows one to discuss the accuracy of approximative solu-
tions such as occur in more realistic problems. The underlying formulae can be found
in Refs./10-11/.

i) Exact solution

Multiplying (7) by He, (v —u) and integrating with respect to the velocity yields
for the coefficients g,

’ fipe .
4 d‘U 1y v

— —w?/2

where w(z) = v — u(z) .



If the quantity

=1/ —u(z) with Im(&) > 0
is introduced, it follows that
w1
1+iyv w-—¢
and further
veow . )
=wHifv+ (/1) —
aY: ¢
Then g, is given by
¢ '
. 1 1
= (¢/7) bno +6n1 + — / dw He,(w
Y - &
— 00
By inserting the Rodriguez formula one obtains
g a2 1 dn
; ?
gn = (z/'Y) Ono + 6n1 + ? \/—— / dw ( — 5 Jon
1 d 1
Integration by parts yields with dw Gt = e et
_ jg 1 L
== 1) 1) = — (-1)" — d
(7) o+ 80 + 5 o= (-1 g [ dwg

With z = £/+/2 we define

—Cco

This function is related to the complementary error function

+oo
erfe(z) =2//m / dt et

When for £ with Im(€) > 0 the relation

e

—w2/2

—-w?/2

(10)

(11)

(12)

(13)

(14)



is inserted in equation (13) we obtain

+oo +co +oco

tmy(z) =1 / dw / ds e~ /2=i(w=8)s  — ;1 /on / ds e~ /2ti¢s  (13b)
—00 0 0
Then the following representation for y(z) is derived
_ -2t : w_ (4"
y(z) =e™ % -erfe(—iz) , y'™ = e y(z) . (15)

The derivative with respect to ¢ in (12) is transformed to a derivative with respect
to z . Then the g, are given by

e =) B o i o % VATE (1) sy (E/VE) (16)

We differentiate (15) with respect to z , utilize the definition (14) and obtain directly
and by induction

y@ =y(z) , v =-22y(2) +2i/V7

g2 (2) + 22y (2) + 2(n + 1)y (2) =0 ,n=0,1,2,.... . (17)

Eventually f; is given in the form of eq.(7) with coefficients g, :

0=C-y0(E/V2) , a1=1+C £ yV(E/V2)
ga =% (_1)n+l 9—(n-1)/2 £ y(n)(é-/\/'z_) forn > 2 (18)

with C = \/7/2v and £ =1/v —u(z) .

From eq. (7) it is obvious that f; tends to zero if + approaches zero, i.e. in the
collision-dominated limit, and approaches f; = fog—'; i+ (v—u) fory = o0, ie.
in the collisionless limit. It is easily seen that in the collision-dominated limit with
~ — 0 the absolute value of ¢ tends to infinity , || — oo , and the result

: '
'1713% |gn|/n! =0 (19a)

holds for all values of n.

In the collisionless limit with 4+ — co but u -4 bounded the absolute value of £ tends
to zero , |£| — 0 . One then has

’Yl'i’néo|go| =1 fq =0 ,ql_i_.ngolgﬂ =1 qli’nc}o[gnlfn! = . (19b)

6



Consistent with the convergence of the series expansion (7) is the result for the
asymptotic behaviour for a fixed v , i.e. for bounded |£|,

lim g,/n!—0 . (19c¢)

n—oo

i) Moment series expansion

In most problems only approximate solutions with a truncated series expansion
are possible. The method consists in deriving first an infinite set of equations for the
coefficients g, , which is then approximated by a finite set. This set is obtained by
truncation, i.e. by putting all g, = 0 for n > N , where N is typically 3 . In order
to investigate the accuracy of this method we begin again with eq.(6), which is put
into the form

!

(v + 2—1,;) f1 =1 w(z) u (z) fo (20)

!

(v + %) fi=iu(z) ( Hea(w) +u Hey(w) + Heo(w) ) fo

when the explicit form of the first three Hermite polynomials is inserted. We multiply
this equation by He,(w) and integrate over v :

+o0

f dv Hen(w) - (€ —w) f1 = =1 4 (z) ( bno + u(z) n1 + 2 6nz) . (21)
Here the relation w - He,(w) = Hepy1 +n Henp—1 is applied. Inserting the series
expansion (7) for fi; we obtain the system

Nogn-1—€ gntgnt1 =060 +ubp1+262 , n=0,1,2,3,.. (22)

with g_; =0.

It is easily verified that the exact solution given by (18) satisfies the recursion (22).
We truncate at n = N obtaining N + 1 equations for the unknowns go,g1,...9n5 .
The approximate solution is denoted by §,. The system of N + 1 equations reads :



—€£-Got+tg1=1
go—€-g1+G2=u
2:1— & G2+Ggs=2
3:g2—¢:G3+ga=0

N-gn-1—&:gn=0 : (23)

Let Dy be the determinant of the homogeneous system and D; the determinant of
the system , where the i-th column is replaced by the right-hand side vector. The
solution for g; is then given by

gi=D:/Dn . (24)
We expand the determinant Dy in the elements of the last row,

Dy=—-¢(-Dy_1—N-Dn_2 ,

and obtain
Dy = Heny1 (=€) = (~1)M*! Heyia(6) - (25)

The solution for truncation at N = 0, 1, 2 and 3 is easily obtained and reads :

go=-1/¢ for N=0 (26a)
7o = (i/~) — =l N=1 (26b)
Q'O""z')' 1_52 bl gl— 1_52 3 =
_ . 1 _ 3+u-€ _ . 1
go=(1/’7)3_52 » 1= 3@ o 92:(23/’7)3_62 , for N=2  (26¢)
. 3—¢2 262 - g0 6¢ - o
dn = —_—_— di =1 -qJ, go — 5 gag = 5 f N=3
go = (/) €4 662 13 g1=1+§J0 , 72 €23 g3 e2_3 or
(26d)
We now examine the error due to the truncation. The difference
En - gn = gn 3 fOI‘ n S N (27)

again satisfies the recursion (22) with zeros on the right-hand side except for the last
element being —gn4+1 . The error e, is determined again by eq. (24) when D; is
replaced by the corresponding new determinant D; . The error due to truncation is
now derived for the first element o . The determinant Dy is evaluated by expanding
with respect to the elements of the first column which yields (—1)¥N*2. (—gn41) - Do

The determinant Dy is given by the corresponding matrix where the first row
and column are eliminated. This matrix now has in the first row an unit element
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otherwise zeros. Consequently this determinant has unit value and we obtain the
result

eo = Do/Dn = (—1)"*'gn4+1/DN = gn1/Hen41(€) - (28)

The error for the higher terms g1,g2, . . . . . . can then easily be derived from the
system of equations for the e, :

ex=E-e , e2=(—1)-e0 , es=(£—3¢) e . (29)
If truncation occurs for N with N < n the error is obviously given by
i = O , for N<n (27b)

For an overview we again consider various limits.

a)y—0

In the collision-dominated limit with 4 — 0 the absolute value of ¢ tends to
infinity , |€| — oo , and one has gy 4+1 o €~V and Heyy1 « V11, which implies for
eo the result 1irr%j leo] = 0 . The same result holds for all the e, with n < N . This

'Y——)

result is not surprising .

B)y— o0

In the collisionless limit with 4 — co but u - 4 bounded the absolute value of &
tends to zero , |£| — 0. For the asymptotic behaviour of Hex 1 the cases of even and
odd N are distinguished. When N is even,i.e. N =2 M , then Hepny has the limiting
form Hezpr1 = (N+1)! (—1)M ¢/(M! 2M) and hence Tli,ngo[ed =1/4 =0 . When
N is odd, i.e. N =2 M — 1, one then has Heapr = (—1)M N!/(M! 2M) and hence
Wli’ﬂc}olﬁd =[{/v|=0 .

Let us give up now the condition that |y - u| be bounded. If ¥ — oo and u is fixed,
it follows that £ — —u. With z = —u/+/2 it is concluded from (15) that

+oo
y(z) = Binl o 2/m / ds e | (30)
iu/\/2

when the relation (14) is inserted. Thus y(® has a finite value and gny41 « (—u)/~
. The error eg then becomes large at the zeros of Hen1(—u) . These zeros occur
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for N=1atu,=1,for N=2atu, =173, for N =3 at u. = 0.74 and 2.33 and
for N = 4 at u. = 1.36 and 2.86 . The error eo stays finite and is asymptotically
zero except for certain velocities close to u. given by the zeros of Hey y1(—u) . Thus
we get the surprising result that except for these special velocities, which are of the
order of the thermal velocity, the error approaches zero also in the collisionless limit.

This might, however, be a special property of the model considered here.

v) N — oo with || bounded

Owing to the convergence of the Hermite polynomial expansion we expect in
this limit a vanishing error. To study the asymptotic behaviour for a fixed v and
large N the relation (13b) is inserted in eq. (12) and we obtain for the coefficients g,

withn > 1
+oo

gn = _(E/'T) (_z-)n / ds & 8—82/24—:'53 ) (31)
0
With the relation
+oco
Vaew e &/2 = f ds e= ¢ /2+ite

in Rodriguez formula (9) the following representation of the Hermite polynomials is

derived :
+o00
1

Hen(€) €/ = (—1)" ——= / ds s™ e~ /2Hite

Then the error eq , eq. (28) , is given in the form

+oco

j‘ da: % e~ [2+iks
_ g2
eo = —(&/7) V2r e ¢/2 ﬁw (32)
f ds g™ e—92/2+iés
— 00
The integral in the denumerator is rewritten as
+oo +oo
I=(-1)" / ds s" =% 12— 4 / ds s™ e~ /2+ite ; (33)
0 0
where both integrands are of the form
ezp (n lns — s /2 F its) . (34)
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For an approximate evaluation by use of the saddlepoint method the exponent is

expanded around its maximal value, which is given by
so=F1€/2 +/n—E£2/4 (35)

, respectively. The second derivative of the exponent is —n/s* — 1 and has at
s = so the asympyotic value —2 . Therefore the value of these integrals is basically
determined by the factor exp (n Insg — s2/2 F i{fso) . The exponent is

Eo=nin(Va- (V1- &/an Fi¢/(2 V) - €/4— n/2 Fi¢/2 Vn— £2/4

which for large n becomes

Ey = —n/2 + ninyn Filyn . (36)

Then we obtain for the error

i¢V/n
- —&%/2 ¢
€o (&/7) V2 e e AT (37)
Since Im € =1/~ > 0 it holds with n = N + 1 that
lim |eo| £ e 812 ¢~/ VNFT _, o (38)
N —o00 9

Thus, the error eg approaches indeed zero for given v > 0 and sufficiently large N,
as one expects from the convergence of the Hermite expansion.

iii) Chapman - Enskog scheme

In the Chapman-Enskog expansion the term v -V f; « kv f; is neglected in
eq.(6). Then f; is given by

d
flz_v'ﬂfﬁ ) (39)
whereas the exact solution is
_ v dh
fr= 1+1yv dr el

It is easily seen that these expressions agree for small 4 but differ for large . The
solution (39) increases as <y but the exact solution becomes bounded.

For comparison, we cast f; into the form of eq.(7) with the factor (144v) v replaced
by 1 and obtain

go=1t-v , gi=1tu-y , and gz =21-7 . (40)
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3. Discussion

The physically relevant quantities of the system are the moments

+oco
= f dv f(v—u(z))* withpu=0,1,2and3 . (41)

— o

The exact and approximative solutions derived in the previous section allow one to
discuss explicitely the accuracy up to which these quantities are evaluated. The
explicit form follows from eqs.(27) (or (27b) respectively ), (28), (29), (18) and (23)
together with (15), (17) and (26b). Let us begin with the density

+00 +oo

5= fdvf:1+/dwf1:1+iu'(x)go ; (42)

— o —COo

Concerning this quantity it is appropriate to discuss the accuracy of n =n —1 with

respect to truncation in the moment series expansion (7). The relative error is then

given by
go — Jo gN+1
E(Q)y = ——— =¢€0/g0 = 43
( ) g0 0/ 0 H€N+1(§)'go ( )
In the same fashion the Chapman-Enskog scheme yields the solution
n—1=—u(z) 5 (44)
with a relative error )
go—1
E(0)c.p. = 21 (45)
go
For the first moments, the velocity, we get relative errors
E(l)y =e€1/91 =10 for N=0 (46a)
E(l)y =e1/g1 = £g for N>1 (46b)
1
and )
—iyu
E()cp = 21, (47)
g1
respectively.
For the pressure, u = 2, the result is
p=1+iu {go+ g2} (48)
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with a relative errorin p=p—1

€+ g2

E(2)y = for N=0and 1 49a
@)n go + g2 (492)
EQ2)n = €0 0 N>2 (49b)
go + g2 o
and a;
!
E2)cp. =1-— 50
(2)c.e go + g2 (50)

The last moment considered is the heat flux q, z =3 . We obtain

g =+iu {gs+3-g1} (51)

and the relative error is given by

E(3)y =10 for N=0 (52a)
3-€1+9gs3
E(3) y = ——— for N=1and 2 52b
(B)n 3-91+9s L
3l
B = e S (52¢)
3-91+g3
and a;
U
F3lecp =1— —m—— . 53
B)c.s 3:91+g3 (53)

In Table I we have collected the formulae of the relative error of the physical moments
when N terms are kept in the expansion. Clearly, higher moments such as the heat
flux require sufficiently high truncation.

In Figs. 1-4 the errors of the physically relevant quantities are displayed in depen-
dence of the collision time. The error in the density n = n — 1 , is shown in Fig.
1 . The absolute value of the error eg, defined in egs.(27) and (28), is displayed in
Fig. 1a) for a mean velocity v = 0.1 . If only one moment, namely N = 0, is kept
in (7) and (28), the error vanishes for small v as 1/¢ and increases with « for large
~ . This is immediately evident from the asymptotic limits of eq.(28) ; it is recalled
that Hey(£) = & For N > 1 the error vanishes both for small and for large  in
agreement with the asymptotic values of the g, discussed above. Clearly, the error
decreases with increasing number of expansion terms . The behaviour for even and
odd values of N is different. The dependence of the expansion coefficient go with
respect to -y is also displayed in Fig. 1a). It is emphasized that in the limit v — oo
the term go decreases as 1/~ . Similar results hold for different values of the mean
velocity u .

Now the relative errors are considered. The absolute value of the relative error in
the density # = n — 1, given by eqs.(42) and (43), is shown in Fig. 1b) for a mean
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velocity v = 0.01 . If only one moment, namely N = 0 , is kept in (7) and (43), the
error vanishes for small 4 as 1/¢ and increases with « for large v . This is again
immediately evident from the asymptotic limits of eq.(43). For N > 1 the error is
bounded and decreases for large ~ , which is again easily seen from the limit v — oo
of eq.(43) . Since the quantity go and its error eo both vanish for large v as 1 /v,
the relative error E(0)y assumes then a constant value. The behaviour for even and
odd values of N is different, but the the error decreases as the number of moments
increases. It is emphasized that for N = 9 the error is less than 10% and further
that for N = 3 , i.e. with the heat flux included, the error is less than 30% and
rapidly decreases for large «y . If the mean flow velocity u(x) is increased, the error
increases accordingly for large 7 , especially if 4 - u is larger than unity. The case
for v = 1.0 is plotted in Fig. 1c) . Here the error increases with v for N = 0 and
N = 1. The Hermite polynomial He,(¢) = €2 — 1 scales for large v and v = 1.0
as Hez(€) ~ —2i-u/vy — 0 and , hence, the error diverges in this case. For N > 2
the error remains bounded. In the collision-dominated regime the error decreases
when the number of Hermite polynomials is sufficiently large. In the collisionless
regime the relative error is finite but not small. It is emphasized that the case where
the mean flow velocity equals the thermal speed is mostly not of physical relevance.
Nevertheless, it is interesting that this method still produces reasonable results.
The error for the velocity (4 = 1 in eq. (41) ) given by (46a) and (46b) is shown
in Fig. 2. For N = 0 the error is unity by definition and is large for N = 1 in the
collision-dominated regime. This is due to the fact that e; = £ eg and that these ¢
factors cancel. In Fig. 2a) the mean flow velocity is small © = 0.01 . It is seen that
for N > 2 the error is small and vanishes in both limits v+ — 0 and v — co . The
case of u = 1.0 , Fig. 2b) , yields for N = 1 a large error for small as well as for large
~ owing to the behaviour of Hey(&) as discussed above. For truncation at N = 3
the error is quite small everywhere. Especially in the collision-dominated regime the
error decreases with sufficiently high N . It is recalled that g; approaches unity for
large v .
The pressure p ( # = 2 in eq. (41) ) is approximated well only for N > 2 . But
let us, nevertheless, discuss the relative error also for N = 0 and 1 . In Fig. 3a) the
error is displayed as a function of « for v = 0.01 . For N = 0 and 1 the error is given
according to egs.(27b) and (49a) by

_ 92190~ 9o

do
E(2 e e : 54
()N go + g2 go + g2 (54)

For N > 2 eq.(49b) applies. In the collision-dominated regime, i.e. v — 0, go as
well as g2 are proportional to « as follows from (18) and (19) . From eq.(26a-b) the
result for go is known and, when inserted into (54), the «y factors cancel and the error
assumes a constant value. The collisionless limit, v — co with |£| — —u for fixed
velocity , yields a different behaviour. Eq.(23) is used to express go + g2 by u+ £ g1
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with lim g; = 1, see eq.(19b). It follows from eqgs.(18), (19) and (26a) that the

y—00
error diverges as 4 for N = 0. For N = 1 the error is given by

o 1 ¢
EQnm1l-1—m="1-@ O (54b)

and vanishes except in the case £2 ~ 1. Thus for v = 1.0 , where £2 — 1 ~ —27-u/vy
, the error again diverges for large «y as is seen from Fig. 3b) . For truncation at
N > 2 in the Hermite polynomial expansion the error remains bounded as is seen
from Figs. 3a) and b) . It is emphasized that for N = 3 the relative error is less than
10% and rapidly vanishes in both limits ¥+ — 0 and oo for small mean flow velocity
u.
The last quantity discussed is the heat flux (¢ = 3 in eq.(41) . For N = 0 the error is
by definition unity and is given for N = 1 and 2 according to egs.(27b) and (52b) by
371

E(B)y =1 " (55)
For N > 3 the error is given by (52c) . The error is displayed in Fig.4 for u= 0.01
and u = 1.0 . In the collision-dominated regime the error decreases with v — 0 .
This follows from the limiting forms of the above formulae and is clearly seen in the
figures for u = 1.0 , while for u = 0.01 the error is close to unity at v = 1072 . In
the collisionless limit the denumerator assumes the value 3g; =~ 3 . The result in eq.
(26b) shows that g3 — 1 for N = 1 and 2 and, thus, the error vanishes. In the case of
u = 1.0 the denumerator 1—¢2 , eq.(26b) , causes the different asymptotic behaviour.
The error for higher truncation remains bounded and is quite small. For N = 3 the
error is less than 10% everywhere. These findings agree with the asymptotic limits
derived above.
In summary, it has been explicitly shown that the moment method based on a Her-
mite series expansion including density, velocity, pressure and heat flux, i.e for N =
3, yields sufficiently accurate results for all values of the collision time if the flow ve-
locity is sufficiently small (v-u(z) < 1) . In particular, the mean-free path need not
be smaller than the connection length. The validity of the fluid model is guaranteed
if the distribution function is close to a Maxwellian. The scheme yields reasonable
results even in the case of large flow where the flow velocity becomes comparable to
the thermal speed. For tokamak transport the plasma flow is significantly smaller.
Following the Chapman - Enskog scheme, neglecting the term iyv f; in the egs. (4)
and (6) yields a wrong dependence of the distribution function f; on v for large 7.
Whereas the exact solution f; is bounded , this solution increases as . The relative
error of the various moments with respect to the exact solution is displayed in Fig.
5. Obviously, the accuracy of this approximation is only good for ¥ < 1 . The de-
pendence on the velocity u is then, of course , not pronounced.
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This means that the Chapman-Enskog scheme is only accurate in the collision-
dominated regime.

4. Conclusions

In this paper we have demonstrated with an example that a Hermite series

expansion of a kinetic equation gives a fair approximation to the original kinetic
equation. Such moment series were used to model transport many years ago in two
fundamental papers/12/, /13/. Both of these papers developed a system of equations
for total momentum and total energy transfer as well as an Ohm’s law and equations
for each species for stress and heat flow. Braginskii/2/ used a Chapman - Enskog
expansion to obtain a system of fluid equations for each species. The justification for
a Chapman - Enskog expansion and for a Hermite series expansion are drastically
different the range of validity of the second approach extending far beyond that of
the first method, as is evident from our model equation .
The basic conclusion of our study is the validity of a certain macroscopic modelling
of tokamaks in the low-collisionality regime at least as far as particle trapping and
untrapping does not play a role. This problem will be investigated in a following
paper on the basis of a simple Fokker-Planck type model equation.
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[ g2+teo
0 go 1 gz2+4go 1
1 eo e _ &eo H gas+3e,
go g1 g1 ga+3g1
2 eg e eotex _ §'2-eu ||
go g1 go+9g2 go+g2
3 eg er egtex 3eytes _ §3‘80
do g1 go+g2 3g1+g9s 3g1+g3

Table I : The relative error in the physically relevant quantities

as a function of truncation; € =i/y —u(z) , eo= Eﬁf;(—a
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Figure Captions :

Fig. 1a: The absolute value of the error of the zeroth moment eg = go — go defined
in eq.(28), where go is the exact solution and go is obtained by truncation at n = N
, as a function of collision time for a mean velocity v = 0.1 . In normalized units
~ = T - vz, - k denotes the ratio of the mean-free path and the scale length k~!. The
number of truncation N is indicated on the curves. For comparison the value of go (
dotted line ) is given.

Fig. 1b: The absolute value of the relative error for the density 7 = n — 1 defined
in eq.(43) as a function of collision time for a mean velocity v = 0.01 . In normalized
units 4 = 7 - v¢p - k denotes the ratio of the mean-free path and the scale length bt

. The number of truncation N is indicated on the curves.

Fig. 1c: The absolute value of the relative error for the density 7 = n — 1 defined
in eq.(43) as a function of collision time for a mean velocity v = 1.0 . In normalized
units v = 7 - v4p, - k denotes the ratio of the mean-free path and the scale length k1
. The number of truncation N is indicated on the curves.

Fig. 2: The absolute value of the relative error for the velociy w defined in eq.(46a)
and (46b) as a function of collision time . In normalized units v = 7 - v4 - k denotes
the ratio of the mean-free path and the scale length k~! . The number of truncation
N is indicated on the curves.

a) for a mean velocity u = 0.01 .

b) for a mean velocity v = 1.0 .

Fig. 3: The absolute value of the relative error for the pressure p = p—1 defined in
eq.(48) and (49a-b) as a function of collision time . In normalized units vy = 7-vsp - k
denotes the ratio of the mean-free path and the scale length k~! . The number of
truncation N is indicated on the curves.

a) for a mean velocity « = 0.01 .

b) for a mean velocity u = 1.0 .

Fig. 4: The absolute value of the relative error for the heat flux q defined in eq.(51)
and (52a-c) as a function of collision time . In normalized units v = 7 - v¢s - k denotes
the ratio of the mean-free path and the scale length k~! . The number of truncation
N is indicated on the curves.

a) for a mean velocity v = 0.01 .

b) for a mean velocity v = 1.0 .

Fig. 5: The absolute value of the relative error as a function of collision time of
the Chapman-Enskog expansion for the density 7 = n — 1 , veloctiy w , pressure
p=p—1,and heat flux q defined in eqgs.(45), (47), (50) and (53) . . In normalized
units 4 = 7-v¢h -k denotes the ratio of the mean-free path and the scale length k=1 .
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