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Abstract

In the present paper the diffusion driven current in tokamaks and stellarators is investi-
gated. In stellarators neoclassical bootstrap currents are serious obstacles for achieving op-
timum confinement since the profile of the rotational transform is modified during the rise
phase of the discharge. Following the theory of axisymmetric configurations like tokamaks,
predictions for nearly axisymmetric stellarators like Wendelstein VII-A yield a bootstrap
current of several kilo-Amps. In Wendelstein VII-AS application of the same equations
yields currents up to 70 kA, depending on the achievable 8. However, this estimate does
not take into account the three-dimensional geometry of the magnetic surfaces and the
optimization of drift orbits in Wendelstein VII-AS. In general stellarator geometry the
magnitude of the bootstrap current depends on the localization of trapped particles and
the kinetic equation has to be solved in order to compute the parallel viscosity which drives
the bootstrap currrent. It can be shown that in configurations with symmetry - axisym-
metry, helical symmetry, quasi-helical symmetry!- bootstrap current and radial particle
loss are proportional to each other. This relation follows directly from the momentum bal-
ance and the plasma viscosity given in Chew-Goldberger- Low formulation. This general
relation, which is already known for tokamaks? can be derived without solving the kinetic
equation. Depending on the sign of ¢ — ~,,, the bootstrap current in helical invariant stel-
larators can have the opposite sign compared with tokamaks (¢ is the rotational transform
and -, is the slope of the helical invariant lines B = const.). If the symmetry of the
configuration is destroyed, it is possible to minimize the bootstrap current by a suitable
choice of the magnetic field geometry.

The parallel and the perpendicular viscosities have to be calculated for the various
regimes of collisionality starting from the kinetic equation. In a collision dominated plasma
these effects are small. The viscous tensor of a collisional plasma given by Braginskii® allows
one to calculate these average viscous forces for an arbitrary stellarator geometry and a
geometrical factor Cp can be defined which characterizes the dependence of the bootstrap
current on the topology of the magnetic surface. Such a geometrical factor also exists
in the plateau regime; in the long-mean-free-path regime the bootstrap current depends
on the collisionality and the radial electric field and thus a factor C; depending on the
magnetic field alone cannot be defined.

1Ref.[1]]. Nithrenberg, R. Zille Phys. Letters A 129(1988 )113
2Ref.[2] T.A. Stringer Plasma Phys. 14, (1972) 1063
3Ref.[3] S.I. Braginskii Rev. of Plasma Phys. Vol. I p.250




I. Introduction

The basic principle of stellarators is to maintain a toroidal plasma without a toroidal
net current and without an external loop voltage. Since the toroidal current can be the
energy reservoir for instabilities even internally generated currents like bootstrap currents
should be avoided or made sufficiently small. Another reason to make bootstrap currents
as small as possible in stellarators is their dependence on the plasma pressure. The boot-
strap current changes the rotational transform during the heating phase of the plasma,
which - especially in low shear stellarators - could generate low-order rational surfaces not
existing in the vacuum configuration. Therefore the bootstrap current is an unwanted
and uncontrollable component in the discharge. Stellarators without ohmic heating are
well-suited to investigate the pressure driven bootstrap current, however many efforts have
failed to give conclusive results and to confirm theoretical predictions. Experiments in He-
liotron E! and Wendelstein VII-A? with neutral beam heating and ECRH found toroidal
currents of the order of 1 - 2 kA. In these experiments it is difficult to distinguish between
the bootstrap current and the current driven by the heating mechanism.

In tokamaks the bootstrap current increases the rotational transform and modifies the
g(r)-profile and the tearing mode instability. In ohmically heated discharges measurements
of the diffusion driven current are difficult, however after the application of a significant
amount of auxiliary heating the existence of a bootstrap current could be shown in TFTR?
Another reason for renewed interest in the bootstrap current is its potential of steady state
operation provided the equilibrium is stable.

A large number of theoretical papers on bootstrap currents in tokamaks and stellarators
exist, most of these papers are restricted to a special geometry, for example to a stellarator
with one helical harmonic. Based on the review paper of Hirshman and Sigmar®, Shaing
and Callen® have extended the moment equation approach to non-axisymmetric configu-
rations. As already pointed out by Wimmel® and Stringer’ the neoclassical effects in the
moment equations are represented by the anisotropic terms in the pressure tensor. This
anisotropic pressure tensor is the macroscopic result of particle drifts, which in a plasma at
low collisionality can lead to a strong deviation from a local Maxwellian. The anisotropic
pressure tensor has to be calculated either from the next order moment equations or from
the solution of the kinetic equation. For collisional plasmas this problem has been solved
by Braginskii, who derived a general linear relationship between pressure tensor and the
hydrodynamic rate of strain tensor.

In the moment equation approach an ordering scheme is employed which neglects all
dissipative effects in lowest order and assumes the plasma to be characterized by a local
Maxwellian without loss cone effects. In mirror machines this approximation may not be

1Ref.[4] S. Besshou et al. Plasma Phys. and Contr. Fus. 26 (1984) 565

2Ref.[5]

3Ref.[6] M.C. Zarnstoff et al. in 14*h European Conf. on Contr. Fusion and Plasma Physics, Madrid 1987
Contribut. Papers, 1, 144 (1987)

4Ref.[7] S.P. Hirshman, D.J. Sigmar Nucl. Fusion 21 (1981) 1079

5Ref.[8] K.C. Shaing, J.D. Callen Phys. Fluids 26 (1983) 3315

8Ref.[9] H.K. Wimmel Nucl. Fusion 10 (1970) 117

TRef.[2]




justified, however in toroidal configurations with closed magnetic surfaces a loss cone can
only occur in the perpendicular direction. Since radial drift velocities are much smaller
than parallel velocities, a loss cone in the distribution function can only arise in the very
long mean free path regime. Therefore, in toroidally closed configurations the anisotropy
of the pressure is small and can be treated as a correction term in a perturbation technique.

In lowest order a dissipationless plasma can move freely within the magnetic surface
leaving the integral poloidal flux ( or the radial electric field ) and the toroidal fluxes
of each particle species undetermined. In first order dissipative effects are included and
all quantities left undetermined in lowest order are fixed by the condition that the first
order equations be integrable. These conditions are known as the flux-friction relations
(Hishman, Sigmar Ref.[7]). Besides transport coefficients these flux-friction relations are
the basic equations in the theory of plasma losses and bootstrap currents. They provide
a linear system of algebraic equations between radial plasma losses, toroidal particle flux
and radial density and temperature gradients. Elimination of the gradients allows one to
correlate the toroidal fluxes linearily to the radial losses, thus yielding a linear relation
between plasma losses and bootstrap current. This relation has already been discussed by
Bickerton et al.! for tokamak plasmas; in the present paper this result will be extended
to general non-axisymmetric configurations. The tokamak result can easily be generalized
to all symmetric configurations like helically invariant or quasi-helical configurations. In
the following, symmetric configurations are understood as configurations with modB con-
taining an ignorable coordinate which implies that besides the energy another integral of
particle motion exists. For these symmetric configurations the linear relationship between
bootstrap current and radial plasma losses can be derived without invoking the solution
of the kinetic equation, the reversal of the bootstrap current in helical stellarators, which
has already been found by Shaing and Callen, is a natural and straightforward result of
this theory. i

The origin of the bootstrap current is the anisotropic pressure arising from the particle
drifts in an inhomogeneous magnetic field thus leading to toroidal and poloidal viscous
forces tangential to the magnetic surface. Heating mechanisms which generate a distortion
of the distribution function in a similar fashion compete with the pressure driven toroidal
currents and thus excite additional currents. On one hand this current drive mechanism
is a wanted effect in order to replace the inductively driven currents in tokamaks, whereas
on the other hand attention has to be paid to the influence of momentum input on radial
plasma losses. In case of general toroidal geometry the flux-friction relations including
external momentum sources have been studied by Coronado and Wobig?. In this paper
this issue is discussed with special attention given to the difference between symmetric and
non-symmetric configurations.

A point of particular interest is the chance to make the bootstrap current small or
negligible in non-symmetric configurations. If by suitable choice of the helical field the
current density changes sign across the plasma radius, the integrated bootstrap current
can be made very small. In this case the rotational transform on the plasma edge is
not changed by finite-B-effects, the profile of ¢ inside the plasma, however, varies with

1Ref.[10] R.J. Bickerton, J.W. Connor and J.B. Taylor Nat. Phys. Sci. 225 110 (1971)
2Ref.[11] M. Coronado, H. Wobig Phys. Fluids 30 (1987) 3171
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the magnitude of the bootstrap current on each magnetic surface. There is the other
possibility to make the bootstrap current zero or small on each magnetic surface. If by
proper choice of the Fourier spectrum of |B| the mod-B lines are closed poloidally within
one field period, trapped particles in such linked mirror configurations only drift poloidally
and not toroidally. Evaluating the bootstrap current in such configurations yields a small
or zero bootstrap effect on each magnetic surface. Since these configurations with localized
particles resemble the tandem mirror configuration, strong radial losses of these trapped
particles may occur and further investigations are needed to explore whether a magnetic
field can be found where zero bootstrap current, small neoclassical losses and favourable
MHD-behaviour can be combined.

The present paper discusses the relation between bootstrap current and radial plasma
losses starting from the momentum balance equation of each particle species. For sim-
plicity, first the model of an isothermal plasma with density gradients only is adopted, in
this model the basic phenomena can be clearly worked out. Temperature gradient effects
are included later. Many results described in the following are already described in the
literature, this will not be pointed out in all cases. The aim of this paper is to give a
general description of the bootstrap effect valid for any toroidal configuration. Therefore
a particular coordinate system will not be used, the magnetic field and the plasma current
provide a natural pair of base vectors on the magnetic surface.




II. Momentum balance equations

The best way to understand the bootstrap current in the fluid model is to start from
Ohm’s law which, in a plasma with single charged ions, is obtained by subtracting the two
equations of momentum balance.

pivi - Vvj=—Vp;+enij(E4+v; xB)—-V-m; + ZRJ'J: (2.1)
3 :

J = e,i. Rjp = —Rj; is the momentum exchange of different particle species by Coulomb
collisions. In a plasma with several particle species the interaction term is

Ry = O!jk(vj = Vk) (2'2)

with the symmetric matrix a;x being proportional to the collision frequencies v;¢. In a
two-fluid plasma Ohm’s law is the difference of the two momentum balance equations

vPe_v'ﬂ'e_i_Rei

en en en

E+uXB=iij—u (2.3)
en

with n; = n, = n. u = v; + m./m;v. is the macroscopic velocity of the plasma. In this

equation inertia terms have been neglected. The friction term R.; is a linear function of

the fluid velocities v; and the thermal fluxes. The general form will be considered in a

later chapter, here we start from the more simple formulation of a two-fluid plasma:

Rei = ennj (2.4)

n is the resistivity of the plasma which for further simplification will be taken as isotropic.
Taking into account the temperature gradient would add some extra terms in Eq. (2.4),
but these terms are not important to understand the basic mechanism. The effect of
thermal fluxes will be investigated later.

In the Chew-Goldberger-Low! approximation, valid in a strong magnetic field and for
all regimes of collisionality, the traceless part of the pressure tensor is

mik = (o) — pL){bibk — %&'k} (2.5)

with b = B/B.

In contrast to the isotropic term of the pressure tensor, p 6;x, this anisotropic term
leads to forces V - which are tangential to the magnetic surface, thus modifying the force
balance parallel and perpendicular to the magnetic field. The neoclassical losses are cal-
culated from the perpendicular momentum balance, whereas the bootstrap current results
from the parallel momentum balance. The two terms p; and p, have to be calculated
either from the kinetic theory and the distribution function f

1
p”oc/vﬁfdsv : plocfavﬁ_fdav (2.6)

1Ref.[12] G.F. Chew, M.F. Goldberger, F.E. Low Proc. R. Soc. London Ser. A 236, 112 (1956)
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where v is the particle velocity in the frame of a displaced Maxwellian, or from the next
order moment equations, which correlate p and p, to the lower order moments of the
distribution function. In a collisionless plasma described by the double adiabatic model
p and py are functions of the magnetic surface ¥ = const and the magnetic field B

py=p(¥,B) ; pL=rpiL(¥,B) (2.7)

Plasma equilibrium

Ohm’s law is the basis to calculate the radial particle lux I' = [ nu - df through a
magnetic surface and the net toroidal current I(¢). In steady state the electric field is
the gradient of a single-valued potential ¢. To calculate I'()) and I(¢) we assume that
a plasma equilibrium with nested magnetic surfaces exists and can be described in lowest
order by

J x B=VP (2.8)

P(3) and N(t) are the lowest order pressure and density on the magnetic surface. This
lowest order is defined by neglecting the inertial terms and the collisional terms V - 7,

and R.;. The lowest'order plasma current is decomposed in two terms, a poloidal current
P'V, and a parallel current I'() B

J=P'V,+I'(y)B (2.9)

with V-V, = 0. The stream lines of the vector V, are poloidally closed and the equilibrium
condition requires for V,
Vi x'B = Vi (2.10)

This vector V, does not depend on the plasma parameters, it depends only on the geometry
of the magnetic surface and can be written

V¢ xB
e = AR

+ 2B (2.11)
with A being calculated from V-V, = 0. jj = AB are the Pfirsch-Schliiter currents. The
vector V, is correlated to the toroidal Hamada coordinate ¢, since with V, = Vi x Vv
the equilibrium condition demands

B-Vv =1. (2.12)

The lines v = const are poloidally closed. The relation to the toroidal Hamada coordinate
¢is V/(¢) ¢ = v. V(9) is the volume inside the magnetic surface. In the following analysis
we will use B and V, as base vectors on the magnetic surface. In Ref.[8] Shaing and Callen
employ the vectors B, and By with B = B; + B, where B; has toroidally closed field
lines and B, poloidally closed lines. The correlation to V, is

1
Bydamqui 0 tV,. (2.13)




Locally the vectors V, and B are not perpendicular to each other, the surface averaged
scalar product < V,-B > is equal to the toroidal current I’(?)) inside a magnetic surface,
as will be shown in the next chapter. Therefore the choice of V, and B as base vectors
on the magnetic surface is particularly convenient when equations for the toroidal current
are established. Furthermore, in most cases terms with < V, - B > are negligible in the
resulting equations making these shorter and more comprehensible.?

The toroidal current between two adjacent magnetic surfaces is

dly =P’ f Vo-df + I' / B-df = I'(y)dy (2.14)

The first integral is zero since V, carries no toroidal flux and the toroidal current between
two adjacent magnetic surfaces is given by I'(¢y) di.
The poloidal current dI,,; is calculated from

Ao = P’/Vo-df 3 I'/B-df
U F4 (2.15).
—P'V'() dp + I' 6dep

dy is the toroidal magnetic flux and #dy the poloidal magnetic flux.
The lowest order particle flow of each species is defined by

0 = —VP;+¢;N; (E+V; xB) (2.16)
which under steady state conditions yields

V; = E;j(¥) Vo, +4A,;(¥)B (2.17)

1In Hamada coordinates V, 5, ¢ the magnetic field vector is
B =¢'(V)VV x Vg —x'(V)VV x V¢.

n is the poloidal coordinate and ¢ the toroidal Hamada coordinate. The Jacobian is unity and B - V¢ =
1/V'(¢); B - Vn = ¢/V'(¢). The following relation

B, xB = — Vi

&
V'(¢)
leads to Eq. (2.13). In Hamada coordinates the operators B - V and V, - V are written:
8

—+ =) ; Vo-V=—— A2.1
= 77 o * 3 o1 .
The volume element is V/(¢)dnd¢dy and the surface element
df :
I~ v(g)dndg (42.2)
IVl

These relations will be used in the further analysis.



with 0

Ej(¢) = ®'(y) + —L 55— (2.18)
®'(¢) is the i-derivative of the electric potential. In analogy to the electric current the
flux of V; can be separated in a toroidal and poloidal component

urdp = d / V, -df = A;()dy
Fy

. (2.19)
el = / V;df = — B ($)V' (%) dip + A; () edv
Fy

The poloidal flux u, consists of the diamagnetic flux, a flux of the E x B-drift motion
and part of the toroidal flux which flows poloidally by following the magnetic field lines.
The toroidal flux is determined by A;(¢) only. In a plasma with several species of ions
the toroidal flux of each species has to be calculated in order to find the resulting toroidal
current I'(%)

I'(9) = > e;NjAj (%) (2.20)
which in a two-fluid system is

I'($) = —eN (Ac(¥) — Ai(¥)) (2-21)

In lowest order the functions P;, T; and @ are functions of the magnetic surface ¢ =
const. only. The first order corrections p;,T1 and ®; have to be calculated from the first
order equations. These equations are magnetic differential equations for these quantities
and the first order plasma flow v;, which describes the radial loss through a magnetic
surface, can be found after p;,®; are known. The integral fluxes, however, can be found
from integrating the first order equations over the magnetic surface.

magnetic surface

magnetic axis

Fig. 1: Magnetic surface of a toroidal equilibrium with the two base vectors B and V,.




IT1. The flux-friction relations

A correlation between the particle flux T, the toroidal current I(3)) and the aver-
aged viscous forces is provided by the flux- friction relations!. To get these relations we
multiply Ohm’s law with B or V, and average over the magnetic surface. Averaging over
the magnetic surface is defined by

[ors
v , d
<g>:f|—df”b| D V() = ﬁ | (3.1)
V4]

Since in a stellarator the electric potential is single-valued we find

<B:-V¢>=0 <V,-V¢>=0 (3.2)
and - v
<B- :e>=0 = Vi :e>=0 (3.3)

in lowest and first order. Only second order terms < B - n1Vp.,; > could give a finite
contribution. n; and p,,; are the variations of density and pressure in the magnetic surface.
Because of the conservation of charge we have < V, - (j x B) >= 0 in all orders. The
particle flux through a magnetic surface is

r=/Nu-df:N<v,,-(uxB)>V'(¢) (3.4)

With these results we multiply Ohm’s law with V, and average over the magnetic surface

which gives
e
——T(P) =<Rei Vo> —<Vo: Ve, > . 3.5

The first term is the collisional diffusion which can be simplified in case of isotropic resis-
tivity n)) = 7., which gives Re; = eNndJ.

<Rei-Vo>= eNp{P'($)<VE> +I'(y) <V, -B>}. (3.6)

The average < Vo2 > can be written

<Vi2>=<V: >+<AB*> (3.7)
with Vi x B
X
Vi = (3.8)

lsee: Ref.[7] S.C. Hirshman, D.J. Sigmar Nucl. Fusion 21, 1079 (1981)
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We define the Pfirsch-Schliiter factor D, by

SN2 5> < A3B% >
=l (3.9)
<NZ > W S

D, =
which is unity in case of zero Pfirsch-Schliiter currents. This is only possibleif V,-VB =0
which is the characteristic feature of isodynamic equilibria? . The following rough estimate

holds | .
Vi
2 2
< Vo, 1 =< ? >=r
where r is the average radius of the magnetic surface. The factor < V, - B > is equal to
the toroidal current I(¢), which can be seen from the definition of j yielding

(3.10)

<B-j> =P(@{%)<V,-B>+I'(p) < B?> (3.11)
and the expression for < B -j > derived by Kruskal and Kulsrud®
<B-j>= P'(¥)I(¢) +I'(y) < B® >. (3.12)

Thus, the net particle low through a magnetic surface is

dlNHERRY {P'(y)D <M>+I'I}-—<V Ve > (3.13)
V’(’(,b) = 77 o B2 ] e . L
The first term on the right hand side is the Pfirsch-Schliiter diffusion, the second one is
the classical Pinch effect and the third term contains the neoclassical diffusion.
Application of the same averaging method to B- eq. (2.3) gives the parallel mo-
mentum balance.

0=<Rei'B>'—<B'V'ﬂ-e> (3.14)

or

0=eNn{I'(¥)<B*> +P'[@)I($)} - <B-V -1 > (3.15)

This formulation of the bootstrap current is similar to that given by Shaing and
Callen?. In a tokamak the left hand side of Eq. (3.15) consists of the inductive loop
voltage. This equation is an inhomogeneous differential equation for the toroidal current
I(3). Since the second term is small compared with the first one, the equation for the
bootstrap current is

eNnI'(y) <B*> = <B-V-7, > (3.16)

2Ref.[13] D. Palumbo, Nuovo Cimento XB 53 (1968) 507
1Ref.[14] M.D. Kruskal, R.M. Kulsrud, Phys. Fluids 1, (1958) 265
ZRef.[8]
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Without neoclassical ( or viscous ) effects the bootstrap current in stellarators would be
zero and the particle loss is given by the Pfirsch-Schliiter diffusion. In the neoclassical
approximation the toroidal current is finite and adds an extra term to the particle flux.
Since I%(¢) is a function increasing with ¥, this current driven diffusion flux is directed
inwards and opposite to the Pfirsch-Schliiter flux.

These equations seem to be asymmetric in the particle species, however this is not
the case. From the symmetry of the Coulomb collisions and the condition of ambipolarity
it follows that

<V Veae>4+<V,- Vo > =

(3.17)
<B:-Veae>+<B:-V-m;>=0

These equations say that in stellarators the sum of the averaged tangential viscous forces
in the poloidal and toroidal directions is zero. Using the Chew-Goldberger-Low form of
the pressure tensor, these averaged viscous forces can be written

VB
<V, V-me> = —<(p||—pJ_)eVa-—-
B
VR (3.18)
<B:-V: me> = —<(p“—p_|_)eB'?>

This formulation of the neoclassical effects shows that particle flux and bootstrap current
are correlated to the inhomogeneity of the magnetic field on the magnetic surface, the
particle flux to the poloidal variation of B and the bootstrap current to the parallel vari-
ation of B. Since B is a function of two variables - poloidal and toroidal angle - these two
forces can behave differently depending on the particular configuration. In tokamaks the
magnetic field depends only on the poloidal angle and both forces are proportional to each
other.

Neoclassical diffusion is zero if V, - EBQ = 0. It can be shown that this condition
implies zero Pfirsch- Schliiter currents. Therefore it is expected that in configurations with
reduced Pfirsch-Schliiter currents all neoclassical effects including the bootstrap current are
small. Radial losses in stellarators are particularly large, if the trapped particles experience
a radial drift leading to non-confined orbits. These losses are described by the bounce-
averaged distribution function f. As Shaing and Callen! have shown this bounce-averaged
distribution function does not contribute to the driving term < (p|| =pi) B‘E’ B > of the
bootstrap current. Therefore, in stellarators the bootstrap current can be small although
particle losses are large.

The main problem in computing the bootstrap current is to determine the
anisotropy of the pressure. This can be either done by solving the higher order moment
equations or by solving the kinetic equation for the distribution function. In a collisionless
plasma described by the double adiabatic theory, a solution of the equilibrium condition
is, when p|| and p, are functions of the magnetic surface and the magnetic field B,

pi=p(%,B) ; pL=pL(¥,B) (3.19)

1Ref.[8]
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Under these conditions there are no neoclassical effects since for any function g¢(%, B)

<g(¥,B)V,-VB> =0

(3.20)

<g(¥,B)B-VB>=0

Collisional effects must be included in order to obtain nonvanishing effects.
The parallel viscous force is equivalent to an electric field, which drives the boot-

strap current. This surface averaged electric field is defined

1
Eeffz eNBo <B'Vﬂ-e> (3.21)

and B, is a reference field. The equivalent loop voltage is
Uesf = 2nR Eeyy. (3.22)
A rough estimate of this loop voltage can be found if we approximate

B-VB B,

em (3.23)
which gives
kT pj—pL
Ueps m 2m— (=) . (3.24)

where g is a factor of order unity or less. This estimate shows that in a plasma with a
temperature of several keV a very small anisotropy of the pressure (p| — p1)/P of the
order 10~2 is sufficient to generate a loop voltage of several volts.

IV. Bootstrap current in symmetric systems.

As shown above, the bootstrap currents and the neoclassical fluxes are integrals
over the difference of parallel and perpendicular pressure. This raises the question, whether
there are closer connections between these two quantities. In general non-axisymmetric
configurations this relation cannot be found without calculating the anisotropic pressure
explicitly. In configurations with symmetry, however, such a relation exists. Axisymmet-
ric tokamaks and helically invariant stellarators are examples of configurations with an
ignorable coordinate. If u,v are toroidal and poloidal coordinates, a linear combination
w = y1u + y2v exists, with B = B(w). The magnetic field lines in this coordinate system
are described by

x = Ci1u+ Cav + xp(w) (4.1)

and the stream lines of V, by
¢ = Cau + ¢p(w). (4.2)

Xp and ¢, are periodic functions of w. In magnetic coordinates u,v the field lines are
straight lines and xp, = 0.

12




Now, it can be shown that in these symmetric systems the two terms V, VB and
B - VB are proportional to each other with the factor being a constant on the magnetic
surface. In order to show this, we introduce two new base vectors U and V by rotating

the the old base vectors
U = au'V.;, +a12B

(4.3)
V = a1 V,+a22B

where the determinant of the matrix a;x is 1. The vector U is chosen to be parallel to the
lines w = const

U=VyYxVw and U:-Vw=0. (4.4)
With B = V¢ x Vx and V, = V¢ x V¢ this leads to the condition

dB
=Y :VB = E-{Vl/)-(VwxV(aug—l—algx))}. (4.5)
The term a11¢ + aj2) is a function of w if we make the choice

@11Cs+a12C1 =71 , @12C2 =72 (4-6)

t = C1/C3 is the rotational transform of the field lines and v, = 7 /72 the slope of the
invariant direction w = const. The solution is

T2
Ca (4.7)
a11C3 = 71 — Y2t = ’72("Iw = b) .

G112 = @21 =

azy is determined by |a;x| = 1. The matrix a; is constant on the magnetic surface and
from Eq. (4.3) the following result is derived

a.nVa -VB = —alzB -VB

or

B-VB=23(— 4.V, VB. (4.8)

Cs

In deriving this relation we used the invariance of the magnetic field lines and the current
lines, which implies that the magnetic surface is invariant in direction of U. In quasi-helical
configurations! the magnetic field B depends on the coordinate w, when it is written in
magnetic coordinates u,v. The magnetic surfaces need not be helically invariant and there-
fore this kind of configuration can also exist in toroidal geometry. In magnetic coordinates

x =Ciu+ Czv and ¢ = Cau + Xxp(w). This form of the stream function ¢ follows from

1
B*(w)

d d
B-Vg=1—>{(—i-£+td—v}§= (4.9)

1]. Niihrenberg, R. Zille , Ref.[1]
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which means that in quasi-helical configurations the current lines are helically invariant in
magnetic coordinates.

An immediate consequence of the relation (4.8) is the proportionality of bootstrap
current and poloidal viscous force

VB ¢c V,-VB
_ B-—>= Z2(c—1, _= e——— > . .
<(p=pL)eB- 5 >= o (e—w) < —pPL)e—5— > (4.10)

The same relation holds for the ions. Using this result the bootstrap current can be
expressed in terms of the neoclassical particle flux I',., which is the difference of the
particle lux I' minus the Pfirsch-Schliter term < R; -V, >.

£ Vo' N
NplI' <B?> = —Z2 (s~ ) < (7 —m)"TB >
3 (4.11)
Ca 1 ‘
N I’ .B2 = —— R 7 N neo .
nl' < B> 03(” Yor) 777 Do (¥)

This equation shows that from tokamaks to helically invariant stellarators the bootstrap
current changes its sign. In tokamaks the invariant direction is toroidal and ~, = 0. In
helically invariant stellarators (Heliac and quasi-helical configurations ) the slope of the
field lines in general is smaller than the slope of the helically invariant direction, and
therefore + < «,. The bootstrap current flows in the opposite direction. If the slope in
much larger than the rotational tranform, the magnitude of the bootstrap current is much
larger than in the equivalent tokamak with the same neoclassical particle loss.

This reversal of the bootstrap current can be understood on the basis of drift orbits
of trapped particles. In tokamaks the drift of the banana orbits is toroidal, in helically
invariant or quasi-helical stellarators these trapped particles drift poloidally and toroidally
along the lines w = const. However, the toroidal drift changes its sign with ¢ — ~y,, and the
trapped particles drift in opposite directions than those in a tokamak. Since the bootstrap
current is the result of collisional interaction of trapped particles with circulating particles,
its sign depends on the toroidal drift of trapped particles.

The parallel viscous force driving the bootstrap current can be interpreted as an
electric field, this equivalent electric field is defined by Eq. (3.21). The corresponding loop
voltage in symmetric configurations is

U L o2nR Sl gti228% B-VB 3
elfin eNB, P|| —PLl)e B (4 12)
_ 2mR Cy (6= 70) 1 r ;i
y N_BO CS ’Yw V’('['()) neo -
The coefficient C5 is equal to the t-derivative of the toroidal magnetic flux
Co(¢¥)dy =d / B -df = d®(¢) (4.13)

=const
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and

dl  27R
C = = =0 -
w=- [ F-% (4.14)
v=conat
This equation defines an average field B;. The effective loop voltage can be written
B, d® T'(y)
Uesr = —(t — Vo) ———= 5
=g e N (%) (4.15)
The magnetic field By can be set equal to B,. Defining the magnetic field B by
e _ B
dV ~ 27R
gives for the effective loop voltage
B r
Uesr = —=(t— 2 :

The particle flux can be replaced by defining a neoclassical confinement time 7, by

N dv N2n2Rr?
Fneo("p) — f =

T ™o
N is the averaged density inside the magnetic surface ¢ = const and r is the averaged

radius of this magnetic surface defined by its volume V. With these definitions we can
write the effective loop voltage

_ N
Uejs = Brr?(c— *yw)m : (4.17)
2

N/N is a profile factor of the order 1 - 2.

As an example we consider Wendelstein VII-A, where the helical fields are small
making the axisymmetric approximation applicable. The data are: ¢ = 0.5,B=3T,r =
0.08 m. The effective loop voltage is

N1

Uepr =3-1072 == [Volt]. 4.18
eff N [Volt] (4.18)

With N/N =~ 2 and a neoclassical confinement time of 7, = 0.1 - 0.2 sec, we obtain
Ugff ~0.3—-0.6 [Volt] . (4.19)

This a local loop voltage, it only exists on magnetic surfaces with a finite particle flux
I'. Since on the magnetic axis the particle flux is zero, the bootstrap current is zero on
the magnetic axis. If the particle deposition profile is centered to the magnetic axis, the
particle flux I'(¢) = f S dV is nearly constant over the plasma radius and the effective
loop voltage drives a large bootstrap current. If particle refuelling mainly takes place in
the boundary region, which happens in a high density plasma with cold gas refuelling, the
particle source term is zero in the bulk of the plasma and the flux vanishes.

In a neoclassical tokamak with B = 2T, a = 0.4 m, 0.5 < + < 1.0 and a neoclassical
confinement time of 0.5 - 1.0 sec the effective loop voltage is

Ueff ~13 — 26 [Volt] ‘ (4.20)
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V. Comparison with tokamak

The equations derived in the preceding section are valid for all symmetric con-
figurations. We shall compare these results with the well-known neoclassical equations of
tokamaks. For this purpose we begin with the neoclassical expressions for particle losses
and the bootstrap current in the banana regime.

2
Nvp = —DN' :u‘3&_-‘-’2—(&)3’/2 N’ (5.1)

-
is the average particle flux through a magnetic surface and

= (=)Y2—N' 5.2
5= (2 (52)
is the average current density of the bootstrap current. As already shown by Bickerton!
et al. and Stringer? the correlation between particle flux and bootstrap current can be
formulated as follows

Nnp = %Bor,-NﬁD (5.3).

In these equations r is the average radius of the magnetic surface under consideration. In
order to compare this result with equation (4.11) we use the following approximations

C2 Bo 2R
— Ca =~ 5.4
Vi 2gB YRR, (54)
P B, v aii s (27r)2rR Nup.
With these approximations Eq. (4.11) gives
) r
Nnjy =CB,— (¢t —vu) Nop . (5.5)

R

C is a constant of the order one which summarizes the various geometrical factors in Cj3,
Cs, I' and T'eo. This equation coincides with the tokamak result if we omit the term -,,.
Pytte and Boozer® have derived a similar equation for the helically symmetric stellarator.
Instead of the factor £—~,, these authors only find the factor ~,,. Since ¢ is small compared
with =, the difference is not significant in magnitude, however, the difference in direction
of the bootstrap current is not seen in this approximation.

1Ref.[10] R.J. Bickerton, J.W. Connor and J.B. Taylor Nat. Phys. Sci. 225 110 (1971)
2Ref.[2] Plasma Phys. 14, 1063 (1972)
$Ref.[15] A. Pytte, A.H. Boozer Phys. Fluids 24(1981) 88
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VI. Non-symmetric configurations

In configurations with symmetry the proportionality between poloidal and parallel
viscous forces is the reason for the coupling between the radial losses and the bootstrap
current. In configurations without symmetry this is no longer the case. Locally, the term
V,-VB and B - VB are proportional, however the factor depends on the position on the
magnetic surface and relation (4.8) is not valid anymore. In general it is difficult to find
the relation between parallel and poloidal viscous forces since the solution of the kinetic
equation is needed in order to compute the moments p) and p; . As shown in Egs. (3.13)
and (3.18) the neoclassical particle flux is proportional to < (P —pL)eVo- —YBQ > and the

bootstrap current proportional to < (p” —p1)eB- YE‘E—' >. In a Hamada coordinate system
n,¢ these terms are

VB )
<(p—pL)eVo- et ik (| —pL)e %lnB b
6.1)
VB 1 0 0 (
—p1).B. =2 = —p1)o(o— + 2
< (p” pJ_) B > V’WJ) < (p“ p1) (t:an + ag)!nB b- 2

In an axisymmetric tokamak the toroidal derivative ai is zero which leads to Eq. (4.11). In

stellarators without symmetry [n B depends on both coordinates and the Fourier expansion
of in B is

InB = Z ay,m cos (In — mg) (6.2)
I,m
VB .
< (p” —p1)eVo- B > =T Z apml < (P|| —p1)esin(ln —mg)
l,m (6.3)
VB :
<(p—pL)eB-—5 > = = am (le—m) < (p — pL)esin(In — mg) >
l,m

If the magnetic field only consists of one helical harmonic [ = L and m = M, this imme-
diately yields Eq. (4.11) again. In order to cancel the bootstrap current to zero, besides
the leading harmonic L, M several other harmonics must exist so that

a a
b (p“ _P_L)e%lnB e = = (p“ —pL)a—gan > (6.4)

Collision dominated plasma

To analyse the surface averaged quantities further, we consider a collision domi-
nated plasma first, where these terms can be calculated explicitly. In a collision dominated
plasma the viscous forces are known from the Braginskii theory!. The viscous tensor con-
sists of 5 terms describing bulk viscosity, shear-viscosity and gyro-viscosity. The leading

1Ref.[3]

LT



term is the bulk viscosity which yields the following equation for the difference p — p. for
each particle species

?K':_ — la_VE (6.5)
Jdzy 3 0z

( summation over equal indices). 7 is the self collision time. The lowest order flow velocity
of the plasma is the diamagnetic drift and the E x B-drift within the magnetic surface.
Furthermore, in lowest order an undetermined toroidal flux A(¢)) B exists. Thus, the lowest
order flow velocity from equation (2.15) ( without inertial terms, < V, -V -7, > - terms
and R.; ) is

p|—pL = —31P{bibx

V; = Ej(¥)V,+A;B (6.6)
with T N
Bi(¥) = - +¥) (6.7)

With the aid of these equations the averaged viscous forces can be evaluated

vB

<Vo'v'7re>:_<(p||_p_L)e(Vo' .B)>
vB.*? VB VB
3T8P{Ee(¢) < (Vo . ?) > 4A:. < (VO . ?)(B . —B‘") >}
VB (6.8)
<B:-V.m > ————<(p||—p_|_)e(B-?) >
VB VB VB.?
= 31, P{E.(¥) < (V,- T)(B . ?) > +A. < (B- 7_),-) >}.
For ions corresponding equations exist. After defining the coefficients
VB VB
Cpm<(V0-?)2> : Ct"—*<(B°—B“)2>
o (B (Vo) = S
b B o B

the ambipolar condition and the parallel momentum balance Eq. (3.17) can be written

cp {TeEa + TiEi} + Cyp {TeAe + Tiﬁi} =0

(6.10)
Cy {TeEe + TiEi} + Ci {TeAe + Tz'Ai} =0

This is a homogeneous system for X =: 7. E. + n; E; and Y =: A, + 7;A; which in case of
CpCy — C? # 0 has the trivial solution X =0 and Y =0 or

Te Te
A;=——A., ; E;=—-—F;
Ti Ty

In a two-fluid plasma the toroidal current is
I'($) = —eN (Ae(¥) — Ai(¥)) (6.11)
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and from Egs. (3.16),(3.17) and (6.8) the toroidal fluxes A;(¢) are calculated in
terms of E. and F; and finally the toroidal current is given by

TeTi (Ee — E;)

I'($) = Cy3P (6.12)

El
< B2 > eNn(re +7) + 37 TeTi Ct

The geometrical factor C} is the relevant coefficient for the bootstrap current; if this term
is zero the parallel viscosity < B-V -7, > no longer contains the driving term C}y E.(¢') and
the bootstrap current is zero. In a collision dominated plasma the bootstrap effect is small
and negligeable, however it is interesting to see how this current depends on the geometry
of the magnetic surfaces. As already mentioned, configurations with small Pfirsch-Schliiter
currents are characterized by small (V, - %). Therefore, reduction of Pfirsch-Schliiter
currents helps to make the bootstrap current small, too.

Since the difference E, — E; is proportional to the density gradient the collisional
bootstrap current does not depend on the radial electric field. This field has been elimi-
nated using the condition of ambipolarity. Because of the relation 7. << 7; the toroidal
and poloidal ion fluxes are very small compared with the electron fluxes which is a result
of the strong viscous damping of the ion velocity. E; = 0 implies that the ion pressure
gradient is balanced by the radial electric field. This conclusion cannot be drawn for sys-
tems with an invariant direction since in this case the determinant C,C; — C? is zero,
which follows from Eq. (4.8). In symmetric systems ambipolarity and parallel momentum
conservation do not uniquely determine X and Y, however the toroidal current can be
uniquely calculated in terms of E. and E;, as given in Eq. (6.12).

The equation (6.12) for the bootstrap current in a collisional plasma is different
from the result given by Shaing, Callen (eq. 79 in Ref.[7]). The reason is that these
authors use only the condition < B -V - m; >= 0 to calculate the parallel velocity instead
of <B-V-7.>+ <B-:V.7m; >=0. The parallel viscous forces are the driving terms
of the bootstrap current; these forces, however, are linear in the toroidal fluxes A.(%) and
A;(¢) and therefore a coupled system for these fluxes has to be solved.

In a collisional plasma the second term in the denominator of Eq. (6.12) is negligi-
ble and taking into acount the large ion collision time the toroidal current can be simplified
to

(Ee = Ei) (6.13)

In a two-fluid plasma Ohm’s law is the convenient starting point to derive an
equation for the bootstrap current. This is no longer the case in a plasma with several ion
species. Here, the parallel momentum balance of each particle species has to be taken as
the basis of the analysis. Mulitiplying Eq. (2.1) with B and taking the surface average
yields
VB

B

vB

B3

0= Zajk <(V;—=Vg)-B>+3r;P; < (V;- ] = (6.14)
k
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with the lowest order velocity taken from Eq. (6.6). In explicit form this equation reads

0 = Y air{< B> (4;(%) - Ak(¥)+ < B-V, > (E;(¢) — Ex(¥))} 615
k 6.15
+37; P; CtA;(¥) + 37, P; CoE;(¥)

With given forces E;() this is an inhomogeneous linear system for the toroidal fluxes

A;(¥). The system always has a unique solution and the bootstrap current can be found
from

I'(Y) = D eiNjA;(¥) (6.16)

k

The solution A; () minimizes the entropy production or the dissipated power. This power
dissipated by the frictional forces is

P = Y <V;"Rjp>+)» <V;-V-.m;> (6.17)
ik i
or
w20 i | VB,*
P = EJZka,-,c<(’v,-—vk) >+Z: 37;P; < (V- —5) >. (6.18)
J

In order to obtain this form of the dissipated power the following relations have been used:
V;xB=E;()Vy , V-V;=0 , (V;-V)B=(B-V)V;. (6.19)

This frictional and viscous dissipation of energy by the lowest order flow V; leads to
damping of the diamagnetic and toroidal flow on the magnetic surfaces. The first term
describes the frictional effect of the different particle species and the second term, the
viscous dissipation, is the magnetic pumping effect. Its role in damping the poloidal flow
in tokamaks has been discussed by Hassam and Kulsrud!. This magnetic pumping effect
is the spatial analogue of the gyro-relaxation effect pointed out by A. Schliiter?®.

Representing the velocity V; by Eq. (6.6) yields the power P as a quadratic
functional in E;(¢) and A;(3) whose variation with respect to A;(¢) leads to Eq. (6.12).
Since P is a positive functional the stationary state is a minimum of the functional and the
toroidal fluxes adjust themselves so as to minimize the entropy production rate. Neglecting
viscous dissipation would lead to zero bootstrap current since in that case A; (1)) = Ax(%)
and I' = 0. If the frictional dissiption is neglected, the solution of Eq. (6.12) is

LW = - 2 EW®) (6.20)

1Ref.[16] A.B. Hassam, R.M. Kuslrud, Phys. Fluids 21 (1978) 2271
2Ref.[17] A. Schliiter, Z. f. Naturforsch.12a (1957) 822
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and the total bootstrap current is

r = ”_ZNJ'EJ'('%[’)
! . (6.21)
- -2 Y TN

In this approximation the bootstrap current is independent of the collision frequency and
the electric field, however the ansatz for the viscosity only holds in a collisional plasma,
therefore, extrapolation to a collisionless plasma has to start from a neoclassical theory of
the viscous tensor.

In a tokamak the coefficients C and C; are correlated by C; = ¢/V'(¢) Cp and
Eq. (6.20) is
tAj(P) — V'($)E;(¥) = 0
As shown in Eq. (2.19) the left hand side is the poloidal flux of the particle species j and
minimum viscous dissipation is achieved if the poloidal flux is slowed down to zero by the

magnetic pumping effect. Including the power dissipated by the bootstrap current leads
to a non-zero poloidal rotation in the minimum of entropy production.

VII. The effect of temperature gradients

In the preceeding section we have neglected the inhomogeneity of the plasma tem-
perature which allowed us to investigate the basic relations starting from the momentum
balance only. In a plasma with temperature gradients the friction term R is proportional
to the thermal flux and the plasma current. The linear relations between frictional forces
and thermal fluxes have been derived by Hirshman and Sigmar?

; O
- kv, — Zpik dk
R; ¥ hi1 Vi 5112 Py (7.1)

The vector qf is the lowest order thermal flux of each particle species. The coefficients
12k have to be calculated from the collision operator. The presence of the thermal fluxes
requires the energy balance to be taken into account and the equation for the energy flux
vector Qy is

C O
%{EP,-EJFE:WJ.JFQ,-xB}+G,-ﬂv-r,- =0 (7.2)
7
with -
ij = [ mj%vC,'k d3v (73)
G; is the heat friction force and is given by
Iy .5
C. T (IR, + T 7.4
] m; (2RJ +F;) (7.4)

1Ref.[7] Egs. 4.2. We neglect the next order moments ugz
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where the vector F;; is also a linear function of Vi and qf:

k ik A
F; = > —BiVi+ -z’ Pi (7.5)
k

The tensor r;i is the energy weighted stress tensor
1
rie = / Emjvzv,-vk I d3v (7.6)
and can also be written in the Chew-Goldberger-Low form
1 1
riE = E(Tr(rik))ﬁik + (r" — rl){b;bk o ik}- (7.7)

With these equations of the frictional forces we are in the position to formulate the parallel
momentum balance of each particle species

<B-Rj> - <B:-V.mj> = 0 (7.8)
<B:-G;j> - <B:V:r;j> = 0 (7.9)
These equations can be modified to
5 m;
—<B:Vom; > == <B:-¥Neir; >4+ <B:Fyp> .= 0
2 T; (7.10)
-<B:-V-m;>4+<B-Ry> = 0

with the friction forces being linear in the fluxes:

2 1
‘R - 2 — =¥ Pk - q2 7.11
<B-R; > Z<B > R A (v) Ek By p, <B-ai> (7.11)
and
: 2 i1
<B-F;> = —<32>Zl§’fAk(z,b)+Zgl§§F<B-q‘,’c> (7.12)
k k I

These two equations (7.8) and (7.9) represent an inhomogeneous system for the fluxes
Ak(¥) and < B - qx >. However, the system is singular since the momentum conservation
of Coulomb collisions requires

Y <B:Rjx> = 0
ik

Following the notation of Hirshman and Sigmar the term ) I{‘;‘Ak(‘:j)) can be written

S UMW) = D miNvieMP (A;(%) — Ax(¥)) (7.13)
k

k
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and

YoUiAk(®) = ) miNwaMR (A;(%) — Ak(¥)) (7.14)
k k

where M_,?,? and M}f are symmetric matrices. In the parallel energy balance equation the
term with Ag () can also be modified into the same form and the resulting equations only
contain the relative toroidal fluxes A;(1) — Ax(¢0). This implies that one of the toroidal
fluxes remains undetermined after solving the system. The driving terms of parallel fluxes
and parallel heat flow are the parallel viscosity and the parallel energy weighted viscosity.

In the following we restrict the analysis to a two-fluid plasma, since in that case
the resulting system of equations can still be solved without numerical effort. In a two-
fluid plasma with single-charged ions only the difference A.(¢) — A;(¥) occurs which is
proportional to the toroidal plasma current. In this case the equations (7.10) - (7.12) are

2 2

< B? > {(55A.(9) + [fiAi(9)) — 25X, — 215X0) = A,
. = o 5 .
< B> { (153A.(9) + W1A:(¥)) — 15X, — ZIH X} = A -
7.15
1 2 ee 2 et
< B> { (155A0) + iAW) - SIX. - 15X} = Be
. 2 Do 3 .
= < B* > {514 () +1514:(¥)) — Sl Xe — ¢ 22Xi} = Bi.
Here we have introduced the following notation
A, =<B:V-1.> ; A;j=<B-V.m;> (7.16)
and
Me 5
B, =<B-V-0.,>=< T—B-V-re> —§<B-V-7rg >
me_ 5 (7.17)
B; =<B-V-09;>=< 25%13 -Vir; > *-§'<:]3 -V om >
The terms X., X; are defined by
Xi<Bi>=<B-q> X:& B*S=<B-ql> (7.18)

The equations (7.15) represent an inhomogeneous system for the unknown terms
X., Xi, Ae(¥), Ai(¢). After eliminating the parallel thermal fluxes X., X; the parallel
fluxes A.(1) and A;(t) can be written in terms of the parallel viscous forces A., Ai, Be, B;
and using the symmetry relations of the coefficients 7} and I3, >> I35 the bootstrap cur-
rent is
lee lei
eNn<B?> I'(¢) =<B:-V.m, > +—%—§-<B-V-®e>-—§ <B:-V.-0;> (7.19)

The Spitzer resistivity is

2.2 ee (153)2
N € n - lll = Iee (7.20)
22
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The last term proportional to the ion heat viscosity is very small, since 155 /155 ~ (—3—‘:—)3/ f
Although the parallel thermal flow of the ions can be much larger than the thermal flow of
the electrons, the ion parallel heat viscosity does not contribute to the bootstrap current.

Therefore, the ion term will be neglected in the following. The tensor © can be also written
in the C.G.L-form

1 1
O = g(TT@.;k)ﬁ.;k + (@” — O_L) {b,‘bk — g&,‘k}. (7.21)

The equations (7.19) are valid for arbitrary asymmetric or symmetric configurations, the
remaining task is now to relate the parallel viscous forces to the poloidal viscous forces
and thus represent the bootstrap current in terms of the neoclassical radial fluxes. In
symmetric systems this can be easily achieved by using the proportionality between parallel
and poloidal derivatives of B:

vE (6= 1) <(©)-61)(V,-

)> V_B
B G

<(®”—®J_)(B‘ B

s (7.22)

which correlates the neoclassical bootstrap current to the neoclassical particle flux and the
energy fluxes of electrons and ions. Taking the poloidal average of the energy flux equation
(7.2) yields the total energy flux

1
Weij =<mjGj- Vo> —mi <V,-V.r; > (7.23)

or together with the particle balance

T
V()
we obtain the thermal flux ¢; = Q; — 5/2T;T;

el'; =<Rj* Vo> — <V,:Vem; >

1
Wj‘éi(ﬁ‘—"<vg'Fj>—<Vo'V'ej>. ‘. (7.24)

The first term on the right hand side is the Pfirsch-Schliiter thermal flux and the second
term is the neoclassical thermal flux.

i

W Gijneo = — < Voo V. @j > (7.25)

j
and together with the neoclassical particle flux
-

Ff‘?‘ij)")'rj’neo = L& <VO'V'7I'3' > (7-26)

we can write the bootstrap current
Cs Treo I35 Ge,neo
s 4 = ———(¢— 12 Zemeoy 7.27
n < B?> I'() GV ) (6 — 1) { N it NT, } (7.27)
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This equation is the desired relation between bootstrap current and the neoclassical radial
fluxes of the plasma. It can be derived without solving a kinetic equation and holds for
all regimes of collisionality. Again, the effective loop voltage driving the bootstrap current
can be defined by

U _ B (6= ){rneo 4 f_i; ‘Ie,neO} (7 28)
/7~ 2xR WAN VI, NT.O '
or in terms of the energy confinement times which are defined by
w3 NIV,
e 2 TR
_ N NT,
Uej; = Brr*(t—vw){—— +0.48 ———}. 7.29
sr = Brrt(e— ) {5 +048 g ) (7.29)

VIII. Effect on the rotational transform

The bootstrap current modifies the rotational transform in a stellarator or tokamak
configuration. The size of this variation depends on the plasma pressure and may cause
serious problems during the rise phase of a discharge when the rotational transform passes
through a low order rational value at the plasma boundary. In the following we concentrate
on symmetric configurations and compute the bootstrap current and the corresponding
variation of the rotational transform explicitly. In order to do so we introduce the following
approximations:

Cs =V'(y) = B# , i < B>« B} (8.1)
o
where L is the length of the magnetic axis and B, is defined by this relation. Furthermore
we define the effective major radius by the relation L = 27 R. The toroidal flux % within
a magnetic surface defines the average minor radius of the magnetic surface by

Y = Bynr? (8.2)

B is a reference field and can be taken equal to B,. The volume of the magnetic surface

is
V =~ Lx*r? = 27r%R (8.3)

and the area of the magnetic surface
F(¢) = Cr(r)4n*Rr (8.4)

Cr is a factor of order one and depends on the geometry of the magnetic surface.
The neoclassical fluxes generally are given as linear functions of the gradients

Nf

r 7
ge | = F(Dux) T (8.5)

€

qi T!
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with D;; being the matrix of transport coefficients. Using these definitions and approxi-
mations the bootstrap current is written in terms of the density and temperature gradients

§. = %}—)—{T Z C{D,‘kAk} (8.6)

where the vectors C and A are defined by

!
1 A
is N
it} T/
c=| I, A=|# (8.7)
12 132 Ti
3 1
155 152 f

With dyp = 2B,nrdr = 2B,ma’zdz (z = r/a and a = plasma radius) the integrated
bootstrap current is
1

T(e) = & f (6— %,)“;—2 3 CiDa Ay d. (8.8)

A ik

The reference current I, is given by 2ma?B,/p.R and the gradients have to be taken
with respect to the dimensionless variable z. The reference current changes the rotational
transform by 6+ = 1,which can be seen from

R pol,
= = = 8.9
5 a B,27a (5:9)
and consequently
1
2
z

£ = ‘0/ (¢ — 'yw)? Z C;D;i Ay dzx (8.10)

If the transport coefficients D;j are normalized to the diffusion coefficient D, of the elec-
trons this equation becomes

(£ — Vo) D Y Cidi Ax dz. (8.11)

O\_

The matrix elements d;r are numerical factors.
In the following we consider a simple case with all plasma profiles being similar Ay =
N’/N. In this case the factor C, = 3" Cid;k is a numerical factor between 1 and 3.
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Tokamak case

In the plateau regime the bootstrap current increases with 7! since the diffusion coeffi-
cient D, is independent of the collision frequency. The maximum bootstrap current arises
in the banana regime where the current is independent of the collision frequency v since
both terms - D, and n - are proportional to v. With

2
Pe Ra/z
D, =v—=(— 8.12
€ 52(?') ( )
and
mel
17—05N2 i Yw=0
we obtain

T (5.13)
and the bootstrap current in the tokamak is
1 !
I(a) = 21, (2)*? f 1/2[’&( )) Co N da (8.14)

The neoclassical fluxes in the banana regime can be found in a paper by Rosenbluth,
Hazeltine and Hinton!

T: N’ 2 b T!
T, = F(r)D.N {- 1121+T3)F+043?+0195“}
T; N’ al T
= 2y — —1.80=2 — : 8.15
ge = F(r) DeNT. {1531+T)N 180T 027T} (8.15)
Tl

F(r) = 47% rR is the area of the magnetic surface. From these equations we find

Qe T; N’ e T!
32— = — —0.15== — 8.16
I‘,3+032Te F(r)D.N{- 0631+T)N T +01T} (8.16)
and with the approximation T, ~ T;, N'/N = T'/T the result is reduced to
N!
T+ 0.32;—‘: ~ ~13F(r) DeN (8.17)

which leads to the numerical coefficient C, ~ 1.3. With 8. ~ 8; = 0.5 3 we can write

1

I(a) = 1.310(—5-)3/2/ 1/2[:_((::)) 4z (8.18)

1Ref.[18] M.N. Rosenbluth, R.D. Hazeltine and F.L. Hinton Phys. Fluids 15 (1972), 116
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The ansatz N o (1 — z2)* yields

I(a) = 1.31, g(o)(%)?’/2 G(a) (8.19)

with
1
Gle) = 2a/$3/2(1—$2)2°—1 Lz
) t
The numerical profile factor G(«) is nearly independent of o and approximately equal to

0.3 if we approximate the rotational transform by 1 and therefore the bootstrap current
in tokamaks is roughly

. R
I(a) = 0.41, (0) (;)3/2 (8.20)
and the change of the rotational transform

¢ ~ 0.4 (0) (%)3/2 (8.21)

In a tokamak with aspect ratio 4 and a maximum £ of 0.1 the variation of the rotational
transform is ¢ = 0.32. Since % varies between 1 and 3 this number can be slightly larger.

Helical configuration

In a helically invariant configuration or in quasi-helical systems the banana width is
smaller than in the tokamak system. The banana width is roughly

P R
A =~ ——(—)/¢ 8.22
(t_%)(r)\f (8.22)
and the diffusion coefficient
2
Pe R 2
D, =v—%t—(— €
o =P ) e

/€ is the number of trapped particles. Boozer! has shown that axisymmetric and helically
symmetric configurations are isomorphic with respect to neoclassical transport and there-
fore it may be justified to take the same numerical factors d;x as in the tokamak. This
leads to the following equation for the bootstrap current in helical systems:

I(6) = 131,8(0) (2)*VeG(a) (8.23)

where the profile factor G(a) is given by

(8.24)

1
. 2a 3/2¢1 _ . 2\20—1 3. 0.3
Glo) = 2 0/ R e e

1Ref.[19] A.H. Boozer, Phys. Fluids 26 (1983) 496
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Here we have assumed that ¢ is proportional to . In comparing the helical system with
the axisymmetric tokamak we find that the bootstrap current in helical systems is reduced
because of the smaller banana size. Since on the other hand the aspect ratio in quasi-helical
systems is larger than in tokamaks this leads to an increase of the bootstrap current so
that eventually the current in quasi-helical configurations is only slightly smaller than in
tokamaks.

In the paper of Pytte and Boozer the bootstrap current in helically invariant systems is
directly calculated from the kinetic theory® and the following current density is found

{ c
7| = 1.46+/€ TR P (8.22)
from which the total current can be calculated
P 1
1
Ilay =1 0.73—(—)2\/E/m1/2ﬂ'd:c (8.23)
Tw @ :

In an ! = 1 helical system the slope -, is equal to the number of field periods. This relation
is nearly the same as derived above except that the factor (¢ — ) is replaced by ..

1Ref.[15]
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IX. Neoclassical Plasma

In the preceeding chapters a collision dominated plasma has been investigated.
Many relations, however, are also valid in the collisionless regime, especially the flux-
friction-relations described in chapter III, where only the general form of the Chew-
Goldberger-Low pressure tensor has been used. In a hot plasma the mean free path is
long compared with the dimensions of the plasma and therefore the plasma pressure is
dominated by particle drifts rather than by collisions. The anisotropic pressure

(p —pL); =my /gj (vff - %‘vi) d*v (9.1)

has to be calculated from the distribution function g; which is the solution of the kinetic
equation:!

2
vb-Vg; +vp - Vg; — C(g;) = —{vp - VYo' (%) + fovyb - V[%Un] } (9.2)

or in shorter notation
Lg; =h;. (9.3)

L = v b-V+vp -V —C is the operator on the left hand side and C(g;) is the test particle
collision operator. U is the parallel component of the macroscopic flow V; and vy the
thermal velocity. The guiding center drift velocity vp is

_ Ui my
Vp = E *;;—V X ‘U”b (9.4)

with v = Vv — uB +e® = v|(E,p, B). vp is the sum of the magnetic drift and the
E x B-drift in the magnetic surface. On the left hand side of the kinetic equation usually
the radial component of the drift velocity is neglected, thus making the operator L operate
on two surface variables and two velocity space variables.

In a collision dominated plasma the averaged viscous forces are shown to be linear
functions of E;(¢) and A;(¢). In order to derive the equivalent relation for a neoclassical
plasma the right hand side of the kinetic equation has to be modified to a linear relationship
with E;(¢) and A;(1). To make the analysis simple, an isothermal plasma with constant

1This form of the drift kinetic equation results from the transformation of the kinetic equation on a
coordinate system moving with the macroscopic velocity U). In Eq. (9.2) the velocity v is the random
velocity. For the solution of the kinetic equation the following ansatz

R L |
f—fo+2 %) Jo + g
th

is made. The distribution g is the next order correction to the shifted Maxwellian and has to be calculated
from Eq. (9.2). (see paper of M. Coronado, H. Wobig Phys. Fluids 29, (1986) 527 and also K.C. Shaing
Phys. Fluids 31, (1988) 8).
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temperature is considered first. The derivative of the lowest order Maxwellian distribution
function is

N' ;9 e;
! = J _ X
The normal component of the drift velocity can be written
vy =Ty U
vp - Vi e \% (B B x Vi) (9.6)

and the right hand side of the kinetic equation is modified to

. BxV
h; = —%fo %V - [v) B(E;(¥) %-32—’” +Ujb)]. (9:7)

The term in the brackets is the lowest order fluid velocity

B xVy
My = E,-(gb)T +Ub
Using V-V; =0 and
: L
VB = (“—ZJ-)VB

|

the driving term in the kinetic equation can be written

m; | VB
h; = —ﬁ fo(”ﬁ v 'z“vi)vf "B (9.8)
With V; given by eq. 1.29 and the definitions
1 VB
wy = (vf - Evi)(Vo "5 )
(9.9)
n 1, B VB
w2 = (‘”|| - EUJ_)( '?)
the kinetic equation is
i
Loj = — 12 fo{wn B5(8) + w34 (9)) (9.10)

The solution of this kinetic equation is the main task of neoclassical theory, a general
solution cannot be given. Since the operator L has no derivatives with respect to the
radial coordinate 1 the solution of the kinetic equation can be written formally

5 = ~TEAE; () L fows + A5(9) L7 fowa) (011)

L~! is the inverse of the operator L. In a collision dominated plasma L~! is mainly the
inverse of the collision operator C; in the long mean free path regime integration over
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particle orbits dominates. From the distribution function g; the anisotropic part of the
pressure (p|| — pL); is calculated

m?

- N Mo Y vE — l L7 fowyd®
() — pL); kT{EJ(’»b)/( e (9.12)

1 _
+A;(v) /(vﬁ - Evi)L ! fowpdv}
and the surface averaged parallel and perpendicular viscosities (Egs. (3.18)) are

— <B-V-.mi> = pPE;(¥)+u2?Ai(¥) (9.13)
— <V Vemi> = ulEj(¥) +ul?Ai(¥)

where the coefficients ,u,j-k are defined by
2

—pit = ﬁ < /w,- LY foupd®v> ; i,k=1,2 (9.14)
These coefficients are the neoclassical transport coefficients for arbitrary collisionality. The
coefficients u!! are the radial transport coefficients since they correlate the neoclassical
fluxes to the gradients E;(¢). p!? is the Ware pinch coefficient and p?! the bootstrap
coefficient. Because of the symmetry of these effects the matrix u'* is symmetric. The
coefficients 2?2 describe the damping of the lowest order flow by the magnetic pumping
effect. g

Having written the surface averaged viscous forces in terms of the macroscopic
quantities E;(y) and A;(¢) the flux-friction relations are

Y ajk < B? > (A; (%) — A(¥)) + 62245 (¥)
k (9.15)

+ul'Bj($) = — <B-§ >

1
V!(¥)

e;I; = ;ajk < V.2 > (Ei(¥) — Ex(v¥)) + u;'Ej(¥) (0.16)

+u3?Ai (%) + <V, & >

These flux - friction relations for a particle species j are obtained from the momentum
balance equations (1.1) by multiplying with V, and B and averaging over the magnetic
surface. a;i is the friction coefficient between different particle species. Inertial forces and
the external momentum sources imposed by the heating mechanisms are denoted with &;.
Summing up over particle species yields the equations of parallel momentum balance and
the condition of ambipolarity

ZﬂﬁzAj(%b) & Z’”?IEJ'(‘J’) + E <B-§>=0 (8:1)
J j j |
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S uEi) + 3 uPAi) + Y < Vo &5 >=0 (9.18)
7 7 7

These equations complete the system of flux-friction-relations; they are similar to those ob-
tained in a collision-dominated plasma, only the transport coefficients have to be replaced
by the appropriate neoclassical coefficients.

Egs. (9.15) and (9.16) are the basic equations which correlate the toroidal flows
to the gradients and particle fluxes, the effect of external momentum sources is included
by the terms with &;.

Two-fluid plasma

In the following we consider a two-fluid plasma without external momentum
sources and eliminate the gradients E;(3) from the equations in order to represent the
toroidal fluxes A;() by the radial particle fluxes. These four equations can be studied
conveniently if a matrix notation is being used. For this purpose the following definitions

are introduced:
11 22
T 0 Mg 0
— Lon = 9.19
L11 ( 0 “31) 22 ( 0 ,LL?Z) ( )
21 12
7 0 I 0
L — € L — e 9.20
g ( 0 ﬂ?‘) i ( 0 M}"’) (6:20)

s= (43 (1Y)

and

(9.21)
1 0 0 1
Furthermore, two vectors are defined by
— 1 . e —_ 1
e_ = - 1 bl + - 1
with the following properties
Ne;, = ey, le; =e;, Ney = —e;, le_ = e_
- + + - + + (9.22)
Ie+ = 29.{., Le "= 0, SE+ = 0, Se-:i=2e.
and the orthogonality ey - e_ = 0. The matrix S has the following properties: Let

x = {z;,z} be an arbitrary vector and A an arbitrary two-by-two diagonal matrix, then
the following relations hold

Sx = (z1 —z2)e_ SAdel = (TrA)e:
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These relations are very useful for writing the basic system (9.15) and (9.16) in a shorter
form which after defining the vectors E = {E.,E;} and A = {A.(¥),A:())} is reduced

to

0 =LA+ Loy E+ e Bhs aei SA

o, - - + + E‘ Oleg
V,( [) 11 12 o et

The last term in the second equation is the Pfirsch-Schliiter diffusion and the
first two terms describe the neoclassical effects. The Pfirsch-Schliiter flux is intrinsically
ambipolar and depends only on the difference E, — E; : SE = (E. — E;)e_ and after
defining the neoclassical particle flux by

—Ce_ =: e_ — < V2> 0y(E. — E;)e_
the equations are

0= LosA+ Ly E+ < B?> a.;SA

T 9.24
Soneo o = LiyE+ Lo A P

These equations allow one to compute the toroidal fluxes A.(v), A;(¢) as functions
of ['peo. Eliminating the vector E from these equations provides the desired relation
between the toroidal fluxes and the radial particle flux.

el'reo

ity Lare- = < B? > ai L11 SA + DA (9.25)

where D is the following diagonal matrix D = Lg2Lj; — L2jLj2, or explicitly

2211 21,,12
B iphe: — Mg B 0 de 0
D — & L G ¢ = 9.26 .
( 0 uiuit - u}2u?1) ( 0 ds) (926)

The fluxes A can be uniquely determined if the matrix on the right hand side of Eq. (9.25)
< B? > @¢;L11S + D is non-singular. This, however, is not always the case since in
symmetric configurations the matrix D is identically zero and S is a singular matrix. As
has been shown in chapter IV Eq. (4.8), the derivatives of B in the parallel and poloidal
direction are proportional to each other in symmetric systems

B-VB=—(t—7w)V.-VB.
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and therefore all coefficients p'*
p22 = M2, 1% = 2 = Mt

With M = C3/C3 (¢ — ~,) we obtain

p22pt 1220 g,

Therefore, in tokamaks and helically invariant systems the matrix D is singular and the
relation between neoclassical particle flux and bootstrap current is reduced to

erneo _ 2
V’(’lﬁ) Loje_ = < B* > ag; L11 SA (9.27)
or by multiplying with e_ - S
€ rneo 2
_V'(’gb) Tr Loy = < B > oy (Ae(’qb) — A;(?,b)) Tr L1 (9.28)
which is equivalent to
Cz el
< B% > i (Ae(t) — A; = ——=(¢— =2 9.29

This is the same equation as found in chapter IV Eq. (4.11). In this symmetric case
only the difference A.(¥) — Ai(¢)) can be calculated from the particle flux since SA =
(Ae(1p) — Ai(v))e— depends only on the difference of the toroidal fluxes. This implies
that one of the toroidal fluxes remains undetermined in symmetric systems. The plasma
can freely move in the invariant direction, which implies that standard neoclassical theory
fails to predict this rotation uniquely. The reason is that in standard neoclassical theory
shear viscosity and gyroviscosity are neglected. These terms would carry momentum to
the wall and thus introduce a slowing down mechanism. In the general non-symmetric
case the bulk viscosity leads to a damping of the macroscopic flow and the ambiguity of
the integral fluxes is removed.

In non-axisymmetric configurations the matrix D is non-singular and Eq. (9.25)
can be uniquely inverted with respect A.(¢) and A;(¥). The difference Ac(¥) — Ai(9) is
given by

Tr (D_lel) el neo
A, — Ag == 9.30
hb) A (¢) < B2 > Qe T'r (D_ILII) +1 V’(’l/)) ( )

or, taking into account the explicit form of the matrices

de d; elneo

Ae(¥) — Ai(9) = — — i) (9.31)
ae,-<B2>{E£—+%}+1
e 1
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This is the most general relation between bootstrap current and the neoclassical
particle flux, it shows that the non-diagonal terms of the the viscosity matrix are the
geometric factors which determine the magnitude of the bootstrap current. In general non-
axisymmetric configurations these coefficients depend on the details of B on the magnetic
surface, in principle, configurations can be constructed where these bootstrap coefficients
p2! are small or zero. It can be easily seen that these coefficients yield the correct limits
of the collision-dominated plasma which have been found in chapter VI. In a collision-
dominated plasma the operator L~! is mainly the inverse of the collision operator; the
velocity space integration and real space integration in the coefficients p!2, u?! decouple
and we obtain

VB VB
12
<(B:—)(Vor—)> .
s < (B 2) (Ve ) (9.3)
Instead of writing the bootstrap current in terms of the particle fluxes the gradients
E, and E; can be introduced by inverting Eq. (9.15) with respect to A. After some simple
algebra the result is
A = [Las+ < B?*> 0S| 'Ly, E (9.33)
and 21,22 21,,22
_ pe 1" Ee — pi pe” By
< B? > i (u3? + puf?) + npl®
In this formulation the bootstrap current is proportional to the density gradients and
the radial electric field which has to be determined from the condition of ambipolarity:

r'.=T;.
The radial electric field

In a steady state plasma the fluxes I'c = I'; are equal to the particle source term,
and therefore the density gradient and the radial electric field are determined by the fluxes.
Eliminating the toroidal fluxes from the system (9.24) yields the following equation

Ae(¥) — Ai(¥) = (9.34)

f_,.]':,':"i‘)l e_ = L11E— Ly, {Lzz + < B% > Qi S]_1 L1 E

V(¥ (9.35)

=: AE
where the matrix A is defined by this equation. Inverting this system leads to the gradients

E as linear functions of the particle flux I'yeo. The matrix [Laz + < B2 > o; S]™! can be
written in a simpler form

1 L.
[La2 + < B? > 0 S]7! = %{Det[ng) L+ < B*> ay1} (9.36)
with
Det =< B? > aei(pf? +p2?) + uf2u2? ; Det(Lz) = ui*ue’ (9.37)

and after some algebra the matrix A can be written as

1
A = m{(D.«:t(};w)L;21 + < B?*> a,1)D
+< .82 > aei(DCt(ngLz_zlLll e L12NL21)}

(9.38)
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or in explicit form

il (#?24- <'B% > Oei)de 0
Det 0 (12%+ < B? > 04)d;
(9.39)
it < B2 > ey u?2.u’il _ ,ufl,u.}z
Det —ue it ptul’

This form of the matrix A is convenient for symmetric systems, since with Loy = M2 Lq;
and Ly = Loy = M Ly; the matrix D is zero and A has the simple representation

A
Det

Det(Lq1) S (9.40)

Equation (9.35) is used to calculate the radial electric field. As a function of the electric
field and the density gradient E can be written

E=2%e; + ——e_ (9.41)

By multiplying Eq. (9.35) with the vectors e_ and e two equations for the radial electric
field and the density gradient can be derived. For this purpose Eq. (9.41) is inserted in
(9.35) and the resulting equations are

kT N'
0= & (e} - dey) + — - (o4 - 4e.)
o By KT N (9.42)
!
2i) 8 Aey) HEG (6 slder)

The first equation couples the electric field to the density gradient. Eliminating the radial
field from this system leads to a linear relation between the particle flux and the density
gradient. In explicit form the coefficients in these equations are

(e4 - dey) = ﬁ (ki*+ < B* > ei)de + (ue+ < B > ai)ds (9.43)
+ < B? > oi(uf’ et + it ul® — pltui® — p’ud)}

(8- de.) = —’E{(pfz-i- < B? > aei)de + (0224 < B® > a.)d; (9.44)
+ < B? > aei(uPut + pitul® + p2 i + pl2ui')}

(e4 - de_) = ——{(uf*+ < B* > au)de — (u2*+ < B* > ai)d (0.45)
+ < B> ei(p??uet — ui'ul® + pltui® — unulh)}

(e - Aey) = ﬁ{(#?% < B? > aei)d. — (u2*+ < B? > a.i)d; (9.46)

+ < B> aei(pfut — pl'u?® + p2u? — pl2u?h)}
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The radial electric field follows from Eq. (9.42)

o'(y) = - % % %’ (9.46)

and after replacing the E-field in the second equation the neoclassical particle flux is

elneo _ 1
Vi(g) 2

In this form the particle flux is proportional to the density gradient.

(e+ 'Ae—)z} kT N'

We-pda) = (e -Ae;)’ e N

(9.49)

The electric field is determined by the neoclassical particle fluxes since the Pfirsch-
Schliiter fluxes are intrisically ambipolar. In symmetric systems, however, the electric field
cannot be uniquely calculated because the matrix A is singular. As shown in Eq. (9.41)
the matrix A degenerates to A « S and because of Se; = 0 and e - Se_ = 0 the first
equation of (9.42) is identically zero and the particle flux is given by

erneo kT N’ 1

V’(‘;b) = T F "2‘(9_ d Ae_) (949)

where A is written as

<. BE > oupi i

A= S
< B? > agi(pl! + plt) + M2pliplt

(9.50)

The radial electric field in symmetric systems is correlated to the integral toroidal fluxes,
which follows from Eq. (9.23). For this reason only one of the two quantities, either
Ae(¥) + Ai(¢) or @'(¢) can be chosen arbitrarily, the other one is determined by the
parallel momentum balance.

Since the ion mass is much greater than the electron mass the relation holds
pil >> pll and therefore

< B? > oespl!
< B? > a. + M2l

(e—-Ae_) =4

It can be shown that the first term in the denominator is the leading one and therefore
the neoclassical transport coefficient is reduced to

1
5(e_ des) =iZur! (9.51)

The power dissipated by the lowest order flow is the sum of the frictional dissipation and
the viscous dissipation and can be written as

P=<V2>ai(Ae(¥) —Mi(¥)? = ) _<V;-V.m; >

e,
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or, after replacing the average viscous forces by Egs. (9.13)

P =< V2> cei(Ae(¥) — Ai(¥))?

+ Y WP ER Y P a;(0)2 +2) i EiA (%)

Minimisation of P with respect to A;(¢) with E;(¢) fixed yields the parallel momentum
balance and thus defines the bootstrap current as the current minimizing the entropy
production rate.

Plasma with external driving terms

In the preceeding analysis we have neglected external momentum sources £;. In
toroidal systems two different driving terms can exist; the first category is the inductive
electric field in ohmically heated systems and the second one the momentum input by
additional heating schemes. This encompasses HF-current drive and direct momentum
input by neutral beam injection. With ohmic heating only the driving term < E.;:-B >
is the same for electrons and ions and the source terms are

<B-& > = eN <B-E.u>

(9.52)
<B:-&> = —eN <B:Eg>

In steady state the scalar potential of the inductive electric field is single valued in the
poloidal coordinate and therefore < V, : E¢zy >= 0. The momentum balance equations
with external loop voltage are written as

—eN<B-E.:>e_ = Lag A+ LyiE+ < B2 > . SA

rneo 9.52
° e_ = LA+ L1 E (6-52)

V'(¥)
Elimination of E yields an equation for the toroidal fluxes
L'y
—eN<B-E.;+ > Lije_ — :ﬂ(i;; Lyie_ =< B> ae; L11SA + DA (9.53)

from which the toroidal current eN(A.(¥) — A;(¢)) can be calculated as a sum of the
inductively driven current and the neoclassical bootstrap current.

After eliminating the toroidal fluxes the total radial particle flux is calculated from

el 2 Det(ng)
. iSE _—
V’(’t/})e <Vo>aeS + AE + Lo Det

which after writing the vector E in the form Eq. (9.41) and replacing T' by I'neo is trans-
ferred to

kT N' Det Lzz) -
o’ (e+ . Ae+) + :“ F (e+ ) Ae_) = —e4 - le——fget—Lzzl eN <B:-E.; >e_
kT N’ Det L22 i
@' (e_ - Aey) + - N (e~ - Ae_) = —e_ -Lm——L_ET)Lnle_ eN <B-E.:t >
4+ 2 elneo
V'(¥)

(9.55)
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In symmetric configurations the inhomogeneous term on the left hand side of the first
equation is zero since Ljz and Lgy are proportional and ey - e_ = 0. Therefore all terms
in the first equations vanish identically and the radial electric field remains undetermined.

Additional heating in stellarators and tokamaks provides another source of mo-
mentum input §;. The energy and momentum input during heating leads to a distortion
of the distribution function and can enhance or reduce the anisotropy of the distribution
function. Therfore the difference pj — p, can be decomposed in two parts, the first one
describing the anisotropy caused by the particle drifts and the second one describing the
modification of the distribution function by fast particles. Fast particles lead to an addi-
tional term 7 in the pressure tensor and the vector {; consists of two terms, &, — V - 7y,
where £, is the first order moment of the source term in the Fokker- Planck equation.
Different heating schemes have different influence on the source term ¢;. Parallel neutral
beam injection will mainly give rise to < B-£; > and with perpendicular injection the term
<V, & > dominates. With perpendicular neutral beam injection fast particles can be
trapped in local magnetic mirrors leading to a fast ion population in this loss cone region.
The perpendicular pressure anisotropy of these fast particles can also be described by ¢
and £ = —V -my. Because of this effect of perpendicular injection on the perpendicular
momentum balance the radial electric field can be controlled by neutral beam heating. As
a function of the specific heating scheme, the momentum source terms £; can be different
for electrons and ions and in general neither parallel nor poloidal momentum is conserved
by these sources.

Z<B-£j>#0 - Z<V0-£j>%0
7 J

In contrast to ohmic heating these external driving terms can lead to strong toroidal or
poloidal rotation if the slowing down mechanism is small. To simplify the algebra the
external source terms are combined to

X laB- £ >,<Bfi >}

N = {e Voo g Ve & ) A5

and the balance equations are
—X = Laa A+ L21E+ < B? > . SA

9.55
erneo e_—Y = leA + L11E ( )

and after eliminating the gradient E the toroidal fluxes are to be calculated from

elneo

VI(¥)

—L11X — Lo ( e-—Y) =<B?>a,;L11SA+ DA (9.56)

This generalizes equation 9.25. If the matrix D-is non-singular the toroidal fluxes and
thus the bootstrap current can be uniquely determined from this equation. In case of
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symmetric configurations, however, D = 0, and the toroidal fluxes become arbitrarily
large if the condition

elneo

V'(¥)

is not satisfied. In symmetric systems this condition can be reduced to

B {LuX + Lzl(

e.—Y)=0

e+-(X—MY) =

As shown above, this condition is satisfied in case of ohmic heating; in case of tangential
neutral beam heating the momentum is mainly delivered to the ions and the plasma begins
to rotate toroidally. A similar singularity can arise in the radial electric field or the poloidal
rotation of the plasma. After eliminating the toroidal fluxes from Eqs. (9.55) the resulting
equation relating particle fluxes to the gradients E is

el
V()
The momentum source terms modify the particle balance equation and generate an extra

particle flux through the magnetic surface. As a consequence the ambipolar condition is
modified which is seen from the following equations

e_ +Y —Lig[Laa+ < B? > i S|"'X =< V2> 0,;SE + AE (9.57)

kT N'
er-Z = & (ey - dey) + —F(e_l_-Ae_)
elfs., , KT N (9.58)
ZV’(‘II)) -|—e_-Z:<I'(e_-Ae+)+T“jV~(e_-Ae_)

Here, the abbreviation has been used
Z =: Lis|Laz+ < B> auS|7'X-Y

This vector describes the poloidal momentum sources provided by the additional heating
mechanisms. After eliminating the radial electric field from this equation the relation
between particle flux and density gradient is

9g€Llneo _ [(e— - Ae_)(ey - Aey) — (e - Ae_)(e— - Aei)] KT N’
' - .
V(¥) o - ho) (e4 - Aey) e N (0.59)
e rAe_
+ —————F(ey-Z)—e_-Z
(e - Aey) (e+2)
and the corresponding equation for the electric field
el neo
&/(9) (o1 - Aes)e- - Ao) — (o - de_)(e- - dey)] = 25 78(es de) o

(e+ - Z)(e- - de_) — (e— - Z)(e4 - Ae_)
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The radial electric field and the radial particle flux are finite if the matrix A is non-singular.
As has been shown above this is not the case in symmetric systems. There, the coefficients
(e+ - Aey), (e~ - Ae;) and (ey - Ae_) are zero and (e_ - Ae_) # 0. The electric field
becomes arbitrarily large if ey - Z # 0. The particle flux consists of a term driven by
the density gradient and two further terms caused by the momentum sources. The term
proportional to (ey - Z) is undetermined in symmetric systems and can be arbitrarily large
close to symmetry. Here, a fundamental difference between ohmic heating and non-ohmic
heating exists. As has been shown above, with ohmic heating only the term ey - Z is zero
in symmetric systems and the electric field can be finite. In non-ohmic heating schemes,
however, there can be a net toroidal momentum input and toroidal rotation or the radial
electric field diverge. A small damping mechanism caused by the magnetic field ripple may
prevent the infinite solutions, the effect on the radial losses as described by Eq. (9.60) can
still be large.

Tokamak

As a special case of a symmetric configuration we shall consider the axisymmetric
tokamak in more detail. The matrices L;; are related to each other in the following way

La; = (m)zfan i Lia = L = —'V,ET) L1y (9.61)

Instead of the vectors E and A the following poloidal and toroidal fluxes (see Eq. 1.19)
are more appopriate in tokamaks

u, = tA —EV'(¥) (9.62)

The balance equations 9.55 are written in this case

t

el 1 (9.63)
neo x Y S 1 VR s L
Vi) © vigg) U

This system couples the poloidal and toroidal fluxes to the external momentum sources
and the neoclassical particle flux. If ohmic heating is the only momentum source (¥ =0
and X o e_) the poloidal fluxes are calculated from

€lneo 1 11 11
- = (e tpe—Hy Upi)
! ! ] ]
Vilw) Y g‘” (9.64)
0= Vf(d)) (nu'elzl Upe t+ I"’}l "‘P,‘;)
The result is
ﬂ':l Upe = — elneo 3 I"'}l Up,i = el neo (9-65)

The poloidal fluxes are uniquely determined by the neoclassical particle flux I'neo in a
tokamak, whereas the toroidal fluxes are not uniquely determined. Replacing u, in the
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first equation of (9.63) yields a singular system for u;, the reason being the singularity of the
matrix S. The difference u; . — u¢; can be correlated uniquely to the neoclassical particle
flux, but the sum us . + ut,; remains arbitrary which implies that also the radial electric
field is arbitrary. This ambiguity can be removed by the small ripple effect of the TF-coils
which introduces viscous damping in toroidal motion. In this case L1z + ¢/V'(¥)L11 # 0
and Loz + ¢/V'(¢)L21 # 0 and the system (9.55) is written as

1
—-X = (L22 + Lzl—t—-*) u; — ——— Lo up,+ < B? > Qe Suy

elneo V:Ed)) V;(¢) (9.66)
V'(‘l,b) e_—Y = (le -I-an)ut ~ W Liiua,

The small ripple effect couples the toroidal flow u; to the poloidal momentum balance.
The first equation can be solved for the toroidal flux u; in terms of the toroidal momentum
source X and the poloidal flux u,. With this result the toroidal flux u; is eliminated in
the second equation and the result is

ernero 1
_ ¥ = =R (Rily ~ T
V'(‘l,b)e R +V"(1,b)( Loy 11) Up

where the matrix R is defined by

r t ]
= S RS B2 : g
R (Lu+L11V’(¢))(L22+L21V’(¢)+< >ae)

This equation shows how external momentum sources X and Y modify the particle loss
in tokamaks. The matrix R is the quotient of two nearly singular matrices, and therefore
R depends critically on the toroidal ripple viscosity. Eliminating the poloidal fluxes u,

yields
el

—LHX — Loy (ﬁ%ep — Y) =< .82 > ae;L11Sus + Duy (9.67)
which is Eq. (9.56) in special form for tokamaks (D = LaaL11 — L2y L12). The matrix D
is non-singular because of the small ripple effect. As a consequence, the toroidal fluxes are
uniquely determined by the external momentum sources, however the fluxes can be rather
large since the damping mechanism is small. The Ware pinch mechanism couples the
toroidal fluxes to the radial fluxes and therefore external momentum sources can strongly
affect the radial particle loss.
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X. Transport coefficients

In order to evaluate the transport coefficients u** the Hamada coordinate system
is the appropriate one. By introducing the length L, of the magnetic axis as the length
scale and the thermal velocity v, as a reference velocity the operator L is written in the
form

Uth d a
{ G ‘f' _S“) + Ve an v*Cr} (10.1)
with
u= L . V’(¢) ~ .-_L‘_.g . V* — VLO
g Do v

Cr is the dimensionless collision operator. Several approximations have been made to
obtain this formulation
1 1 VvV E" V?’,‘

VB~ L, b BTy, VW)

The operator L,/vipVE - V has been approximated by Vg 3%. v* is the collisionality. The
Maxwellian is normalized to the density N. Redefining the terms w;,ws by

(10.2)

yields the transport coefficients

—ul = 4, < / w1 L™ fowy d3u >
1

=t = ol )< f we L7 fowa d3u > (10.3)

V'(¥)
—y,21 = Aoﬁ </ szulfowl du >

with
A, = T vthL x /m; kT L,

Here L is given in dimensionless form

d a a
it hads LAY 10.4
L= u."(t:a ag) + Ve 3% v*Cr ( )
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The plateau limit

To evaluate the transport coefficients in the plateau limit is standard technique
since the approximation Cr = 1 can be made and | is the independent variable in velocity
space. The kinetic equation Lf; = f,w; can be solved by Fourier transform in the Hamada
coordinates n and ¢ . Let In B be given in a series

InB = Z al,m cos (In — mg) + by m cos (In + mg) (10.5)
l,m=0

From this general form of In B the coefficients u** can be computed
= 4o Z {06m )20} 1y + 9l (%) P8 } (10.6)

with

91,m I/* 2 4+ u” lt:— )+VEI]2du"

® (u — —u 2)2 fo(xd)
() () = i / I 1 I
*° (10.7)

/ 2 (“n I l""J_) (u”) i
( ) [u“(It-F m) + VEIP

gt w*) =

W |

If the electric field in the denominator is neglected, a singularity arises in the limit v* — 0.

L 1
Ve=0;0" — 0> g( )(u*) —

a |le — m| (10.8)
1 ;
Ve =0;v" —»0>—g(+)( )-—+Hb+ml
and
14 Z{La2 +—12—b2 } (10.9)
. le—m| P™ " Jle+m| ™ '

These coefficients diverge on rational magnetic surfaces. These singularities are removed
with finite electric drift, since in that case with »* — 0 the resonance occurs at

Vel
le—m’

U||,res = —

On rational magnetic surfaces u| e, — 00 and because of the exponential decay in the

Maxwellian f, (uﬁ) the integral gl(;n) (v*) is zero on rational magnetic surfaces. A similar

result holds for p?2
u = E{gzm J(le—m)? @l + gL H) (%) (le+ m)? b}, ) (10.10)

45



and

21

I(le —m) a2, + g ) (") 1(le+m) 82} (10.11)
With Vg = 0 and v* — 0 the result is

21 1 2 . .
peo= A, V(@) Z{ la}, sign (le—m) + b}, sign (le+m)} (10.12).

With zero electric drift the bootstrap factor p?! exhibits a discontinuity which is removed
with finite electric field. The function g( )( *),v* — 0 is finite with finite Vg and
therefore the sum in Eq. (10.12) does not comprise discontinuous terms. In those terms
with It — m # 0 the electric field can be neglected in Eq. (10.11) and Eq. (10.12) can
be used as an approximation of p2! if in the sum the resonant terms are omitted. In this
approximation the transport coefficients y are nearly independent of the electric field and
are completely determined by mod B on the magnetic surfaces.

In a paper of Rodriguez-Solano and Shaing! a similar equation for the bootstrap
current is given. The geometrical factor derived in that paper is similar to Eq. (10.12),
however an additional term exists which is of the order tv?/R? and therefore negligible.
In Ref.[20]? the bootstrap current is characterized by two geometrical factors u? and u?,
pP is the same as Eq. (10.12) in the present paper.?

Since the coefficient p?! is the sum of positive and negative terms, there is a
chance to find configurations with zero or small bootstrap current if the Fourier spectrum
of mod B is appropriately chosen. As already pointed out in the paper of Callen et al.
Ref.[7] , the helical harmonics in mod B can compensate the effect of the toroidal curvature
which is described by the coefficients a;o and b;o. Since the helical harmonics are a
function of the radial coordinate, the coefficient x!? vanishes on a particular magnetic
surface and remains finite elsewhere. Examples of stellarator configurations with zero or
small bootstrap current on all magnetic surfaces are given in Ref.[20] . In a helical axis
stellarator of the Helias type the effect of toroidal curvature in Eq. (10.12) is compensated
on nearly all magnetic surfaces. In Fig. 2 a magnetic surface of such a configuration is
shown together with the mod B-contours on this surface.

In the long-mean-free-path regime the solution g of the kinetic equation has a
stronger dependence on the radial electric field than in the plateau regime. This is mainly
because the drift of the trapped particles is affected by the poloidal E x B- drift. The radial

1E. Rodriguez-Solano Ribeiro, K.C. Shaing

2K.C. Shaing, S.P. Hirshman and J.D. Callen, Phys. Fluids 29 (1986), 521

3In Ref.[20] the parallel viscous forces are linear in the poloidal and toroidal particle fluxes up and ug,
the p? and pt as coefficients. The authors relate these fluxes linearily to the density and temperature
gradients ( see Eqs. 15, 16 and 22 in Ref.[20] ) and consequently all neoclassical fluxes ( Egs. 30 -35 ) are
linear in pP and pt. The toroidal fluxes, however, are carrying the bootstrap current and therefore two
coupled equations for u? and 'uE have to be solved and the bootstrap current has to be calculated from the

difference ut — u:f. Therefore, only p? is the relevant geometrical factor.
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transport coefficients are computed from the bounce-averaged kinetic equation, whereas -
as Shaing and Callen have shown - only the non-bounce averaged part of the distribution
function is relevant for the bootstrap current. This can easily shown in the coefficient 2!
by partial integration. For the non- bounce averaged part of the distribution function é ¢
the kinetic equation Lg = h yields

[u“(t% + gg) + VEaa_T]] —v*C(bg) — I/*[C(g) + C(g)] =h-—nh

where
dl
i = od |
$ dl
|
is the bounce-averaging process between turning points of trapped particles. It can be
seen that the electric drift occurs in the kinetic equation for 6 ¢ in the same manner as
in the bounce- averaged equation. The electric is mainly effective at the turning points
of the trapped particles where u) = 0. Therefore it has to be expected that in general

stellarator configurations the radial electric field also modifies the bootstrap current in the
long-mean-free-path regime.

Fig .2: Magnetic surface of a 4-period Helias configuration. The bootstrap current in the
plateau regime is negligibly small.
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Non-isothermal plasma

In non-isothermal plasmas the energy balance equations have to be taken into
account, as has been already studied in chapter VII for the case of symmetric systems.
The flux friction relations are given in Egs. (7.15). In general non-symmetric configurations
the viscous forces have to be calculated from the kinetic equation. The kinetic equation
with thermal fluxes q° is

1 VB 2 v? VB :
= 2 2 AR e i Sl P
Lgr = (vjj - EvL)fo{(v,- = ) + (5 v —1)q} E } (10.13)
The lowest order thermal flux in the magnetic surface is
47 = b} T’(¢)V + X;B (10.14)

2e

X; is defined by equation (7.18). In the following the shorter notation

5 P;
K =3 6—;1'}’(%1’)
and the definitions
1 VB 2 y?
wy = (vff — >v])(Vor —-) 5 ws = wi(z 5 —1)
2 B 5v
1 VB 2 . (10.29)
v
wy = (v —Sv1)(B-57) ; wa=wg = 1)

and, after defining the transport coefficients u** in Eq. (9.14) with ¢,k = 1,..4 the parallel
and poloidal viscous forces ( see Eq. (9.13)) are

— <B-V.m; >= ' E;(%) + uf 4 (%) + 4 K;(¥) + u7* X; (10.16)

and
— <V, V.m >= pit Bi() + p;? Aj(¥) + 15 K;(9) + pjt X (10.17)

The energy weighted anisotropic pressure is

O -0, = "5§ f g1 (v} - %vi)(g "? —1)d®v (10.18)
and the tangential heat viscous forces are
— <B-V-0; >= puf' E;(¥) +ui* A;j (%) +p5° K; () + i X; (10.19)
and
— <V,-V-0; >= P E;(y) + ;5 Ai($) +ui K;(¥) + 3t X; (10.20)
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The coefficients ,u.;-k define the diagonal matrices L;,?,k = 1..4 (see Eq. (9.19) and (9.20)).

XI. Neoclassical plasma with temperature gradients

The transport coefficients derived in the preceeding section will be used to establish
the flux friction relations in a multi-species plasma. The tangential forces on the magnetic
surface, given in Egs. (10.16) - (10.20), have to be balanced by the friction forces. These
are given in Eqs. (7.11) and (7.12) and, using matrix notation, the general flux- friction
relations for the parallel momentum balance are

2
<B?> {iA - 112X} + LyE + LypA + LygK + L5yX = 0 (11.1)

and
2
== = B2 > {lglA — glng} + L4y E+ L42A. + LyaK + LyyX =0 (11.2)

The vectors E,K,A and X are defined by {E;},{K;},{A} and {X;}. These equations
have to be supplemented by the particle and energy balance equations (7.25) and (7.26)

1

WI‘M., = L11E+ LisA + Li3K + L14X (11.3)
1

WQneo = L31E + LazA + L3sK + L3y X (11.4)

The vector Iy, has the components e;I'; — V/(3) < V, - R; >. Qneo is defined in the
same way.

These equations generalize equations (9.15) and (9.16) to a plasma with tempera-
ture gradients. The symmetric case can easily be recovered by observing that Lo = M Lyx

and L4 = M L3i which leads to

2 M
<B*> {luA- gll2x} + Wrneo =0
9 M (11.5)
2
= = = ———~dpeo =0
< B >{121A 5l22X}+V,(I¢))q

This system is equivalent to Eqgs. (7.15) with the parallel viscosities being replaced by the
perpendicular viscosities.

The system (11.1)-(11.4) is valid for an arbitrary number of particle species, it
can be solved for the toroidal fluxes in terms of the forces E and K. For this purpose Eq.
(11.2) is inverted with respect X, which is always possible since the matrices L44 and o2
are non-singular. Replacing the parallel thermal fluxes in Eq. (11.1) by this solution yields
a linear relation between A,E and K which then can be inverted with respect to A.

Instead of the forces we can introduce the fluxes I'peo and greo as independent
variables by inverting the equations 11.3 and 11.4 with respect to E and K. After elimi-
nation of the parallel fluxes X the toroidal fluxes A are linear functions of I'pe, Biid. Qpruse
This would be the generalisation of Eq. (9.25) to plasmas with temperature gradients.
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XII. Summary and conclusions

The bootstrap current in toroidal systems is the result of the tangential force balance
within the magnetic surface. The pressure tensor, which by various mechanisms - either
particle drift in the inhomogeneous magnetic field or by external heating mechanisms - has
become anisotropic, leads to tangential forces on the magnetic surface. In steady state these
forces have to be balanced by the friction forces of relative mass flow within the magnetic
surface. The coupling to the radial diffusion flux originates from the Lorentz force v x B
(v1 is the local radial diffusion velocity ) which has to be balanced by the perpendicular
friction force between different particle species and the perpendicular component of V - 7;.
The flux - friction relations are the surface averaged force balance equations which couple
the toroidal and poloidal fluxes to the radial diffusion fluxes. These equations are linear
algebraic equations between these fluxes and can be used to express the toroidal bootstrap
current as a linear function of the radial particle flux and the electron thermal flux. In
toroidal systems with one ignorable coordinate - tokamaks and quasi-helical stellarators
- a simple equation between bootstrap current and neoclassical fluxes exists. This is the
generalisation of the relation which was found by Bickerton et al. Ref.[9] . In these
symmetric configurations the bootstrap current is always finite; the factor which relates
the current to the radial fluxes does not depend on the details of the magnetic surface. In
non-axisymmetric configurations this is different since, depending on the specific Fourier
spectrum of mod B on every magnetic surface given in Hamada coordinates, the bootstrap
current can have either sign and can even be zero on nearly all magnetic surfaces. In a
torsatron, where the helical harmonics increase towards the edge, zero bootstrap current
can occur on one specific magnetic surface. An example of zero bootstrap current on
nearly all magnetic surfaces (evaluated in the plateau regime) is given in a 4-period Helias
configuration (see Fig. 2).

In the long mean free path regime the coefficients L;x depend on mod B and the colli-
sionality and therefore zero bootstrap current is only possible for a specific collisionality
and not in a finite region. Furthermore, it has to be expected that the electric field, which
enters the kinetic equation via the drift velocity vp also determines the bootstrap current.
In the very long mean free path regime the coefficients L;i are proportional to the collision
frequency and a geometrical factor can be separated which depends on mod B and the
radial alectric field. If the dependence on the radial electric field is weak, a geometrical
factor Gy is a relevant figure of merit for the bootstrap current in the long mean free path
regime.

The limits of the theory described above are twofold. First, to neglect the inertial forces
in the tangential force balance is only justified if the lowest order plasma flow velocity V;
is small enough. This can be the case in a plasma without external momentum sources
where V; consists of the diamagnetic drift and the E x B-drift of similar size. The parallel
velocity is also of the same order as the diamagnetic velocity. With external momentum
sources, however, a strong poloidal rotation may occur and the tangential force balance
will be modified by inertial forces. This problem needs further study.

Second, shear and gyro-viscous terms have been neglected in the pressure tensor. Usually
these terms are very small, however in symmetric systems, where the bulk viscosity has
no force in the invariant direction, these terms introduce a damping mechanism which
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removes the degeneracy of the flux friction relations. In a collision dominated plasma the
full Braginskii pressure tensor can be retained to calculate < B-V-7, > and < V,-V-m¢ >.
Shear viscosity and gyro-viscosity provide a coupling between different magnetic surfaces
and the resulting flux - friction relations are a second order system of differential equations
for E;(¢) and A;(¢) instead of the algebraic system described abovel. In a neoclassical
plasma one would expect a strong shear viscosity arising from the finite banana orbits.
This effect can be computed by retaining the t-derivative in the kinetic operator L. The
solution of the kinetic equation then contains radial derivatives of E;(¢) and A;(¢) and the
surface average viscous forces are linear in E;(¢),A;(¢) and their first order and second
order derivatives. A calculation in this direction has been made by D.E. Hastings? a
generalisation to the flux-friction relations is still needed.

A further limit of the theory arises from singularities around rational magnetic surfaces.
The flux-friction relations are the necessary conditions for the first order magnetic differ-
ential equations for pressure p; and electric potential ®; having single-valued solutions.
On closed magnetic field lines a further condition exists which generally cannot be satisfied
in non-axisymmetric systems and therefore the ordering scheme described in chapter II is
not applicable. In the close neighbourhood of rational surfaces viscous forces have to be
taken into account in lowest order to remove these singularities.

These remarks indicate the limits of the theory of bootstrap currents. The theory is still
incomplete. The experimental test of this theory is overshadowed by anomalous transport
phenomena in tokamaks and stellarators, which cast some doubts on the applicability
of neoclassical theory to real plasmas. This calls for a modification of bootstrap theory
including turbulence effects. A first paper on this subject has recently been published by
K.C. Shaing!.

Acknowledgements: I should like to thank Prof. A. Schliiter for his interest in this work
and for many valuable discussions.

1Ref.[20] H. Wobig,unpublished
2Ref.[21] D.E. Hastings Phys. Fluids 28(1985),334
1Ref.[22] K.C. Shaing Phys. Fluids 31 (1988), 2249

51




References

Ref.[1] J. Nithrenberg, R. Zille, Phys. Letters A 129(1988 )113

Ref.[2] T.E. Stringer, Plasma Phys. 14, (1972) 1063

Ref.[3] S.I. Braginskii, Rev. of Plasma Phys. Vol. I p.250

Ref.[4] S. Besshou et al., Plasma Phys. and Contr. Fus. 26 (1984) 565

Ref.[5] V. Erckmann, W VII-A Team, Plasma Phys. and Contr. Fus. 28 No 9A (1986),
1277

Ref.[6] M.C. Zarnstoff et al. in 14** European Conf. on Contr. Fusion and Plasma
Physics, Madrid 1987 Contribut. Papers, 1, 144 (1987)

Ref.[7] S.P. Hirshman, D.J. Sigmar Nucl. Fusion 21 (1981) 1079

Ref.[8] K.C. Shaing, J.D. Callen Phys. Fluids 26 (1983) 3315

Ref.[9] H.K. Wimmel, Nucl. Fusion 10 (1970) 117
Ref.[10] R.J. Bickerton, J.W. Connor and J.B. Taylor Nat. Phys. Sci. 225 110 (1971)
Ref.[11] M. Coronado, H. Wobig, Phys. Fluids 30 (1987) 3171

Ref.[12] G.F. Chew, M.F. Goldberger, F.E. Low Proc. R. Soc. London Ser. A 236, 112
(1956)

Ref.[13] D. Palumbo, Nuovo Cimento XB 53 (1968) 507

Ref.[14] M.D. Kruskal, R.M. Kulsrud, Phys. Fluids 1, (1958) 265

Ref.[15] A. Pytte, A.H. Boozer, Phys. Fluids 24(1981) 88

Ref.[16] A.B. Hassam, R.M. Kulsrud, Phys. Fluids 21 (1978) 2271

Ref.[17] A. Schliiter, Z. f. Naturforsch. 12a (1957) 822

Ref.[18] M.N. Rosenbluth, R.D. Hazeltine and F.L. Hinton, Phys. Fluids 15 (1972), 116
Ref.[19] A.H. Boozer, Phys. Fluids 26 (1983), 469

Ref.[20] H.Wobig unpublished

Ref.[21] D.A. Hastings, Phys. Fluids 28, 334 (1985)

Ref.[22] K.C. Shaing, Phys. Fluids 31 (1988),2249

52




	IPP 2_297 Deckblatt
	IPP 2_297 Text

