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Abstract

The distribution of particle momentum directions in atomic collision
cascades are studied by means of computer simulation with the MARLOWE
program. In contrast with the random model, the atomic collision cascade
generation in single crystals is found to be highly anisotropic at every
stage of the energy dissipation. It is entirely governed by the lattice
crystallography. In addition to the well known one-dimensional focusing
effects, two-dimensional transient focusing is found to play an important
role in the cascade development. Unstable one-dimensional trajectory
focusing also provides a large contribution to the momentum direction
distributions at various stages of the cascade generation. Large thermal
displacements of lattice atoms are not found to randomize the cascades.
They may, however, induce anisotropy characteristics in momentum direction
distributions different from those calculated for a static lattice. The
anisotropy found in experimental and simulated angular distributions of
sputtered particles is directly related to the anisotropy of the cascade

development and is only poorly described by earlier interpretations.



I. Introduction

Analytical collision cascade theories usually make use of a Boltzmann gas
model /1-3/. Strong assumptions are inherent to this model, which however
allows useful predictions for dense materials, in particular, on the basis
of linearized transport equations /4/.

One of the basic assumptions is that of isotropy, namely, that at each
collision step, all possible collision events are equally probable. Atoms
are then assumed to be randomly distributed in the material, within Poisson
statistics. The assumption of isotropy is still used in quite recent work
/5,6/. Its range of validity was however never properly investigated, in
particular, in the case of collision cascades developing in single or poly-
crystals, which most frequently represents the experimental situation.
Until now, the influence of the target structure on the atomic motion gave
rise to the study of particular processes: the channeling of slowing down
particles /7-9/ and focused collison sequences /9/. Channeling is usually
distinguished from the cascade generation, although the possibility of its
influence on the motion of recoiling atoms was recently pointed out /10/.
Models for focusing chains were established /11-13/. Since their length is
usually rather short, they were considered as having no major effect on
many collision cascade characteristics. One exception is the angular
distribution of sputtering from single crystals, which is known to display
an anisotropic character /14/..This one was generally attributed to atomic
ejection in Tow index crysté]]ographic directions by nascent focusing /15/
or stable /13/ focused collision chains.

The relative contribution of such correlated events to sputtering in

preferential directions was only evaluated recently.



Computer simulation methods however allow to avoid many assumptions
required in order to develop an analytical theory and were already used to
study the sputtering from single crystals /9/ and the spatial configuration
of atomic displacements /10,16,17/. Limited aspects of momentum
distributions in collision cascades were emphasized recently, which do not

account for the effects of the lattice ordering /18,19/.

It is the purpose of the present work to investigate the strong anisotropy
of momentum distributions in single crystal structures as well as their
evolution as the energy dissipation evolves. This is done by computer
simulation. It will be shown that isotropy has only little to do with the
development of collision cascades in structured materials. The relation to
sputtering angular distributions is not straightforward, but will be made

on the basis of detailed analysis of the various contributing processes.

I1. The Simulation Model

The MARLOWE computer simulation code /20/ was used for the present
calculation. We used it already for sputtering calculations /21,22/ and the
comparison with experiment allowed to adjust the model parameters reason-
ably well. The same parameters are thus used in the present calculations.
The disucssion is based on the example of cascades generated in single gold
crystals by neon or xenon energetic incident atoms.

The MARLOWE code is based on the binary collision approximation. The atomic
collisions are governed by the pairwise Moliére potential /23/ with the

screening length for gold suggested by Robinson /20/. Firsov screening



distances /24/ are assumed to be valid for rare gas atoms and these for
heteronuclear pairs (Ne-Au, Xe-Au) are estimated as harmonic means of the
screening lengths for the homonuclear pairs /25/.

Between collisions, particles are assumed to move at constant velocity
along their asymptotic trajectories. Provision is made for an approximate
treatment of quasi-simultaneous collisions. Exception made for the case of
replacement sequences, a zero binding energy is used for the gold atoms to
their lattice sites. A small binding energy is assumed for replacement
collisions (0.2 eV) in order to correct for the many body nature of such
events /9/. This approach was discussed in details on the basis of
comparison with molecular dynamic calculations. The energy dissipation
through binary collisions proceeds until the kinetic energy of the moving
particles falls below a preset cut-off value, which is also used as an
energy displacement threshold (3.78 eV). Inelastic energy Toss is assumed
to be shared between local and non local electron excitations, according to
Oen and Robinson /26/ and Lindhard /27/ respectively. A surface of
incidence is assumed and its effect on the atomic motion will be analyzed
in details, in relation with the discussion of sputtering.

Time is not a directly available cascade characteristic in binary collision
models. Therefore, the scheduling of the collision events has to be made on
another basis. In the Marlowe code, after each collision step, the fastest
atom is selected as the next projectile to be followed, until all cascade
particles have their kinetic energy below the cut-off value. Some minor
atom permutations may occur, that are typical of hashing algorithms as used
here in order to speed up the cascade calculations. Since the energy
dissipates as the time proceeds, the scheduling of the atomic displacements

as performed in the present model may well be reasonable. The present work



focuses on the evolution of the angular distribution of atomic motion as

the kinetic energy dissipates. Such angular distributions are recorded for
all particles entering a pre-specified kinetic energy interval. Consecutive
intervals are taken as (EO/Zn, E0/2n+1) where E0 is the primary energy, for

increasing integer values of n, until the cut-off energy is reached.

III. Angular Distribution of the Atomic Motion
a) Scattering cross-section distributions

Statistical independence of collision events in a collision cascade is only
possible if the path length between successive collisions is large with
regard to the collision radius /28/. This is generally not the case in
solids and the question is to identify how large the deviations from the
random cascade model are.

A first approach may be done on the basis of total cross-section
distributions. As simulated cascades are concerned, such distributions are
easily obtained by scoring the collision frequency as a function of the
impact parameter squared. This is shown in fig. 1 and the cases of
amorphous, polycrystalline and crystalline gold targets are compared to the
uniform distribution of a random cascade model. The computer results
indicate that structures occur in the impact parameter distributions that
correspond to head-on collisions like in focusing chains and the
simultaneous interaction with rings of atoms in the {111}, {100} and {110}
planes. The structures are identical in the single and polycrystal cases,

showing that the influence of the incidence conditions on the collision



probability distribution in a cascade is negligeable. It should be noticed
that the short range structure in the amorphous model material has a
significant influence on the collision statistics. The sharp peaks observed
for poly and single crystals at close to zero impact parameters and
associated to 110 rings reflects the efficiency of assisted focusing in
the 110 directions.

These impact parameter distributions may be energy dependent. On the other
hand, since the impact parameter at a given energy is directly related to
the scattering angle, the energy dependence of collision statistics and its
evolution with energy dissipation can also be viewed in terms of momentum
distibutions. These allow a rather detailed analysis of the cascade

development, as it comes out of the next sections.

b) Angular distributions in the bulk

The distributions are represented in the form of contour line plots of
equal fluxes. The number of contour lines is limited to 20. The highest
lTevel is associated to the highest flux.

In figs. 2 to 10, the angular distributions of motion are compared between
gold targets irradiated with 2.5 keV neon and xenon atoms, respectively.
When scanning from fig. 2 to fig. 10, the most striking feature is the
strong anisotropy of the angular distributions and its evolution as the
energy dissipates. The only exception is the fig. 2a, representing the
highest energy distribution (close to half the primary energy) in the case
of neon slowing down. These scattering energies are above the maximum
transferable energy between an incident neon and a gold atom (837 eV). The

distribution thus represents the angular distribution of moving neon atoms



only. In fig. 2b (xenon incident particles), the distribution is already
dominated by moving gold atoms.

Another overall feature is that, at all energies, more cascade atoms move
forward than backward. To a large extend, this is due to the occurrence of
a surface of incidence through which atoms can escape. A similar, but depth
resolved analysis might bring better details about forward to backward flux
ratios. This was already done in /19/ with another code and will not be
discussed here. However, the major anisotropies that are featured in the
present work could not be detected in /19/ because the analysis was not
performed with angular resolution.

The relation between anisotropy and crystal structure can be analyzed in
details by a comparison of the contour plots with the low index
crystallographic directions and the loci of the directions parallel to the
major low index crystallographic planes. These are given in fig. 1la and an
example of superimposition with a contour plot is given in fig. 11b. From
this latter figure, the correlation between the directions of atomic motion
and the lattice structure obviously appears to dominate the cascade
development. It is also seen that one-dimensional focusing is not
sufficient to account for all the anisotropies. Two-dimensional focusing
parallel to {110} planes has a significant contribution in this figure as
well. The analysis of figs. 2 to 10 allows the following description:
Figure 2 represents the direction distributions of moving atoms after the
first collision at which their energy falls below EO/Z. The rather
isotropic distribution in fig. 2a was already assigned to neon atoms and
reflects the large differential cross-section for large scattering angle of
1ight particles by heavy target atoms. The distribution in the xenon case

(fig. 2b) displays a major focusing direction parallel to 100 atomic



rows. The apparent steering along {110} planes is not real. The scale in
the abscissa is not linear and the spots are roughly circularly shaped,
with a full width at half maximum of about 30 degrees. Focusing along <111>
and close to <221> directions also occurs, with less intensity. These
represent open directions up to the third and fourth neighbour distance
respectively. When the energy dissipates further and gets lower than EO/Z2
(fig. 3), the distributions in the neon and the xenon cases display clear
similarities. In addition to the focusing directions found in fig. 2b,
momentum starts to turn back toward the surface of incidence. <111> spots
are reinforced with regard to <100>. This is not the case for focusing
close to the <221> direction. <100> focusing starts toward the surface,
which is clear in the neon case and nascent for xenon. No <111> focusing
occurs yet toward the surface in the neon case. Figure 3b displays a
significant steering between <111> and <110> directions, which represents
2-D focusing parallel to {110} planes. When the energy gets lower than
E0/23, the distributions gain in complexity, although remaining strongly
anisotropic in the case of xenon (fig. 4b). The anisotropic features
appearing in fig. 3a are reinforced in fig. 4a. The addition features
appearing in fig. 4b have two different origins: one is the greater
focusing efficiency in <100> directions toward the surface, the other is
the strong increase in the number of trajectories fed toward the <221>
directions.

The occurrence of nascent spots in the forward <110> directions can be seen
as well. When the energy still dissipates further (below E0/24), the
situation starts clarifying. It can be seen by comparison between fig. 5a

and 5b, that the distributions become quite similar, whatever the

projectiles are, although (fig. 12) the number of moving atoms is more than



a factor of two smaller in cascades generated by neon than by xenon. It can
be noticed also that the kinetic energy of moving atoms becomes close to
the replacement threshold, which comes out to be about 120 eV in the
present calculations. The focusing in {110} planes in directions close to
parallel to the surface is striking as well as the strong spots in the
<110> directions toward the surface. The relative intensity of the <100 >
spots decreases. When the energy still decreases, focusing in the <110>
directions becomes clearly dominant and a weak focusing in directions
parallel to {111} planes is seen in fig. 6a and 6b. It can be associated
with the flux enhancement in the <112> directions as seen in those that are
the closest to the surface normal. This situation is most enhanced for
particles whose energy get below EO/Z6 (39 eV), as seen in fig. 7. the 1-D
focusing occuring at higher energy is most enhanced. In addition, spots due
to focusing in short range open directions emerge again. The <100> spots
have almost disappeared. When the energy still dissipates further (fig. 8),
the complexity increases again, because of the relative enhancement of
focusing in short range directions, coupled with 2-D focusing parallel to
{111} and {110} planes. As shown in fig. 9, planar focusing decreases with
regard to 1-D focusing in both Tow index close packed (<110> and <112>) and
short distance open directions (<221>) when the energy dissipation proceeds
below EO/Z8 (9.77 eV). The stronger intensity close to <221> than in the
<110> directions toward the surface can be noticed in fig. 9b, giving rise,
among other, to the six fold symmetric pattern with the spots in the <112>

directions.

It turns out from this rather extensive description that the all collision

cascade development can be interpreted in terms of crystallographic
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effects. Both close packed rows and more open directions play an important
role. Planar focusing is unstable and contribute to feed the sequences of
particle trajectories from short range open directions (<221>) to <110>
directions. <100> focusing plays an important role at high energy and its
effect disappears rather fast as the energy dissipates. The same happens
with focusing in the <111> directions, but to a smaller extent. The
evolution of the patterns described above is governed by the different
efficiencies of the various kinds of focusing effects as the energy
dissipates. Finally, the rather long memory of th projectile can be
noticed. Indeed, it is only when the energy per moving atom gets below
about 160 eV (fig. 5) that qualitative differences between cascades
generated by heavy and light primaries becomes insignificant. As shown in
fig. 12, the number of colliding atoms increases differently as the energy
dissipates, when the cascades are initiated by light and by heavy
projectiles. They become similar, and the memory of the projectile is thus
completely lost only when the kinetic energy of the moving atoms becomes
smaller than 40 eV.

Further evidence for the progressive loss of memory of the incendent
conditions is found in the comparison of flux angular distributions for
different primary energies. In figs. 13 to 17, flux distributions are
compared for moving atoms with similar energies, but the xenon incendent
energies are 0.6 keV (figs. 13-17a) and 2.5 keV (figs. 13-17b)
respectively. It should be noticed, by comparing fig. 1b with fig. 14a that
the starting of the cascade generations are very much alike. Both are
dominated by peaks in the <100> forward directions and a minor
preferentiality for the <221> open directions. No peak appears in the <111>

forward directions in the low incidence energy case. This is a consequence
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of the fact that at such low interaction energies, the large angle recoil
cross-section is still rather small and the angular distribution is still
dominated by primary recoils. The distribution in fig. 13a is quite
different from that at the same energy in cascades generated by 2.5 keV
xenon atoms. The similarities increase however as the energy dissipates and
become almost identical at energies getting below about 37 eV (fig. 15 to
18). The only differences in fig. 18 concern the relative amount of atoms
moving toward the surface, which is smaller in the low energy case. The
relative intensities in the two families of spots displaying a six-fold
symmetry close to the backward normal at the surface are completely
different. This is not the case in the forward direction. It thus can only
be related to the distance from the surface at which the cascades develop.
Replacement sequences of course have a signifcant contribution to the
anisotropy, especially in the low energy part of the cascade development.
This contribution can be studied by comparison of the distributions in
cascades in which they are truncated and in which they are not. The results
are compared in figs. 19 to 24, from energies just above the replacement
energy threshold (fig. 19) down to the cohesive energy (fig. 24). As
expected, the patterns displayed in fig. 19a and 19b are similar since the
kinetic energies are above the replacement threshold. The minor differences
are due to statistical fluctuations. It is only at lower energies that
significant differences take place. It clearly comes out in the figs. 20 to
24 that even when the replacement sequences are truncated, the
distributions of momentum directions remain strongly anisotropic and the
collison cascades essentially develop through 1-D and 2-D processes. A
comparison between figs. 20a and b, with regard to fig. 1la indicates the

contribution of replacement sequences to <110> peaks. Those ccrresponding



- 12 -

to the other families of close packed directions have similar profiles in
both figs. 20a and 2la. This focusing process is achieved when the energy
gets lower than 39 eV, as found by a comparison between fig. 22a and 22b. A
strong focusing effect thus appears in the cascades, which is not due to
replacement sequences. At this stage of the cascade development, it
represents about half the contribution to focusing in <110> directions.
This can be attributed to low energy channeling in directions parallel to
replacement sequences. This low energy channeling is however unstable, as
it comes out by a comparison between the peak profiles in fig. 22a and 23a.
Indeed, in the latter, the <110> peaks are found to split again in
directions parallel to {110} planes. In fig. 24a, they are found again,
together with peaks close to the <221> directions. This situation
correspond to kinetic energies just above the value of the cohesive energy.
To this point, a static lattice is assumed. Thermal displacements of the
atoms from their lattice sites may result in a disorganization of the
patterns described above and of course the question arises to know whether
they can lead to a randomization of the cascades. In order to investigate
this problem, the simulations were repeated, assuming a temperature of

600 °K and uncorrelated thermal displacements, according to the Debye-
Waller model /29/. Since thermal vibrations in a crystal are known to be
correlated, the procedure is expected to overestimate the thermal effects
on the cascade development. The results are given in the figs. 25 to 32 at
successive steps of the energy dissipation. For clarity, the loci of
directions parallel to {111} planes are superimposed to some contour plots.
Focusing effects are not as pronounced as in the case of a static lattice,
but the anisotropy of the flux distributions remains quite strong. The

peaks associated to <111> directions at high energies do not occur as in
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the static case. Although less intense, the same <100> spots remain. At
lower energies, the structure of the direction distributions becomes more
anisotropic but are quite different than in the case of a static lattice.
The strong influence of {111} planes rather than {110} clearly appears. The
peaks in the <110> directions are found to be produced as a consequence of
the 2-D focusing in {111} planes (fig. 28), which becomes dominant as the
energy dissipates further (fig. 29 and 30). This 2-D focusing is unstable
and at Tow energies, typically below 20 eV (fig. 31 and 32) the patterns
are dominated by focusing in <100> and <111> directions, as well as in the
<221> short range open directions. Notice that the Tatter displays a six-
fold symmetric pattern close to the backward normal at the surface, which

is typical of sputtering patterns, as discussed below.

b) The origin of sputtering

The angular distributions analyzed above are not depth resolved. Since
about 90 percent of the sputtering originates from the surface plane, its
understanding requires the knowledge of the atomic flux distribution in the
close vicinity of the surface. This is however not sufficient since once
crossing the surface plane toward the vacuum, particles in the process of
sputtering still have to undergo surface scattering from some of its close
neighbours. In addition, they have to overcome surface binding forces that
induce a further deflection of the outgoing trajectories toward the surface
plane.

In order to follow the sputtering process, the atomic flux distributions in
the close vicinity of the surface plane are compared at successive steps of

the ejection process as a function of the kinetic energy. Three situations
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are compared. The first is the flux distribution of atoms moving in the
vicinity of the surface plane in the half space including the vacuum and
limited at a distance of half a planar spacing beneath the surface. In the
second, distributions are constructed as in the first situation but the
flux of atoms moving in'the vacuum is limited to the contribution of those
that satisfy the sputtering criterium. In the third situation, the
refraction of the trajectories in the vacuum is taken into account. In such
a way, the sputtering angular distribution of atoms ejected with different
kinetic energies is displayed. As expected, the lowest energy distributions
(fig. 37c and 38c) feature similar angular distributions as obtained
previously /22/. In fig. 33, no significant difference is to be seen
between the different situations since the energies are still high enough
that momentum is all directed forward. Momentum starts to turn toward the
surface at a somewhat lower energy, as shown in fig. 34a. However,
trajectories toward the vacuum are still directed rather close to the
surface and surface scattering is not sufficient to help to overcome the
surface energy barrier. At energies below 75 eV, a large fraction of
momentum is turned back toward the surface (fig. 35). This however only
concerns atoms coming from the bulk, Tocated just beneath the surface plane
and that do not retain enough energy after crossing the surface in order to
be sputtered. Sputtering starts to be significant at lower energy, and a
substantial contribution is found in fig. 36 (37 eV). Figure 36b shows that
surface recoil prevents the ejection of atoms in directions close to the
surface. The effect of the surface binding is to expand the direction
distribution a 1ittle and to move the three fold spot pattern toward the
surface. The structure of the spots is not seen in fig. 36a where a six-

fold pattern occur. The structure in the sputtering distribution (fig. 36b
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and ¢) are due to atoms fed into open directions. The major spots close to
the backward surface normal in fig. 36a are <221>, those in fig. 28b and c
are centered on <124> directions.

At Tower energy, the pattern is dominated by <112> and <221> ejection
(figs. 37b and c). The additional contribution of <124> ejection is noticed
in the profile of the <221> spots. The peaks observed in the more oblique
<124> directions in fig. 37a do not give rise to sputtering. The six-fold
pattern observed in the sputtering distribution is associated to <110> and
<221> directions. As the energy dissipates further (fig. 38), a minor
contribution of <124> motion to sputtering is observed, displaying an
additional six-fold pattern. This one was not detected experimentally /30/,
and it was not significant enough to be emphasized in the related
sputtering simulations /22/. The major six-fold pattern in the flux
distribution of fig. 38a, giving rise to sputtering is here the result of a
combination of <112> and <221> focusing processes.

At the lowest energies considered (fig. 39), the whole sputtering pattern
is dominated by the major six-fold pattern resulting, as in fig. 38, from
<112> and <221> focusing. The other features in the flux distribution
toward the surface disappear, as a consequence of the surface energy
barrier.

It thus turns out that the interpretation of the anisotropy in sputtering
angular distributions is rather complex since, depending on the ejection
energy, the origin of the contributions to the same spots is different.
Insofar sputtering is dominated by low energy ejection, the major
contribution to the spot pattern originates from <112> and <221> short
range focusing. The contribution of <110> replacement sequences is small.

At this point, it can be anticipated that energy and angular resolved
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experiments might confirm the contribution of the other focusing processes

predicted here.

I1V. Conclusion

The present work clearly shows that collision cascades in single crystals
are strongly anisotropic. This conclusion obviously applies to polycrystals
as well since the spatial extend of collision cascades is generally smaller
than the size of the crystal grains. The cascades are not found to
randomize when the kinetic energy gets small and random thermal
displacements of the atoms from their lattice sites do not randomize the
cascades. Except as replacement sequences are concerned, the evolution of
the anisotropy is governed by unstable one- and two-dimensional short range
focusing processes. These also dominate the sputtering angular
distributions which, in the present case study, cannot be associated to a
major contribution of focusing chains.

The interatomic potential used was found in /22/ to provide the best
prediction of sputtering yields and angular distributions. Therefore, it
can reasonably be considered that the calculated Tow energy flux
distributions are reasonable, although significant discrepancies in the
relative sputtering intensities in the spots were found /22/ between
experiment and simulation. These can be due both to a slight inaccuracy of
the potential as well as to the increasing dynamical nature of the atomic
interactions as the energy decreases. It also cannot be ruled out that some
of the discrepancies originate from the experimental Au(111l) surface which

is known to have a complex structure. It is striking that the binary
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collison approximation used in the present work and earlier sputtering
studies /21,22/ still leads to reasonable predictions for processes
dominated by low energy large impact parameter interactions, as the

preferential sputtering in <221> and <112> directions.
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Figure Titles

Figure 1

Impact parameter squared distributions for collision cascades generated by
2.5 keV neon atoms at normal incidence on a gold target. The results
obtained by simulation in the case of a single crystal with a (111)
surface, of a polycrystal and of an amorphous target are compared with the
uniform distribution associated with a random target model. The arrows
indicate the impact parameter squared for the simultaneous interaction
between a projectile and a ring of lattice atoms in {111}, {110} and {100}

planes, when the trajectories passes through the center.

Figure 2 to 10

Contour line plots representing the angular distributions of atoms moving
in the cascades generated by 2.5 keV Ne atoms (fig. 2 to 10a) and by

2.5 keV Xe atoms (fig. 2 to 10b) incident on a Au(l1ll) surface. The
abscissae represent the cosine of the polar angle, with respect to the
inward surface normal and the ordinates represent the azimuth, with respect
to a <110> surface direction. The plots are drawn for all particles whose

n+l

kinetic energy get lower than EO/Zn but remains higher than EO/Z , with n

increasing from n=1 in fig. 2 to n=9 in fig. 10. E0 is the incident energy.
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Figure 11

a) Loci of the directions parallel to the most compact crystallographic
planes. Their intersections represent the close packed directions in the
lattice, that are labelled in the figure. aAA: loci of directions paraliel
to {100} planes, o0o0o0: loci of directions parallel to {110} planes, +++:
loci of the directions parallel to the {111} planes, ® : <100> directions,
@: <110> directions, € <111> directions, 4 : <112> directions and ¥ : <221>
directions.

b) Figure 1lla is superimposed to a contour plot in order to illustrate how
the Tatter can be analyzed in details. The focusing in close packed
directions can be noticed, as well as in open directions. These are easily
identified aé close to <221> directions. The two-dimensional focusing

parallel to {110} planes is visible too.

Figure 12

Ratio of the number of moving recoil atoms generated by 2.5 keV Ne and Xe
atoms as a function of the motion energy. Each channel in the histogram
concerns atoms whose energy gets lower than EO/Zn but remains larger than

n+l
EO/Z

, Where EO = 2.5 kev is the projectile energy. Owing to the
difference in the inelastic energy lost by Ne and Xe atoms, the ratios of
energy available for damage is 0.79, which is quite close to the ratio of

the number of moving atoms with energies Tower than 39 eV (n=6).
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Figures 13 to 18

Contour line plots representing the direction distributions of moving atoms
in the cascades generated by 600 eV (fig. 13 to 18a) and 2.5 keV (fig. 13
to 18b) Xe atoms. The comparison is made at different steps of the energy

dissipation, for cascade atoms moving with similar energies.

Figures 19 to 24

Contour line spots representing the direction distributions of moving atoms
in cascades generated by 2.5 keV Xe atoms. In fig. 19 to 24a, replacement
sequences are truncated, they are included in fig. 19 to 24b. The plots are
drawn for energies just above the replacement threshold (fig. 19) down to

the cohesive energy for gold (fig. 24).

Figures 25 to 32

Contour line plots representing the direction distributions of moving atoms
in cascades generated by 2.5 keV Xe atoms. 600 O¢ uncorrelated thermal
displacements of gold atoms are included in the simulations. The results
are shown at different steps of the energy dissipation. The loci of the
directions parallel to {111} planes are shown in each figure in order to

guide the eyes when Tooking to the planar focusing effect.
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Figures 33 to 39
Contour 1ine plots representing the direction distributions of moving atoms
in cascades generated by 600 eV Xe atoms. The plots are drawn for atoms

n+1’ with n

whose kinetic energy get lower than E0/2n but greater than EO/Z

increasing from n=1 in fig. 25 -to n=7 in fig. 31. Three different

situations are compared:

a) Direction distributions in the half space including the vacuum and
Timited to half the interplanar spacing,

b) Same as in a), but the distributions for atoms moving in the vacuum is
limited to those that fulfil the conditions to get sputtered,

c) Same as in b), but the refraction effect by the surface binding forces

is included.



Figure 1

Impact parameter squared distributions for collision cascades generated by
2.5 keV neon atoms at normal incidence on a gold target. The results
obtained by simulation in the case of a single crystal with a (111)
surface, of a polycrystal and of an amorphous target are compared with the
uniform distribution associated with a random target model. The arrows
indicate the impact parameter squared for the simultaneous interaction
between a projectile and a ring of lattice atoms in {111}, {110} and {100}

planes, when the trajectories passes through the center.
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Figure 2 to 10

Contour line plots representing the angular distributions of atoms moving
in the cascades generated by 2.5 keV Ne atoms (fig. 2 to 10a) and by

2.5 keV Xe atoms (fig. 2 to 10b) incident on a Au(111l) surface. The
abscissae represent the cosine of the polar angle, with respect to the
inward surface normal and the ordinates represent the azimuth, with respect
to a <110> surface direction. The plots are drawn for all particles whose

n+l

kinetic energy get lower than EO/Zn but remains higher than EO/Z , with n

increasing from n=1 in fig. 2 to n=9 in fig. 10. E0 is the incident energy.
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Figure 11

a) Loci of the directions parallel to the most compact crystallographic
planes. Their intersections represent the close packed directions in the
Tattice, that are labelled in the figure. aaa: loci of directions paraliel
to {100} planes, ooo: Toci of directions parallel to {110} planes, +++:
loci of the directions parallel to the {111} planes, ® : <100> directions,
@: <110> directions, @ <111> directions, 4A: <112> directions and V: <221>
directions.

b) Figure 1la is superimposed to a contour plot in order to illustrate how
the latter can be analyzed in details. The focusing in close packed
directions can be noticed, as well as in open directions. These are easily
jdentified as close to <221> directions. The two-dimensional focusing

parallel to {110} planes is visible too.
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Figure 12

Ratio of the number of moving recoil atoms generated by 2.5 keV Ne and Xe
atoms as a function of the motion energy. Each channel in the histogram
concerns atoms whose energy gets lower than E0/2n but remains larger than
E0/2n+1, where E0 = 2.5 kev is the projectile energy. Owing to the
difference in the inelastic energy lost by Ne and Xe atoms, the ratios of

energy available for damage is 0.79, which is quite close to the ratio of

the number of moving atoms with energies lower than 39 eV (n=6).
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Figures 13 to 18

Contour line plots representing the direction distributions of moving atoms
in the cascades generated by 600 eV (fig. 13 to 18a) and 2.5 keV (fig. 13
to 18b) Xe atoms. The comparison is made at different steps of the energy

dissipation, for cascade atoms moving with similar energies.
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Figures 19 to 24

Contour Tine spots representing the direction distributions of moving atoms
in cascades generated by 2.5 keV Xe atoms. In fig. 19 to 24a, replacement
sequences are truncated, they are included in fig. 19 to 24b. The plots are
drawn for energies just above the replacement threshold (fig. 19) down to

the cohesive energy for gold (fig. 24).
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Figures 25 to 32

Contour line plots representing the direction distributions of moving atoms
in cascades generated by 2.5 keV Xe atoms. 600 %k uncorrelated thermal
displacements of gold atoms are included in the simulations. The results
are shown at different steps of the energy dissipation. The loci of the
directions parallel to {111} planes are shown in each figure in order to

guide the eyes when looking to the planar focusing effect.
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Figures 33 to 39
Contour line plots representing the direction distributions of moving atoms
in cascades generated by 600 eV Xe atoms. The plots are drawn for atoms

whose kinetic energy get lower than EO/Zn but greater than EO/2n+1

, With n

increasing from n=1 in fig. 25 to n=7 in fig. 31. Three different

situations are compared:

a) Direction distributions in the half space including the vacuum and
limited to half the interplanar spacing,

b) Same as in a), but the distributions for atoms moving in the vacuum is
Timited to those that fulfil the conditions to get sputtered,

c) Same as in b), but the refraction effect by the surface binding forces

is included.
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