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Abstract

The Monte Carlo Coulomb scattering operators used by A.H. Boozer et. al. [1] are
extended to a more general form which considers the collisions between a test particle
and different Maxwellian background particle species. The reduced angle- and energy-
scattering operators in some special situations are also given, e.g., the scattering operators
for an energetic test particle and a background plasma consisting of electrons, a major
lon species and impurities. As a reference, formulas of various relaxation times which
are frequently encountered in Monte Carlo transport simulations are reviewed in the first
section of this report. Moreover, in Section 111, the guiding center equations fo‘x«,\ stellarators
in two different magnetic coordinate conventions are described. The cgs Gaussian system
of units is used throughout.
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1. Relaxation times

1.1 Fokker-Planck equation and Rosenbluth potentials

The general form of charged particle Fokker-Planck equation is:
af _ 0 Ohy, 1 0? ) 9%gy
ot C_szrb[—av'(fav)—*-Q@vav' Tovav )| (1)

where f is the test particle distribution function, v is the test-particle velocity vector,
and hy and gy are the Rosenbluth potentials. The subscript b corresponds to the bth
species of the background plasma, and

_ 47rZ2Zb264 In Ay
= -

Ty ) ) (2)

where m is the mass of test particle, Z is the charge number of the test partice, and
Zy 1s the charge number of the bth background species. The quatity In A, corresponds
to the Coulomb logarithm between the test particle and the bth background species [3]:

Ay ~ §. k3Te3 1/2 1
b=39 TNe ZZyed’

where n, and T, are the background electron number density and temperature.

Because of the complexity of the various situations possible, the relaxation times are
not very clearly defined parameters. One way [4] to define them is by calculating various
velocity moments of Eq. (1) under the following assumptions:

1. The test-particle distribution function is always a delta function in the collisional
proccess, that is
f= 5(V - u) ) (3)

where u is the average velocity of the test particle ensemble. \
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2. The background charged particle species are in Maxwellian distributions.

The corresponding Rosenbluth potentials are therefore simplified due to the assump-
tion ‘2’:

() = P [avaOl =i = ko) = 2 (1+2) otam)], (@
00) = [ /oI =i = (o) = [ (54 5 ) otauw) + SERD]

where ®(z) is the error function,



and ap is the reciprocal of the background thermal velocity:

1 my
=— = [ 7
= b 3kT; (M

The momentum equation of Eq. (1) is

9 B ] Ohy 17 & 8%gy
a/“’fd"-§“ [—/a—v'(wfw) w3 [ v (Wavge) ) ©

where w is the velocity momentum function, and other symbols have their usual mean-
ings.



1.2 Slowing down time

The definition of slowing down time is

Ts = —U %’;_t (9)
Letting w = v, substituting (3) into (8) and integrating (8) by parts, we find
Ou ahb(u)
ot zb:rb ou - (10)
Substituting hy(u) from (4) we define
O0H(u oh '
—aft—) = ;1‘67”5‘—) = —2n,T. M,a2¥(aeu) — 2 Xj:njrija;?q:(aju), (11)
where
Me=1+ _7_77'__,
Me
m
M; =1+ ;27, (12)

o(z) — 29’ 2
¥(z) = 2) = @) and ¥(@) = —7 e(=?). (13)
The subscript ‘e’ corresponds to the background electron species, and J’ corresponds
to the jth background ion species. The summation is taken over all of the background

lon species.
From Eqgs. (9)-(11) we have

u

= . 14
. 2neleMea2¥(acu) + 2 E]- nd"ijag\IJ(aju) (14}
In the usual neutral beam injection case, Ujth K U <K Uggp, then
2
U(aeu) ~ %% (a.s z—0, Uz)— g—%> :
1 1
Recalling Eqgs. (2) and (7) gives l'
m? (Z)+AlZ] 4 me \ 72
s = drZ%etnln A ul + 3\/—7F‘Me (3kTe> ’ (16)

where two kinds of effective Z for the background plasma ions have been defined as:
Z 12 n;lnA;

2= tan (17)
Z2n;lnA;
— 2% J
@)= D= (18)

where n = n, (electron number density), InA =InA,, and A = m/my, Aj =mj/m,,
with m, the proton mass.



1.3 Deflection time

The definition of 90° pitch angle deflection time is

Letting w = v - v, substituting f from Eq. (3), then Eq. (8) gives

o, 9 da
Zrb[ —+8u 0u]

Suppose that at ¢ =0, u =iug, then Eq. (20) is reduced to

Ohy 82.% gy 0%y
Zrb [QUZ 3u2 + (9u2 + Ou?

Obviously, letting w = iug - iug, Eq. (8) gives

_ Ohy  O%gy
= zb:l-‘b [qu Bu, + o2 |

T

(21)

(22)

If we assume that the initial direction of the test particle is pa.rallel to the ma,gnetlc field,
and note furthermore that for a weak dispersion test beam u = iuy = u; is true durmg

a suitably long relaxation proccess, Eq. (22) becomes

hy 0%
Zrb [2u“a Uy 3U2]

au“

For the perpendicular component, considering Egs. (21), (22), and (23),

oul  oul a] _ 9°G)  9G@H)
5 = o Zrb[auz BuzJ— oz T Tz

thus

*G(u)  9G(u)
—_ 2.
b= [ w2 T ou }

where, from Eq. (5), we have defined

=3 452 = T, [8(act) ~ Wlaow] + 3 Tymy [B(ayu) — Wlagu)],
and thus
9G(u) _ OG(u) Bu  u, 8G(u)

Ouy T du Buy— u  Ou
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(23)

(26)




Note that at ¢ =0, uy =u, =0, then

2(u n ny
T = L, (@(acu) — Blaeu)] + > o Til0(aju) = (eju)],

O*G(w) _ 8°G(w)

Ou? ui ’
and a2
u 2n n;j
< = e [®(acu) — U(au)] + 22 22T [®(aju) - U(azu)]. (27)
j
Therefore
3
u
= : . 28
27 20T, [®(aeu) — U(aww)] + 23" ;T [®(aju) — U(aju)] (28)
For the usual NBI case
2a.u
®(acu) ~ NG (aeu < 1),
®(aju) ~ 1 (aju>1), (29)
and, recalling Eq. (15), Eq. (28) reduces to
ul 4aeu A
~ 2 _ 2 30
w2 (5 +(0) - 7l (30)
where (Z) and [Z] are defined by Egs. (18) and (17), and
2, .4
ol = M_ | (31)
m AN
\1
More approximately '
Azmzu:’ (32)
D= 822N Dyt nln A

In the situation that the test particles collide with an ideal backgroud plasma (i.e. elec-
trons plus a single ion species), Eq. (28) reduced to

u3
"D = 90T [@(acu) — W(aeu)] 4 2T [®(aiu) — ¥(aiu)] 39)

and the corresponding deflection frequency is

1
VD='—=VD¢+VD.'7
™D




where vp, is the deflection frequency of test particle on background electrons,

o, = SR () v, 2z = ) (3

3
Ze

and vp, is the deflection frequency of test particle on background ions,

vp, = 3\/%; (Z)* 5, 20 Hli), (35)

Here

T = Goth = 1 /321161’ (36)

mg
S — g — 1 . 37
Ti = aju u\lngi, (37)
4 2etn;In A
ve, = [2r Zietnilnd (38)
me (31,

and

4 [« Z?e‘*nlnA,'
L /___________, 39

vBe and vp, are Braginskii electron and ion collision frequencies respectively [6]. The
Braginskii collision frequencies vp, and vp, can also be written:

InA  Zin
Vg = e di2 (40)
3.5 % 105 Tez
and
In A 2 2¥n
BT 3%V A R \ (41)
' “x

where T, and 7; are in units of electron volts.




1.4 Energy relaxation time

We define aw
= _w/W | 42
w=-W/%, (42)
where W = %mu2 is the kinetic energy of a test particle.
oW 1 ou 1 [ou]l ou}
e ——m— = | 2N 2L 43
t 2" ot 2m(8t+8t ’ (43)
where a2 ,
Ouy _ Ohy 09y
: = ;I‘ {Qu” au” -+ auﬁ . (44)
Recalling Eq. (11) and noting that at ¢ =0, u; =u, uy =0, we have
Ohy Ou 3H(u)
= = 4
Zm“”a 2“ZF b Bu Buy " u (45)
and, recalling (26),
d%gy 0 [0G(u) vy, 2nl
Xb:I‘b a2~ Buy [ EW ;] —VU(aeu) + — Zn,FJ (aju). (46)
Note that the relation
oy d ®(z) — z9'(z) o 2
V(=) = - 502 = (z) - _¥(z) (47)

has been used to get (46).
From Eqs. (45), (46), and (27) we have

ou? Buﬁ_ 2nT

[@(aeu) —2M.a?u? U (a.u anl‘ [®(aju) — 2Mz u?¥(aju)]

or, by recalling Egs. (12) and (13),

3uﬁ
ot

2
Oou?

t 5

1
= 4nla, [—2-@'(aeu) - mﬂeaeu\ll(aeu)]

+4Zn1 jaj [ a_,u)

nT’Z aju\Il(aju)] . (48)

We thus obtain
—u?/4
nla, [%(I)'(aeu) - —;n'%aeu\ll(aeu)] + 2,154 [%@I(aju) - mﬂjaju\ll(aju)]

W = . (49)
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The corresponding energy relaxation frequency is
1
VW=—'_=VW¢+VWH
™

where vy, is the energy relaxation frequency of test particles on background electrons,

167 Z%e*nln A 3 ;n"—‘:a:e\ll(ze) - %q’l(me)
ae

vw, = (50)
m? z? ’
vw, is the energy relaxation frequency of test particles on background ion species,
1x/
vw; = TZGJZJTZJ IDAJ . :1;2 ; (51)
j ]

and z¢, Zj, ae, a; have been defined by (36) and (37).
For the usual NBI case, the 1®'(z) terms may be ignored, Egs. (50) and (51) reduce

to
2.4
v, = 16w Z%e nlnA vVme U(z,) (52)
A(3kTe) Mp e
and 2 4 -y
vw, = 1627 ZZ2n]l Aj — (:1:]) (53)
A(BI‘:T)2 - zj

In Eq. (51) we have supposed that
m;
3kT;

where the index ¢ corresponds to the major species of the background ions.

(if T;=T), (54)

aj =

More approximately (considering Eq. (15)),
167 Z%*nln A /m, 2

YW = (55)
AQBKT,): ™ 3T |
\
and ) Y
et Z%njlnA, ~ 271 .4 ‘
— 16w Z%e*nln A Z ;lndy my 1 8rZ%[Z]e nlnA‘ (56)

A(3kT.-)% ; nln A mp 2;::3. - Am}?,u"'

The effective [Z] has been defined in Eq. (17).
In case of a single background ion species, Eqs. (52) and (53) may be written as

VA
=3/rv VB, — Ze Z %) (57)
1 Te
and
vw; = 3V2rvp, ﬁg— \Il(x,) , (58)
Z’ :D;

where vp, and vp, have been defined in Eqgs. (38) and (40).
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2. Monte Carlo scattering operators

The Lorentz scattering operators and the equivalent Monte Carlo scattering operators
used by A.H. Boozer et. al. [1] are only suitable for like particle (ion-ion) interactions. In
this section we extend these operators to a general for which can consider the interactions
between test particles and different field particle species (i.e. with different masses, charge
numbers, temperatures or energies). The reduced equivalent Monte Carlo operators under
some special situations are given.

2.1 General form of the Lorentz scattering operators

We use the azimuthally symmetric Fokker-Planck collision term in spherical polar
velocity space (u, A, ¢) [2] to derive the extended Lorentz scattering operators.

Since the background plasma is assumed to be a Maxwellian distribution with con-
stant temperature and number densities (i.e. the Lorentz approximation), and the Rosen-
bluth potentials are simply given by Eqs. (4) and (5), the orignal Fokker-Planck collision
term therefore is reduced to

af _ 1 0° 0%y 1 0 90hy  Ogyp
at C‘Eb:P”{zzﬂauZ (“ ou? )_u_za_u [f (“ EIJ“a—u)]
1 990 2,9f
243 9 aa )BA}’ (59)

where f = f(t,u,)) is the test particle distribution function, and )\ = u/u = cos¥,
where 6 is the angle between magnetic field B and test particle velocity vector u.

Recalling (11) and (26), Eq. (59) may be written as

OF|_ L9 (LGN 10 [ (0K oG
ot), 2200 \" a2’ ) " @ 5u [P \“ u T oa

1 0G 8 0 Of \
taaawa Yy v )
where 92
G 2n 2
502 = —u—I‘\II(aeu) + - Ej n;I;¥(aju). (61)

After some calculation, Eq. (60) may be further simplified to

of

——2_
=3x

2
2 a0, L o6 ) -

Y Bz Ou 5@%53(
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where z, z; have been defined in (36) and (37).
For the first right term of Eq. (62) we get

2na2r—\1:(z,,) +2 Z njall; —=U(z;)
my
J

2.4 3 2.4 3 U(z:
8rZ%¢*nInA a; U(z.) +u 87rZ ZZZn, InA—2 U(z;)
A mpMme T, mpmJ T;

2.4 2,4
87rZ e‘nlnA /me U(z,) . 8nZ% ZZszI A Y \/ \Il(zj)

A(3kT)2 mp e A(3kT)2 : Zj

= uvg, + uVg; = uvg, (63)

where -
, e=87rZ¢=: nlrslA,/me lI'(xe), (64)

A(3kTe)5 Mp Te
and ) 4
./ ;U
Upp = L € ZZZnJ np; Y 2(z)) (65)
A(3kT;)z Zj

Here vp, and vg, are the general forms of the energy relaxation frequencies derived
from the generalized Lorentz operator. Note that, comparing with the previously defined
energy relaxation frequency (Eqs. (52) and (53)), vg =~ Lvy.

For the second right term of Eq. (62), from (61)

2 2,4, 2,4 v
0°G  8rZ% nlnAa U(z,) 4 87rZ ZZsz In Aa; (:z:,)

- [
ou? m?2 Te

J

2.4 2.4 ; N\ 3kT:

_ 8rZ*e nlralA Vme Y(ze) 3kT, N 8rZ“e : ZZJznj lnAj,/m, \Il(x,) 3 T,.
ABET):  ™Mp  Te  m o ABKT,)T 4 mpy ¥; m

Comparing with Eqgs. (64) and (65) we have

0°G 3kT, 3kT;
Juz = VBT~ tvE
u m

m

and then the second right term of Eq. (62) reads

_1__3_[ azGafJ 19 [2<V 3kTe+UE._3kTi> Qf_]. (66)

2u? Ou ou? Gu| ~ uZou |“ £ om Ou

Hereafter, we shall write %kT simply as T, so that T should be understood to be in
units of energy (ergs in cgs unit system).
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For the third right term of Eq. (62), recalling Eq. (26), we get

ou m?2 nlnA

x22e4n In Z%n;1InA,;
0G _ 4nZ7¢'nlnA { O(ee) = U(ze) + ) <= [8(a)) - \P(xm} =uva, (67)
J

where
4rZ%4n1n A Zn;lnA;
e { D(ze) = U(ee) + D = [8(a)) - \P(xm} . (69)
J

Here vy is the general form of the test particle deflection frequency derived from the
generalized Lorentz operator. Note that, comparing with the previously defined deflection
time (Eq. (28)), vq4 = jvp. ~

Substituting (63), (66), and (67) into (62), the generalized Lorentz collision operator
now is written as

Of | _va 0 | 12\0f
ot|, 2 =25
190 ,, 101, T, T;\ Of
+u2 Ou [u (VEUf)] + U2 E" [u (I/Ee m + VE,‘m> au] ) (69)
where the generalized Lorentz angle scattering operator is
of _ ﬁ_a_(l _ ,\2)ﬂ (70)

) o’

which is the same as that used by Boozer et. al. [1] except that the 90° deflection frequency
vq here is extended to be able to consider the collisions between test particle and various
field species (Eq. (68)).
The generalized Lorentz energy scattering operator is
Y

af 10 19 T, T\ 0f]
9t = uZou [u2 (VEUf)] + < 9u [u2 (VE,; + VE, ;) a_u} ) (71)

which is an extended form of that used by Boozer et. al. [1], and thus can describe the
interactions between test particle and various field species.
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2.2 The equivalent Monte Carlo scattering operators

(i). The equivalent angle scattering operator:

This is the same as that used by Boozer et. al. [1],

An = Ao(1 —vg7) £ 1/(1 — A3)wyr (72)

except that here v4 considers collisions between the test particle and various field species

(Eq. (68)).
(ii). The equivalent energy scattering operator:

Completely following Boozer et. al. let

(E) =/0°° %muzf(t,u)éhruzdu | (73)
and )
n_ [0 lmu2 u)druldu
) = [ (Gmat) stupsmata (1)

Then, substituting (71) into (73) and (74), we get the following relations after inte-
gration by parts:

t 2 ot
dv dvg,
‘= —20,(E) + 3vg, T, + 2(E) —d%Te +3v5,Ti + 2(E) g T; (75)
and
d(E2) ® 1 N\af ,
7 —/0 (Emu> —a—t—47ru du \“
= —4vg(E?) + 10vg, (E) + 4(E*)T, dgg + 10vg, (E) + 4(E2)T,~ii&”EE—". (76)
The time derivative of the standard deviation of f(t,u) in energy space is
do® d(E?) d(E)* d(E?) d(E)
T T T (77)

Substituting Eqs. (75) and (76) into Eq. (77), and supposing that at ¢ =0, f(0,u) is a
delta function about u = ug (E = Ej) and with quite small dispersion within a short
time duration 7, this leads to (E) ~ Ey, (E?) ~ E2 and gives

d 2
_(;’t_ = 4vg, EoT. + 4vg, EoT;

14




implying

o =2Ey(vg.Te + vg,T))r (78)

as 7 — 0.

The center of the energy deviation at ¢t = 7 (1 — 0) is expected by Eq. (75):

_ 3  Ep dvg, 3 _E_()_dI/E‘- '
E=FEy—-2vgr [E'o — (2 + Vg, dE )TeJ —2vE,T [Eo — (2 + vp. dE T . (79)

After considering the fluctuation we find the equivalent Monte Carlo energy scattering
operator for the generalized Lorentz energy scattering operator (Eq. (71)), which reduces
to Boozer’s operator if there are only like particle interactions. It reads

3 Epdvg 3 FEydvg
= FEy — Ey—|=-4+—7 e — , (24 = i .
En 0 2VE°T[ 0 (2 vp, dE )Te} 2VET [EO ‘(2 vg, dF ) T}

+2v/Ey (v, Te + vg,T)) T, (80)

where Ep is the old value of the energy E (= Imu?) at t=tg, and E, is the new
value of E at t =ty + 7. The symbol + means the sign is to be chosen randomly,
but with equal probability for plus and minus.

Eq. (80) should be furthermore written to be convenient for computation. Recalling
(64), the factor

E dvg, 1 8rZ%*nInA me , d [¥(z,)
- =— = oy , (81)
vE. dE  vp,  A(2T.)F my dz? T,
where |
4 (¥(z)\ _ 1 [exp(—z?) _ 3Y(a) (82)
dz? T T 22 VT 2 =z |’
we have , \
3  Ep dvg, _ e exp(—zf)
(2 - vg, dE )Te IRVZERETER, Ie. ' (83)

Similarly for the test particle-ion interaction term

3  Ey dvg, o 2 1 exp(——:z:?) 2 1 U(z))
(5_{_;;(“;)5]’,_ [;ZjnjlnAjA;——\/—_ﬂ——: ZZjnjlnAjAJ? > T;.
j
(84)

Substituting Egs. (83) and (84) into Eq. (80), we obtain the computing form of the
generalized Monte Carlo energy operator:

" Vr Ulezo) T
15

2.2
a cxgexp(—ciz?) 1
Ty, = 1'(2] —2vgp, T [xz — = P( 0) e}



exp( z})

(x,)

_ —_ 2 2
2ug,T |28 — ZZnJIAA Z njlnA;A? z;
T,
+2z VE, +VE, = | T, (85)
T;
where
a=ﬁ, c= meﬂzuith, Aj—ﬁ,
m m;Te Ueth My
and
S u u d u u
T = QiU = an Ti = iU =
’ ’ Ujth \/2T /m] ’ ' Usth \/2T/m,

Here m is the mass of test particle, m; is the ion mass of the major field species, and

m; is the ion mass of the jth field species,
Zn 1s the new value of z; at t =ty + 7.

zo 1s the old value of z; at t =1ty, and
The energy relaxation frequencies vg, and

vE; have been shown in Egs. (64) and (65). Other symbols have their usual meanings.

- "'
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2.3 The reduced Monte Carlo scattering operators

The generalized operators may be reduced to be more simple and useful forms in
several special situations.

(i). Test ions colliding with like ions:

The angle scattering operator is as shown in (72), but with the reduced deflection
frequency (from Eq. (68)),

rZ3e*n1n A, ™ z)— ¥T
w= T 0(e) - (o)) = 3 [Ton 2ESTE, (36)

where vp, is the ion Braginskii frequency (Eq. (40)), and z = z;.

The energy scattering operator reduces to

Th = af —wpT [wg ;‘lex\ggmo) )} + 2z0\/VET, (87)

where, from Eq. (65), the energy relaxation frequency vg is now

3.4 . .
8rZ°e nlanA, vmi ¥(z) _ 3\/_51/3‘ ‘I’(z)_ (88)
A@2T): mp oz 2

VEp =

These reduced operators are the same as those used by Boozer et. al. in the transport
calculations of Ref. [1].

(ii). Test particles (E = —mu2) colliding with an ideal field plasma
(electron species + single ion species):

The angle scattering operator is the same as in Eq. (72), but with the reduced
deflection frequency

Vg = V4, + V4, \
where ) (z0) (20) kY
_ 3 Z Me 2 P Te) — v Te
“=1V" 7 (m ) va. z3 (89)
and )
_ 3 [m 27 (rmiN?  O(zi) — U(zi)
=g \/;Z? (m) S (50)

The energy scattering operator becomes

2,..2
a czgexp(—cizf) Te
tn =20~ g [“”3"\/; \Il(c(a:o) O)T-]

2 T,
oy | g2 & Toexp(—z5) | T
VE,T [a:o /5 U(z) + 2z04[a | vE, + VE, T, T (91)
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where 3 72 \IJ
L 1C)) (92)
2 m Z;

_ 8rZ%4nln A /m, U(z,)
- Zi Te

A(QTC)% mp  ZTe

_ 87 2% Z;e*nln A; /m; U(zi) 3\/?"&:' Z* Y(z) (93)
= = 5"—‘ -

— v,
A(QT,-)% my T m Z'-2 T;

e

and

v

(iii). Energetic test ions (uj; < u < uqy) colliding with a field plasma con-
sisting of electrons and a major ion species (i) as well as impurity species:

In this case, since czg = u/ucyy € 1 and zo = u/ujyp > 1, vg reduces to

AnZ2(Z)e*nln A
where we have used Eq. (29) and (Z) as defined in Eq. (18).
To calculate the energy scattering operator we note that
ze exp(—z?) U3
T A
and ¥(z,) ]
Ty 2 .
:Ej] o~ %Jg, exp(—z;) ~ 0 (G=123,... ).
Thus
T
xi = :cg —2ug, T :z(z) — §aZe_ - 2VE.-T$% + 2z04/a | vE, + vE, —5> T (95)
2 T; T;
where 2 4 )
VEGZSWZ&:nl:‘nA,/m,3 2 =I‘n—e'Z—VB, (96)
A@2T):  mp 3T m Z
and - 2 ,
Zn;lnA; A
VEierZenlnAZ inglnA; =47rZ[ le nlnA, . (97)
Am2u? ; 2Ajnln A Am2u3

where [Z] has been defined in Eq. (17).

Egs. (96) and (97) are accurate only when z. < 1 and z; > 1 respectively.
In energetic-ion scattering calculations, the former condition is very true. The latter
condition is not always true, especially when the energetic particles relax to approach the
energy of the thermal background plasma, in which case, it is better that we replace

(e ot
m; 2z; T;
then Eq. (97) becomes

_ 81Z*[Z]e*nIn A m? U(z;)
B A(2T,‘)% mg T

(98)

i
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3. Guiding center equations in different magnetic coordinate conventions

In practical Monte Carlo charged particle simulations, it is important to have a clear
convention for the magnetic coordinates and the direction of the poloidal and toroidal
currents, ¢(¢) and I(1) respectively, as well as the sign of the rotational transform
+(1). The purpose of this section is to describe two commonly used magnetic coordinate
conventions, then give their corresponding guiding center equations.

3.1 Representation of magnetic field in two coordinate conventions

The magnetic coordinate surfaces are defined by the toroidal magnetic flux ¢ (3
increases outwards from the magnetic axis), the poloidal angle 6 and the toroidal angle
¢. By means of these coordinate surfaces, we can define both the covariant basis vectors
zz;, 5, 5 and the contravariant basis vectors Vi, V6, V4. The two different coor-
dinate conventions are constructed from each of the right-handed triplets (¢, 6, ¢) and

(¥, @, 0), as shown respectively in Fig. 1 and Fig. 2.

For both magnetic coordinate conventions, we define the rotational transform (1)

as [6]:

T Ay T VY T g(y)’
where 1, is the poloidal magnetic flux, and q(v¥) is the safety factor.

(%)

Naturally, here we should also have a convention for Vip, namely: the positive
direction of the vector Vi, is in the same direction of V1, — outwards from the
magnetic axis — as indicated in Fig. 1 and 2. Under a selected magnetic coordinate
convention, +(3) reflects both the direction and magnitude of the rotational transform

“of the magnetic field lines.

For both magnetic coordinate conventions, we chose the same cylindrical coordinates
(R, ®, Z) as the reference in real space.

(i). The convention (v, 0, ¢): \

The contravariant basis vectors Vi, V0, V¢ form a right-handed system (Fig. 1).
According to this convention The contravariant representation of the magnetic field B
is then

B=VyxV +VéxVy,, (100)

where Vi x V@ points in the 5 direction, and V¢ x V4, points in the § direction.

Thus 5 is the positive direction of the toroidal component of B, and 6 is the positive
direction of the poloidal component of B.

The covariant representation of B is written as

B =g(4)Ve +1(¥)V0 +6(y,0)V, (101)

where we have the following important convention:
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The positive direction of poloidal current 9(%) and toroidal current I () are
defined by the magnetic coordinate directions V¢ and V4 according to the so called
right-hand law. That is, if a positive poloidal current g(¢) flows in the V4@ direction,
then it produces a positive toroidal component of B (in the V¢ direction) according to
right hand law. A positiv toroidal current (%) should be in V¢ to produce a positive
poloidal component of B (in the V4 direction).

In principle, it is possible to use other conventions to define the positive directions of
the currents, for instance, we can suppose that the positive 9(¥) isin —V4 direction,
then it leads to a different representation of the covariant B.

(ii). The convention (¥, ¢, 0):

The contravariant basis vectors Vi, V¢, VO form a right-handed system (Fig. 2).
Under this convention, the contravariant representation of B is now

B=V0xVy +Vy, x Vg, (102)

where V0 x Vi) is the toroidal component of B, pointing in the directign of ¢, and
Vipp x Vé is the poloidal component of B, pointing in the direction of 4.

The covariant representation of B is written as
B =g(¥)Vé +1(4)V0 +6(x,0)Vsp. (103)

According to this convention, to produce a positive toroidal By (V¢ direction), the
positive direction of 9(¥) should be in the —V§ direction. To produce a positive
poloidal By (V4§ direction), the positive direction of [ (%) should be in the —Vg

direction.
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3.2 Guiding center equations for both conventions

(i). For the convention (v, 6, ¢):

This is the convention used in reference [5] to examine the ATF torsatron. From
Eqgs. (100), (101) and (99), the toroidal and poloidal canonical momenta are determined

and
po = epyl +ev, (105)

where py and py are the toroidal and poloidal canonical momenta of a charged particle,
and the guiding center equations are

) e’B 0B
Py = —<7Pﬁ+ﬂ)%, (106)
i ’B 0B
po = —(Em—Pﬁ + #) 20 (107)
¢ = —[(‘;P“ +ﬂ)3—¢"+6%]; m AT (108)
; e’B , 0B 0%]g  €B? +—p,g
= +[(7P“ +#>5J+€%J; + A o (109)
. e’B , I10B ¢o0B 1 .
_ (B 105 905y _ 1. . 110
77[)‘ ( m pll+u)(7 a¢ ’789) 7(]3451 pog), ( )
i 1 . )
P = ;[(1 +oul')pg + (¢ — pyg')ps) (111)
where \
v=e[(L+pI")g+ (+— pyg)1], (112)

and @ = ®(v) is the electric potential.

In this convention if we consider the case of a right-handed stellarator, the rotational
transform of the magnetic field lines should be positive,

() > 0,

so that the magnetic field lines trace in the direction of increasing (or decreasing) ¢, i.e.
V¢ (or —V¢) and increasing (or decreasing) 0, i.e. V4 (or =V0) (Fig. 1). Similarly,
if we consider the case of a left-handed stellarator, the rotational transform should be
negative.

The basic behaviour of a test particle orbit in both the magnetic coordinate space
(V4, V8, V4) and the real space (R, ®, Z) may be qualitatively predicted.
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For a given right-handed stellarator (¢ > 0) with a positive poloidal current g(t) > 0
(in V@ direction), a test ion with \ = vy /v = 1, should travel in the direction of
increasing V¢ (as A > 0) and increasing V@ (as +(¢) > 0). The orbit follows a
right-handed screw in the direction of V¢ in magnetic coordinate space. :

In real space, the same test ion travels in the ® direction (as A > 0), whilst rotating
clockwise. The orbit thus follows a right-handed screw in the ® direction. The real orbit
is completely determined by the right-handed magnetic field (which is determined by the
magnetic field coil arrangement).

(ii). For the convention (¥, ¢, 0):
This is the coordinate convention used at IPP Garching to describe W7AS. The
corresponding guiding center equations are as follows:

From Egs. (102), (103), and (99), the toroidal and poloidal canonical momenta are
determined '
Ps = epyg + ey, (113)

P =epyl — ey, (114)

and the guiding center equations are

. e!B , 0B
Py = -(‘;;Pquu)%, (115)
. 82B 2 8B
po = _(FPH +/‘)%, (116)
- e’B ,  \OB  38]1  &B2 1—p
; ¢’B ,, OB 3%]g  €B? ++p4
9‘_[(_m_f’u+ )%"‘e%}“ + m Pl y (118)
- 1. . \
b=+ (bs] - ing), L (119)
.1 , .
=210 = pul')ps + (e + pug') o), (120)
where
v=e[(l=pI')g+ (¢ + pyg)]. (121)

In this convention if we consider the case of a left-handed stellarator, the rotational
transform of the magnetic field lines should be positive,

() >0,

so that the magnetic field lines trace in the direction of increasing (or decreasing) ¢, i.e.
V4 (or —V4) and increasing (or decreasing) 6, ie. V6 (or —V8) (Fig. 2). Similarly,
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if we consider the case of a right-handed stellarator, the rotational transform should be
negative.

The basic behaviour of the particle orbit may be predicted under this coordinate
convention:

For a given left-handed stellarator (¢ > 0) with a positive poloidal current g(%) > 0
(in —V@ direction), a test ion with \ = vy/v =1, should travel in the direction of
increasing V¢ (as A > 0) and increasing V4@ (as +(¢)) > 0). The orbit follows a
left-handed screw in the direction of V¢ in magnetic coordinate space.

In real space, the same test particle should have a left-handed rotational orbit going
in the direction of ®. It is determined only by the configuration of the magnetic field in
real space and is independent of the conventions of the magnetic coordinate systems.
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Figure captions

Fig. 1. A sketch of magnetic coordinate convention (¥, 0, ¢).
Fig. 2. A sketch of magnetic coordinate convention (¥, ¢, 6). Y
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