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Abstract

The nonlinear drift wave equation

@ + a®izz + ¢@; + fOO, + 4@ = —esin(Kz — Qi)
with wave-like driving term is analyzed numerically. The location of coexisting attractors,
the smooth bifurcations of solutions on them and the catastrophic bifurcations between
them are investigated. A global bifurcation of the blue sky catastrophe type is made
plausible. Several routes to chaos in the time domain (continuous spectrum) are observed.
They may or may not be connected with spatial chaos (soliton-type turbulence). Fourier

analysis in space and time reveals the nature of the solutions outside the continua.



1. Introduction

Nonlinear dynamic systems such as maps or ordinary differential equations exhibit a sur-
prising wealth of behaviour, as evidenced by any book on the subject, e.g. /1/. Major
topics are the analysis and classification of bifurcations and the routes towards chaotic
behaviour. The interplay between theory and numerical experiments has been particularly
fruitful for simple paradigm equations such as the Lorentz system or, in the case of exter-
nal periodic driving, the forced Duffing equation. Space dependence typically changes the
equations into partial differential equations. Owing to their complexity their properties as
dynamic systems are much less well known.

In the present study we investigate a one-dimensional nonlinear PDE which arises as
a simple model equation in the context of driven plasma drift waves /2/. The equation

considered is

% + a% + cg—i + f@g—i + 4% + esin(Kz—Qt) = 0 (1)
with periodic boundary conditions in z. It has already been studied in a wide range of
driving frequencies (1 /2/, /3/. The solution exhibits complicated behaviour which is re-
peated to some extent in cell-like domains of decreasing size for 1 — 0. Hysteresis and
various bifurcations have been observed but have been studied in a rather preiiminary way.
The aim here is to do a systematic study of the attractors present and of the smooth and
catastrophic bifurcations, respectively, on and between coexisting attractors. We try to
separate local bifurcations from global ones, caused by collision with unstable manifolds.
New types of solution and new routes to chaotic time behaviour in comparison with the
previous work on equ. (1) are identified. Chaos in time is found to be not always accom-
panied by chaos in space. We concentrate on the cell in the region 0.44 < (1 < 0.65, which

exhibits a rich and typical variety of phenomena.
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In Section 2 we present the solution ®(z,t) and the energy E(t), as a classification
scheme, for a few selected values of () as functions of the driving amplitude e. Section 3
puts these pieces together into a state diagram ¢(f2). In Section 4 we try to interpret the
bifurcations observed. Some of them may be understood in terms of how equ. (1) is related

to the driven Duffing equation. Section 5 contains a summary of the results obtained.



2. Spatio-temporal properties

Equation (1) contains seven free parameters. We study the dependence of the solution
®(z,t) on the amplitude € and frequency Q of the driving term esin(Kz — ). The other
coefficients are kept fixed throughout. The values @ = —0.28711, ¢ = 1.0, f = —6.0, v =
0.1 and K = 1 are chosen as in previous work /2/, /3/. In this section, we restrict
the discussion to a few typical values of 2 and study the continuous dependence on the
amplitude e.

Equation (1) is solved numerically with periodic boundary conditions, with the spectral

ansatz

N-1
(z,t) = Z P (t) exp( ikz) at & =8 =5, 1= 0. N—1L (2]
k=0

The nonlinear term is evaluated in coordinate space with IV grid points by using fast Fourier
transformation with dealiasing. For nonchaotic solutions N = 128 is usually sufficient.
Time integration of the ordinary differential equations for d®/dt is performed with a
standard predictor-corrector scheme with time step At = 1072 in most runs.

Depending on the situation, initial transients die away at appreciably different rates,
ranging from smooth decay to sudden explosive transitions. Thus, (quasi-)stationary sit-
uations are obtained after times to ranging from 10 to 10*. Transients will not be shown
here.

A very useful means of discriminating between different classes of solution is the time

dependence of the energy E(t), which is defined as



In the absence of driving and damping E(t) is a constant of the motion.

In the following E(t) and the solution ®(z,t) will be discussed at 1 = 0.48, 0.525, 0.59,
0.625 and 0.65. The values are selected in such a way that new features occur at each

frequency.

2 = 048:

At small driving amplitudes € the energy E(t) becomes constant asymptotically (see Fig.
1a) just as in the case € = y = 0. The solution ®(z,t) is a plane wave moving with the
phase velocity v = /K of the driving term (see Fig. 1b). The Fourier transform 6((»)
of ® with respect to ¢ at a fixed position is composed of integer multiples of the driving

frequency 1.

With increasing e, this situation continues until around € = 0.067, where E(t) becomes
slightly periodic with frequency wg = 0.683 (see Fig. 2a). (The time interval in this and
all analogous figures is At = 800.) To the eye the solution ®(z,t) still looks qualitatively
unchanged (see Fig. 2b). (In the figures of ®(z,t) the time interval is much less, At = 36.
The zero of the ordinate is such that the space average < ® > is zero, in conformity with

d<®> [dt=—y<®> and 4t >> 1))

Just above ¢ = 0.067 the solution is abruptly changed in type into a state with higher
energy and more vigorous motion; see, for example, Figs. 3a, 3b. If such a higher-branch
solution ®(z,t) is used as initial condition, but with e decreased, the higher-branch solution
is found to coexist in a narrow e interval with the lower branch. The situation, with the
concurrent hysteresis loop, say between ¢; and e, is shown schematically in the insert of
Fig. 8. Figures 3a, 3b contain the higher-branch solution at € = 0.067, coexisting with
that of Figs. 2a, 2b. E(t) is a quasiperiodic function based on the two incommensurate

frequencies wg = 0.679 and w}, = 0.023 and their multiples, as is evident from the spectrum
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E(w) shown in Fig. 3c. The solution ®(z,t) in Fig. 3b retains the basic wave-like structure
of the lower branch, with the periodic sequence of high and low maxima. Superimposed on.
it, however, is a strong wave-like motion in the opposite direction. The spectrum ;I;(w) is
based on the same fundamental frequencies as E(w], in addition to the driving frequency (1.
This property is observed in all cases considered. It is therefore more useful to concentrate
on E(w), which is free of the trivial nQ) lines,n = 1, 2, ....

With e decreased slightly more, the higher branch has a periodic E(t) with large am-
plitude (see Figs. 4a, 4b). Obviously, the smooth transition E(t) = constant — weakly
periodic — more strongly periodic — weakly quasiperiodic, etc. is interrupted by a fold

(see insert in Fig. 8), so that part of this transition is obscured from view by instability.

When the driving amplitude is further increased the quasiperiodic character of E(t)
becomes more pronounced. At the same time ®(z,t) becomes “rougher”: see Figs. 5a,
5b for € = 0.07. While wg stays constant, w’; decreases and the number of harmonics
in the spectrum grows. Between ¢ = 0.071 and 0.072 the spectrum practically becomes
dense, with just the frequency wg standing out from the continuum. At the same time
®(z,t) develops localized humps of the soliton type. Figures 6a - 6¢ show the situation at
the slightly higher value € = 0.08. E(t) is an intermittent function, the basic oscillations
being interrupted by stochastic bursts. Soliton-like features persist for some time until
they merge or decay.

Obviously, there is a transition taking place in the character of the solution: local effects
with characteristic length < periodicity interval become dominant. We call this regime
“chaotic” since the “solitons” seem to occur more or less at random positions. Details of
the chaotic regime will not be discussed here.

At still higher driving amplitude the number of “solitons” grows until they dominate
the whole interval; see Fig. 7b for € = 0.12. The intermittent behaviour of E(t) has given
way to a smoother stochastic function (see Fig. 7a). The number of grid points should be

increased in cases with pronounced soliton behaviour. We used N = 256 and N = 512 in
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test runs. Apart from better resolution the phenomena are unchanged.

The properties of the solution for {2 = 0.48 so far discussed are collected in the bifurcation
diagram in Fig. 8, which shows the energy F versus the driving amplitude €. For nonsteady
E(t) the minimum and maximum values during some reasonably large time interval are
given, connected by vertical lines. The symbols mean: (o) periodic, (A) quasiperiodic E(t);
(x) stands for chaotic ®(z,t) (i.e. with “solitons”), here in conjunction with a continuous
spectrum. The chaotic regime is seen to join smoothly to the quasiperiodic one. Both
the average energy and its variation AE = FE, 4z — Emin grow steeply with increasing e
in these regimes. The insert shows schematically the narrow hysteresis discussed above.

Each fold originates from a saddle-node coalescence of stable and unstable cycles.

1 = 0.525:

Figure 9 shows the bifurcation diagram FE(e) . While the upper part of the figure is
qualitatively unchanged, an additional big hysteresis loop has developed at intermediate
values of e. The arrows indicate the position of the jumps from one branch to the other
which occur at € = €, = 0.0510 and € = ey = 0.0643. In the hysteresis regime two different
solutions with constant E(t) coexist. Figures 10a and 10b show the low-branch solution
(L) and the high-branch solution (H), respectively, for ¢ = 0.06. Both are plane waves

with v = 1/ K, and the H-solution resembles ®(z,t) from Fig. 1b.

All bifurcation diagrams were obtained by the step-by-step method: the solution ®(z,t)
at some arbitrary time ¢ in the (quasi-)steady-state regime is used as initial condition for
a run whose value ¢ is increased or decreased by a small amount Ae. Ideally, Ae should
be infinitesimally small. In practice, a compromise between accuracy and expenditure of
time is necessary. With respect to the chaotic branch this occasionally causes problems

(see below).



1. = 10:59:

At higher values of (1 the hysteresis between the L- and H-branches becomes more extended.
In particular, the upper end of the hysteresis, eg, grows. As a consequence, for {1 2 0.55
the L-branch jumps into the periodic, the quasiperiodic or even the chaotic part of the
H-branch.

A new phenomenon is evident in Fig. 11, the bifurcation diagram for {2 = 0.59: the
low branch develops an extended section with periodic E(t)(see Fig. 12a). Analysis shows
that the transitions to and from periodicity at the two critical values € = ¢, = 0.0717 and
0.128 are Hopf bifurcations: the periodic part of E(t) grows as |e — EQI% in the vicinity
of the bifurcation points, while the frequency wg stays approximately constant. ®(z,t)
resembles the previous L-branch type. What used to be plane waves, however, is now
twisted back and forth during wave propagation. This ®(z,t) (Fig. 12b) is quite different
from the periodic cases in the higher branch, as comparison with Fig. 4b shows.

While the L-branch develops a periodic section, the H-branch develops a gap (see Fig.
11). The latter sets in at the end of the quasiperiodic part or right after the beginning of the
chaotic part in which it grows. The values of E(t) after the chaotic part re-emerges exceed
the scope of the figure. The underlined crosses in the upper right corner are therefore
meant to indicate the extent of this branch with respect to € only. The main section of
the high branch can now no longer be reached by the step-by-step method. Experience
shows that it is attainable by starting with a simple sinusoidal function ®(z,t = 0) with a
sufficiently negative constant added.

The preliminary end of the H-branch at € = 0.109 offers a good opportunity to study
®(z,t) in the intermittent state, already observed at lower ) also. Figure 13a shows a
pronounced case. The two horizontal bars indicate a quiet phase and a strong peak in
E(t). Figures 13b, 13c show ®(z,t) during these two intervals. In the quiet phase, Fig.

13b, the solution is still basically a plane wave, while during the peak, Fig. 13c, backward
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moving local humps and crests are superposed on the waves.

Finally, the narrow hysteresis observed at {1 = 0.48 and in the H-branch at {1 = 0.525
has levelled out here at {2 = 0.59. The transition from E = const via Hopf bifurcation to
periodic F and further via secondary Hopf to quasiperiodic E has become a continuous

process.

1 = 0625:

The bifurcation diagram is given in Fig. 14. The low branch offers a new feature again:
the periodic section is interrupted by a section with period doubling (marked by pluses
(+)) between € = €, = 0.167 and 0.179. The function E(t) and its spectrum at e =
0.167 in this regime are given in Figs. 15a and 15c. Apart from the dominant frequency
wg = 0.338, which is close to the value in the periodic section, its subharmonic wg/2 is
evident. The period doubling refers to wg only. There are no components with {1/2 in
the spectrum i(w) The solution ®(z,t) in Fig. 15b, although more vigorous than in the

periodic situation, is still of the twisted-wave type.

1 = 0.65:

This is the highest value of the driving frequency {1 considered here. A host of new
phenomena arise. To the bifurcation diagram, Fig. 16, a schematic one, Fig. 17, is added
in order to bring out the details.

A fold develops in what used to be the low branch, dividing it up into two sub-branches,
(I) and (II). The periodic part of the low branch, branch (II) in Fig. 17, extends up to ¢
= €co = 0.1926, where it jumps (slightly) down to the lower pleat. Branch (I) is marked

with black squares in Fig. 16. It begins at ¢ = 0.1774 with a period-doubled state with
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respect to wg = 0.403. This state changes smoothly into a situation with wg, wg/2 and
an incommensurate frequency w’. Figures 18a and 18c show E(t) and E(w) at e = 0.182
in this regime, with wg = 0.399 and w), = 0.054. Just as in the quasiperiodic part of the
H-branch an increase of € decreases wl; and increases the number of harmonics of w} in
E(w) until the spectrum is practically continuous except for broad peaks around wg and
wg/2. This occurs at € = €., ~ 0.188 (see Figs. 19a, 19¢c). Around e = 0.185 there is also
a small region with mode locking of w; with wg /8. Further increase of € across €[, brings
the system back to a period -doubled state. This is followed by a whole period-doubling
sequence, with wg/4, wg/8, wg/16 etc. occurrin in ever faster succession and crowding
the spectrum until £ (w) again becomes a continuum at €s, = 0.1926. It is probably no
coincidence that branch (II) ends right at this value of . The continuum state extends
up to € = 0.2005, where it jumps up into the chaotic state. Figures 20a, 20c at ¢ = 0.200
show E(t) and E(w) in the continuum region, while Figs. 21a, 21b have € = 0.201 and

show the strong soliton chaos after the jump.

It remains to discuss the space dependence of the solution in the L-branches. In order
to appreciate the result, it is useful to remember the behaviour in the H-branch (or at Q2
= 0.48, which is equivalent to it in this respect). In this branch, if we disregard the plane
wave solutions, ®(z,t¢) has strong backward moving components: see, for example, Figs.
3b, 4b. With increasing €, the spectrum E(w) becomes denser until it becomes continuous.
At the same time the backward moving components become stronger until everything piles
up to chaotic solitons with a continuous spectrum in k also. Thus, the behaviour in space

and the behaviour in time are closely linked in the H-branch.

In the L-branch non-plane-wave solutions encountered so far are of the smooth twisted-
wave type, see, for example, Fig. 15. At 0 = 0.65 the L-branch (II) with increasing €
acquires some backward motion also: see Fig. 18b at € = 0.182. This continues into the
beginning of branch (I), but with further increasing e, the tendency is back to the twisted-

wave type. Nevertheless, as discussed above, the spectrum E(w) becomes denser and
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denser and reaches a continuum at e, and again at €o,. As a consequence, a chaotic time
dependence with a continuous spectrum E(w) coexists with a smooth space dependence.
This situation is shown in Figs. 19a-c and 20a-c at € = 0.188 and 0.200, respectively. They

prove that the behaviour in space and that in time are not closely linked here.
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3. State diagram

In the last section the properties of the solution of equ. (1) and the resulting bifurcations
were studied at a few selected values of the driving frequency 1. Here we sum up this

study and fashion it into the state diagrams in Figs. 22 and 23 in the (¢, (1) plane.

Different types of solution are marked by different symbols according to the properties
of E(t). Dots (e), circles (o) and pluses (+) denote E(t) = const, periodic and period-
doubled, respectively, while squares, circles with plus (@) and crosses (x) indicate period-
quadrupled (or higher), quasiperiodic and chaotic energies, respectively. Coexistence of

two different branches is marked by two symbols beside each other.

The end of a branch, i.e. a catastrophic bifurcation, is marked by a solid curve. Dotted
curves correspond to smooth transitions from one type of solution to another, i.e. to
continuous bifurcations. The catastrophic end of chaotic sections is not marked by a solid
curve but by a dashed one in order to indicate a less reliably determined course. (As
mentioned in the previous section, precisely locating the jump out of strongly fluctuating
soliton-type solutions requires a great deal of effort. It may not even be well defined but

could be a function of the moment at which ¢ is infinitesimally modified.)

Figure 22 shows the situation in the region {1 = 0.44 - 0.65, which has already been
investigated in a very preliminary way /2/. Arrows at the bottom of the figure indicate
those values of {2 which were extensively discussed in Section 2. The main features are the
pointed “horn” ending in a cusp at {} = 0.50, the rounded-off horn ending at {2 = 0.458,

and the dotted Hopf bifurcation curve e..

The pointed horn consists of the upper boundary ey of the L-branch and the lower
boundary €, of the H-branch. Of course, there is an unstable fold connecting the two

branches.
The narrow hysteresis between ¢; and e, forms the bottom of the rounded horn. e
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turns upward and to the right at {2 ~ 0.458, thus creating the horn in which E(t) is
chaotic except in the lower boundary region. To the left of {} = 0.458 the E = const
branch exists without interruption for all € (inside the bounds of Fig. 22). The “envelope”
of the horn, which includes periodic, quasiperiodic and chaotic E(t), continues to the left

until it vanishes at {1 ~ 0.41.

The rounded horn meets eg at {1 =~ 0.55. At this point the narrow hysteresis vanishes
in another cusp and the bottom of the horn continues as a smooth bifurcation inside the
H-branch. Where it collides with the Hopf curve €, at {1 =~ 0.58 a new pair of catastrophic
bifurcations is created, which opens up a gap in the H-branch. At low € the gap is bounded
by the end of the quasiperiodic region (®), solid curve, and at higher € by the end of the
chaotic region (x), dashed. Since the dashed curve almost parallels the Hopf curve e,
it is tempting to speculate that the H-branch attractor is destroyed by collision with
the aforementioned unstable manifold which connects the L- and H-branches and which
presumably is also perriodic in this region. The location of the lower end of the gap supports
this view: quasiperiodic solutions are much less extended in phase space than chaotic
ones, by definition as it were. Hence, they are less likely to collide with the neighbouring
unstable manifold. The bifurcation therefore seems to be of a global type, called “blue sky
catastrophe” in /4/ and /5/, and is analogous to a boundary crisis of Grebogi, Ott and
York /6/. The collision may involve a homoclinic orbit, which is presumably present in

phase space (see next section).

In the upper right corner of Fig. 22 additional features exist, which are shown enlarged
in Fig. 23. ey and the almost parallel reverse Hopf bifurcation ¢, are still continuations
from Fig. 22. The lower end of the chaotic branch (da.shed) veers away from €p, €, and
moves obliquely across the figure. New, however, are the period-doubling region (+), and
its inclusions, the period-quadrupling (and higher) region (square) and the quasiperiodic
region (@). The two solid curves to the right mark the lower end of the L-branch (I) and

the upper end of the L-branch (II).
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It is evident that at the two values of 2, 1; = 0.6287 and {13 = 0.6415, which are marked
on the axis, an abrupt change of the underlying attractors takes place: at {1 = (1; the period
-quadrupling region ends while the period-doubling region grows discontinuously. At 1 =
1, the fold in the L-branch begins, which creates the branches (I) and (II). At the same
time the extent of the L-branch shrinks until its boundary ey seems to coincide with the
boundary of the (chaotic) H-region. The dashed curve should therefore be understood as
coinciding with a solid curve ex. The previously existing finite overlap between L and H
is destroyed, and with it the sequence period quadrupled — doubled — periodic — const,

which takes place at lower values of 1.

The nature of these events at {1; and 1, which are reminiscent of interior crises, is not

yet known. Collisions with homoclinic orbits may be involved.
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4. Discussion

In order to understand at least some of the bifurcations observed, it is useful to consider
first those cases in which the solution ®(z,t) depends ont’/ = t — K z / Q only, i.e.
solutions whose phase velocity coincides with that of the driving term. With the spatial
periodicity assumption for ®(z,t), equ. (3) in this case immediately yields E(¢) = const.
This fits the numerical observations that E = const cases, (e), always have plane-wave
-type ®(z,t); see Figs. 1a, 1b and Figs. 10a, 10b.

Equation (1) transforms to

aK2® + QQ-cK)® + 107 @ — fKQ 8d = 0? sin(0t)) (4)

where the dot means 9/9t". If for the moment the damping is neglected by putting v = 0,

equ. (4) can be integrated once. Putting a damping term, say u ®, back on yields

é+y<§+r¢>+s@2:5cos(ﬂt') 3 (5)

with r = Q(Q — ¢K)/(aK?), s = —fKQ/(2aK?), § = —eQ1/(aK?) and p proportional to
. This is a Duffing-type equation with potential V(®) = r®2/2 + s®3/3, with r > 0
for 0 <2 <1 and s < 0O for our choice of parameters. The undriven, undamped equation
is derived from the Hamiltonian H(®,®) = r®2/2+ s®3/3 + 2/2 and contains a saddle
and a homoclinic orbit.

Duffing equations with various (single- and double-humped) potentials V' (®) are one of
the paradigms of nonlinear dynamics and are treated in most books on the subject: see, for
example, /1/ and /7/. Duffing equations offer a rich variety of phenomena. Nonlinearity
skews the resonance curves and causes hysteresis. Period doubling and transition to chaos

are observed /8/. Subharmonic and ultrasubharmonic resonances lead to a superstructure
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of cell- or horn-like regions in amplitude-frequency space /9/. Homoclinic tangency with
fractal basin boundaries and crises are observed /5/, /10/ and /11/.

Classical methods for ODEs, such as harmonic balance, e.g. in /12/, can be used to
derive approximate analytical results on stability and bifurcations. In our diagrams the
only bifurcations between E = const solutions take place in the low-{2 part of the ey - €L
hysteresis but we shall not analyze it here. It is useful, however, to have a simple model for
locating the most prominent resonances to be expected. The “oscillator” of the left-hand
side of equ. (4) should show a particularly vigorous reaction to the periodic driving term
whenever the driving frequency equals a harmonic of the oscillator’s eigenfrequency (lo.
Amplitude-dependent, exact eigenfrequencies of solitary-wave-type solutions in the case of
zero damping are well known /2/ and can be used to discuss the resonance conditions,
/13/. Here, however, it suffices to consider the linearized oscillator. With the ansatz

®(t') ~ exp(iQot’) and the resonance condition {1 = nflg, equ. (4) with v = € = 0 yields

¢
= I, =Fe—a, = 1,2,... . 6
1—an?K? = (6)

With the parameters chosen above one obtains {1; = 0.777, {12 = 0.465 and {13 = 0.279
(not to be confused with Q, in Sec. 3). Thus, in the present range {} = 0.44 - 0.65
the n = 2 resonance should play a réle. This is indeed observed. For {1 = 0.525, for
example, w = 2{} is the strongest line in the spectrum a(w) in the L-branch in the interval
€, < € < €g. In the H-branch it is the second strongest, after the fundamental w = (1.
The values Q,,, » = 2,3... up to 18 agree well with the positions of “cells” observed in the
extended overview for equ. (1) in /2/.

Investigation of equ. (4) would of course also reveal period-doubling phenomena, etc.
Such solutions, however, are excluded from our numerical results by the built-in restric-
tion to fixed periodicity length 27, because for a plane-wave solution period doubling is

connected with prohibited periodicity length doubling.

16



Thus, equ. (1) is not allowed to “do” very much with plane -wave solutions. The
previous sections show how it uses its freedom as PDE for solutions other than plane
waves. As mentioned in Section 2, the possibility to period-double in T' = 27 /(Q, with the
longest scale length now being fixed and the phase velocity being halved, is not realized.
What actually happens is revealed by Fourier decomposition into waves ® k(w) according
to ®(z,t) = .Y Pr(w)) exp(i(kz — wt)). Figures 24 and 25 present two typical cases.
The first is an :x:mple of the twisted-wave-type solution encountered in the L-branch (see
Fig. 12b), while the second is typical of the H- (and h-) branch with its counterpropagating
components (see Fig. 4b). Both figures show & (w) for w > 0 (solid) and w < 0 (dashed)
for k = 1.

The highest line in Fig. 24 is at the driving frequency 2 = 0.59. All other lines
present are at positions w = wi,m = 0+ mwg, m = +£1,42,..., where wg = 0.330
is the Hopf frequency of the periodic E(t). With increasing |m| the amplitudes quickly
decrease, so that in particular the negative frequencies, wy,_3, wy,—3 etc., are negligibly
small. Essentially all phase velocities %1,m = wi,m/k = (0 + mwg)/K are positive and
are centred around v = 1/ K of the driving term ~ sin(Kz — 2t). For k = 2 the spectrum
is of the same type, with lines at w = wy ;m = 20 + mwg, m = 0,+1,4+2,.... Again
the phase velocities uz ;m = wom/k = (0 + mwg/2)/K are centred around /K, and
analogously for higher k. This gives the twisted-wave type of Fig. 12b.

Somewhat unexpectedly, it turns out that the “counterpropagating” case (Fig. 4b) is not
basically different (see Fig. 25). Again, at k = 1 the highest component is w = Q0 (= 0.48)
and all other lines are at w; ,». The only difference is that the decay with |m| is slower
and wg is larger. As a consequence, wy,—1 = {l —wg is already negative and only a factor
of 5.5 smaller than the fundamental. For k > 2 the situation is similar. This explains the
backward motion observed.

Analogously, for period-doubled and quasiperiodic energy E(t) the spectrum & k(w) con-

sists of lines wg,m = k1 + mwg/2 and wg,m1 = kO + mwg + lw;, respectively, etc. For
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chaotic E(t) the line w = k) stands out from an otherwise continuous spectrum %k(w).
In these cases spatially chaotic and spatially regular behaviour are associated with lack of
decay and rapid decay, respectively, of the mode amplitudes with respect to k.

It should be possible to derive analytic results on local bifurcations by generalizing, for
example, the harmonic balance method from pure oscillations to wave-like modes. For
an insight into global bifurcations, however, it is indispensable to have a knowledge of
the complete phase portrait. In view of its infinite dimensions some kind of diagnostic

reduction would obviously be necessary.
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5. Conclusions

The partial differential equation (1) with periodic boundary conditions was studied numer-
ically in a finite region of amplitude € and frequency 1 of a driving wave esin(Kz — (t).
In contrast to previous preliminary investigations /2/, /3/, the location of attractors, the
properties of the solutions on them, and the bifurcations both on the attractors (smooth
bifurcations) and between coexisting attractors (catastrophic bifurcations) were systemat-
ically studied.

With increasing amplitude and frequency a variety of phenomena unfolds. These are col-
lected in the state diagrams Figs. 22 and 23, which show the regions of different behaviour
of the energy E(t). In addition to the known types of constant, periodic, quasiperiodic or
chaotic energy E(t), period-doubled, period-quadrupled, etc. types with respect to a Hopf
frequency wg were discovered. Continua in the frequency w were found to be approached
either by a period-doubling sequence in wg or by decrease of a secondary Hopf frequency
wh. |

The bifurcation diagrams E(e) are less packed with information and therefore better
suited to describe, for example, the coexistence of different branches; see Figs. 8, 9, 11,
14, 16 and 17 at selected values of ().

The solutions ®(z,t) themselves are presented graphically for most of the typical cases

mentioned above. Away from the frequency continua all solutions are of the form

®(z,t) = > D D Ppmyr exp{in[ Kz — (0 + gwE + -f;w;g) t]y . ()

n#0 m,l r#0

with @, , 1 rapidly declining for large |n|, |m|, |!|, |r|. They consist of waves whose phase
velocity is the same (m = [ = 0) as that of the driving term or is staggered symmetrically

around it. (®n,m,i,r = Pn,mb1,06r,1 for periodic E(t) , ®pm1r = ®,,mbi,06,,2 for period
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-doubled, etc., and @, m = Ppbm,o for constant E.)

In the frequency continua the space dependence may be regular, e.g. in Fig. 20b, or
quite chaotic, as in Fig. 21b, so that “chaos” in time may or may not coexist with “chaos”
in space. This qualitative result agrees with the finding of Bishop et al. /14/, whose work
on the driven sine-Gordon equation is to some extent related to ours.

“Chaos” in space is often connected with the presence of stationary soliton-like humps
(see Fig. 7b). Their dynamics and relation to solitary solutions of the undriven, undamped
equation (1) /15/ have not yet been analyzed.

The existence of a global bifurcation, in the form of a blue sky catastrophe /4/, and of
interior crises was made plausible. For PDEs, however, it is difficult to give a clear analysis
owing to the lack of stringent diagnostic tools in infinite-dimensional phase space. The
observation of the energy E(t), defined in equ. (3), is to some extent a global substitute
for the Poincaré section method of ODEs for infinite-dimensional PDEs. The analogue
between the two methods is that a solution ®(z,t) which depends periodically on z — ut
is mapped onto a point E(t) = const, here, just as a periodic ®(t) is mapped onto a point
on a Poincaré section. The one-dimensional parameter E, however, cannot compete with

the information in a two-dimensional Poincaré plane.
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Figure captions

Figs. 1a-7a:

Figs. 1b-Th:

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figs. 12a-c:

Figs. 13a-c:

Fig.

3c:

6c:

10a:

10b:

11:

14:

Energy vs. time at (0 = 0.48 at indicated values of e. The time interval is

At = 800; Figs. 2a, 3a show coexisting solutions in the I- and h-branches.
Solutions ®(z,t) at parameter values corresponding to Figs. la - 7a. The
time interval is At = 36.

Energy spectrum E(w) at parameter values of Figs. 3a, 3b. Quasiperiodic
case based on harmonics of wg = 0.679 and wj = 0.023.

Energy spectrum B (w) at parameter values of Figs. 6a, 6b. Continuous case
with “solitons”.

Bifurcation diagram of energy E vs. driving amplitude € at 1 = 0.48. Verti-
cal bars indicate maximal extent of nonconstant E(t). Insert shows narrow
hysteresis. Symbols o, A and x denote periodic, quasiperiodic and chaotic
E(t), resp.

Bifurcation diagram at 2 = 0.525. Hysteresis between L- and H-branches
is indicated by arrows.

Solution ®(z,t) in L-branch. ¢ = 0.06; {1 = 0.525.

Solution ®(z,t) in H-branch at the same parameter values.

Bifurcation diagram at {2 = 0.59. Underlined crosses in the upper right part
indicate chaotic E(t) whose extent exceeds the scope of the figure.

a) energy E(t), b) solution ®(z,t) and c) energy spectrum E(w) in periodic
case of L-branch. ¢ = 0.09; 1 = 0.59.

a) energy E(t) in chaotic case. Solution ®(z,t) in time intervals indicated

by bars: b) quiet phase, and c) peak. € =0.109, (1 =0.59.

Bifurcation diagram at ) = 0.625. Symbols + denote period-doubled E(t).
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Figs. 15a-c:

Fig. 16:
Fig. 17:

Figs. 18a-c:

Figs. 19a-c:

Figs. 20a-c:

Figs. 21a-b:

Fig. 22:

Fig. 23:

Fig. 24:

Fig. 25:

a) energy E(t), b) solution ®(z,t) and c) energy spectrum E(w) in period-
doubled Case of L-branch. ¢ = 0.167; (1 = 0.625.

Bifurcation diagram at 2 = 0.65. Black squares denote sub-branch (I).
Details of energy E(t) in sub-branch (I). Locations of sub-branch (II) and
H-branch. 2 = 0.65.

a) energy E(t), b) solution ®(z,t) and ¢) energy spectrum E(w) of case with
combined period doubling and quasiperiodicity. € = 0.182; {1 = 0.65.

a) energy E(t), b) solution ®(z,t) and c) energy spectrum f‘f(w) of case
with continuous spectrum but smooth space dependence. ¢ = 0.188 in first
continuum; {0 = 0.65.

a) energy E(t), b) solution &(z,t) and c) energy spectrum £ (w) of case with
continuous spectrum but smooth space dependence. ¢ = 0.200 in second
continuum; 2 = 0.65.

a) energy and b) solution in chaotic case. € = 0.201, 1 = 0.65.

State diagram €(f2). Solid lines: catastrophic bifurcations; dotted lines:
smooth bifurcations; dashed lines: drop from soliton chaos. Symbols e,
o, +, square, @, and X denote constant, periodic, period-doubled, period-
quadrupled or higher, quasiperiodic, and chaotic E(t).

State diagram €({1). Magnification of boxed area in Fig. 22.

Spectrum :I;k(w) for k = 1 of twisted-wave-type solution ®(z,t) of Figs.
12a~c. w > 0 solid, w < 0 dashed.

Spectrum ) k(w) for k = 1 of counterpropagating-wave-type solution ®(z,t)

of Figs. 4a-b.
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