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ABSTRACT

These notes are an introduction to the theory of Lower Hybrid Resonance (LHR)
and Ion Cyclotron Resonance (ICR) heating of Tokamak plasmas. This choice does
not imply that other HF heating methods, particularly Electron Cyclotron Resonance
(ECR) and Alfvén Wave Resonance (AWR) heating, are less interesting: it just takes
into account the competences of the author.

Even within this restricted scope, it was of course not possible to cover even su-
perficially all the topics of interest. We have devoted some effort to discuss the linear
dispersion relation and the mechanisms of wave—particle interactions, since we are con-
vinced that a good understanding of linear propagation and absorption is a pre-requisite
for any deeper investigation of h.f. plasma heating. In particular we have tried to show
how the guidelines for heating experiments (frequency choice, antenna design, etc.), are
dictated by the properties of linear plasma waves. A cursory mention has been given
of other subjects of obvious importance: solution of Maxwell equations in non—uniform
plasmas, antenna modeling, h.f. current drive. Practically nothing is said on parametric

decay processes, h.f. effects on confinement and impurity production, etc..

I would like to thank the organisators of the 3d Latin—American Workshop in Plasma
Physics for the invitation to give these lectures, and for the generous financial support

which has made possible my participation to the meeting.




1- THE DISPERSION RELATION OF LOW FREQUENCY WAVES.

1.1 - The dispersion relation. The linear response of a uniform plasma to a plane
wave of frequency w and wavevector k (of the form E = Egei(k'F'W‘)) is completely
described by the dielectric tensor g(l?,w), defined through:

J=¢ E (1.1)

The reader can find the derivation of ¢ by integration of the linearised Vlasov equation
along the unperturbed particle orbits in [1]. For a plasma with Maxwellian distribution

functions, this leads to:
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Here the coordinates are chosen so that z is parallel to the static magnetic field, and k
lies in the (z, z)-plane. k) and kj denote the perpendicular and parallel components of
the wavevector, and n; = kjc/w, nj = kjjc/w those of the index. wy; and 2; are the
plasma and cyclotron frequencies, and vfhj = 2T} /m; the thermal velocity of species j.
I,, is the modified Bessel function of order n, with argument

Aj =k} vtzhj/Qggj (1.3)

Finally, Z is the Plasma Dispersion Function [2], defined as

20=0 [ &

du +io/me¢ (1.4)




with ¢ = 0,1,2 when Im(¢) > 0, = 0, < 0, respectively, and

w — nfde;

1.5
k| vin; (1-9)
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The Dispersion Relation is the solubility condition for the algebraic form of Maxwell

equations for a plane wave,

M. -Eo=—kx(kxE)+e-Eo=0 (1.6)

Le.
H(E,w) = det|n?(6;; — kik; /k?) — €5 (k,w)| = 0 (1.7)

For applications to tokamaks it is appropriate as a first approximation to regard it as
an equation for k;, with w and k) real, fixed respectively by the generator and by the
antenna periodicity. The discussion of this complicated equation is facilitated by a few
general guidelines:

a) The order of magnitude of the compoments of ¢ are always the same as in the
cold plasma limit, v;; — 0, and cold plasma waves always play a fundamental role. In
this limit, the only non vanishing components of the dilectric tensor (cfr. [1], Ch. 3)

are:
1 .
with
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The corresponding dispersion relation, written as a quadratic equation for nf , is:

sni - [RL+ PS —n}(P + )| n + P(n} - R)(nf — L) =0 (1.10)

b) The wavelength of most (although not all) waves is much greater than the average
Larmor radius of all species. Hence finite temperature effects can be investigated by
developing Eq. (1.7) to first order in A = k3 p?/2 << 1. There is no small parameter
allowing a similar expansion along the static magnetic field: in this direction the Z-

functions have to be retained to describe dispersion and absorption correctly.
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c) On the other hand, when k¥ — oo, i.e. when the phase velocity is much slower
than the speed of light, the waves become essentially electrostatic, En~-Vd=—ikd.
Then the dispersion relation can be well approximated by

ki€ (k,w)k;
2 U(kg ) 3 = 0 (1'11)

It is also well-known that the power absorbed per unit volume is given by

W -o* A —

Paps = gEo s e Ep (112)

where gA is the antihermitean part of the dielectric tensor. In particular, absorption is
important when for n = 0, £1 or +2- .- the condition

w—nl

Tnj = 9 = 0(1) (1.13)

k| venj
is satisfied. It should be also kept in mind, however, that the polarisation of each wave
also plays an important role in determining the damping rate.

1.2 - Cold plasma waves at low frequencies. The ICR and LHR frequency ranges
both lie well below the electron cyclotron frequency; since in tokamaks Wpe/See = O(1),
also well below the electron plasma frequency (this is true even at the plasma edge,
although only by a small margin in the LH case):

W << Wpey Bee (1.14)

At these frequencies the electrons respond essentially in the drift approximation: E x B
and polartisation drift in the perpendicular direction, free inertial motion in the parallel
direction. Because of the smallness of the m./m; ratio, P is always very large (P =
O((m;/me)?) in the ICR range, —P = O(m;/m,) in the LHR range). Using |P|™! as

expansion parameter, the cold plasma dispersion relation can be accurately factorised

as follows: (v? — R)(nd I
ng — ng —
Fast wave - I I 1.15
i, F (nﬁ _ S) ( )
2 2 R
Slow wave nis=—(nj— S)E (1.16)

The Fast wave (FW) is known as Magnetosonic or Compressional Alfvén wave at low

frequencies, and as Extraordinary wave at high frequencies; the Slow wave (SW) as
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Shear Alfvén wave at low frequencies, and as Ordinary wave at high frequencies. The
SW wave exhibits a perpendicular resonance (k; — o0) when S = 0. This occurs in
particular at the LH resonance. The denominations Fast and Slow refer to the relative
values of the perpendicular phase velocities: the absolute value of root (1.15) is normally
much smaller than that of (1.16) throughout the low frequency domain.

The above factorisation breaks down only when the condition nﬁ = S is satisfied, so
that the two roots must cross. In the LH frequency range this confluence influences the
accessibility of the plasma core to externally launced slow waves. In the ICR domain, it
must be regarded as a resonance of the fast wave. The meaning of the various cut—offs

(n? = 0) will be discussed later.

1.3 - Finite Temperature effects. The development of the hot plasma dielectric tensor

to first order in A; gives:
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We recognise here two kinds of finite temperature effects. In the parallel direction,
the complex Z—functions contribute an antihermitean part to the dielectruc tensor,
which describe kinetic absorption when conditions (1.10) are satisfied. In the perpen-
dicular direction, the FLR corrections take into account that in the plasma, in addition
to waves driven by electromagnetic forces, also pressure-driven waves are possible, as
in all fluids. Note that the FLR terms are proportional to 3, the ratio of the plasma
pressure to the ‘pressure’ of the static magnetic field.

Not all FLR corrections are equally important, however. From the fact that the
V x (V x E) operator is transverse (i.e. orthogonal to the wavevector), it easily follows
that the most important one is the —on? correction to S. Indeed this term increases the
order of the dispersion relation, making it into a cubic in ni; it is thereby responsible for
the existence of a new root, the expected pressure—driven wave. In the IC range however
|P| is so large that FLR corrections must be taken into account also in the coefficients
of terms of lower order in n%, when multiplied with P. An adequate approximation

covering the whole low frequency range is
—onl+Ant —Bn2 +C=0
A=S+ Po
B =P |(n} - S)+ (nf — L)p+(n} — R)A
0= P(nﬁ - R)(nﬁ - IL)

(1.21)

In addition to the two approximate cold plasma roots given by Eq. (1.14-15), this
equation admits a new, hot—plasma root, which for most purposes can be simply ap-
proximated by

nd gy (1.22)

Q|

This wave bears different names in different frequency and plasma parameter domains.
An appropriate name for this branch as a whole would be the acoustic wave; however,
for historical reasons this name is reserved to a particular branch with |z,.| << 1, which
is heavily damped unless T; << T, and therefore plays no role in Tokamak plasmas.
For convenience, we will often refer to (1.22) as the pressure-driven wave. Because of

its very large perpendicular index, this wave is always almost electrostatic.

FLR corrections will play a particularly important role in the vicinity of cold plasma
resonances: as S — (0, the slow cold-plasma root increases, and will finally cross the
hot-plasma one. Thus the divergence of k; found in the cold plasma approximation

is replaced by a confluence with the pressure-driven wave. A confluence of this kind
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occurs near the LH resonance. In the ICR range, a confluence between the Fast wave
and the hot—plasma branch also occurs near w = 2{,;, where o is resonantly large,
while S remains finite. In this case the wave (1.22) is known as the lowest Ion Bernstein
wave (IBW). In a multi-species plasma, moreover, the condition nﬁ — 8 =0 is satisfied
near the Buchbaum ion—ion hybrid resonances [3]; this circumstance can also lead to a
confluence between the FW and the IBW.

When in an inhomogeneous plasma an externally launched wave is incident upon
a confluence, it is partly reflected, partly transmitted (if the optical thickness of the
evanescence layer following the confluence is not too great), and partially mode con-
verted into the slower branch of the dispersion relation. The latter is usually rapidly
thermalised, since its phase velocity is low, and becomes comparable with the thermal
velocity of particles at some distance from the conversion layer. Linear mode conversion

is a fundamental ingredient of h.f. plasma heating.

It is perhaps not superfluous to recall that when developing the dispersion relation in
powers of k% p?/2, it is meaningful to retain only the first order corrections describing
pressure—driven waves. If k) p; 1s not small, taking into account higher order terms
would introduce spurious roots, by approximating a transcendental equation with a
polynomial one. The condition k% p? << 1 is actually violated by the slow wave and
the pressure-driven wave near the LH resonance. In this case however the ion response
to the wave is essentially unaffected by the static magnetic field; an expansion in the

small parameter k) v;p;/w (thermal ion velocity over perpendicular wave phase velocity)
leads again to Eq. (1.22) [4].

1.4 - Wave—particle interactions The rate of energy change of a particle in a plane

I

wave, averaged over times much longer than w™*, is

2
(&5

To the accuracy of the linear Vlasov equation the phase factor can be evaluated using

> = Ze(ﬁ'- Ecos(E & — wt)> (1.23)

the averaged motion only. In this approximation, the r.h. side of (1.23) is non-vanishing
only for particles for which the Doppler shifted wave frequency is commensurable with

some frequency of the periodic motion:
m(w — kjy)) = nf, (1.24)

The most important cases are m = 1, with n = 0 (Landau and Transit Time) damping;

n = 1 (Fundamental Cyclotron damping); and n = 2 (Harmonic Cyclotron damping).
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Higher cyclotron harmonics are important only for wavelengths comparable or shorter
than the Larmor radius. Harmonics of the wave frequency (m > 1) are negligible if the
particle displacement is small compared to the wavelength, as it is almost always the

case.

The dynamics of wave-particle interactions is however reversible. The secular ”res-
onant” increase of kinetic energy describes only the initial phase of the motion: after a
sufficiently long time trapping and bouncing occurs, with no average energy gain or loss.
This is well illustrated by the example of electrons interacting with a one-dimensional

electrostatic wave. The bouncing time of a trapped electron (v = vy = w/ky) is in this

T AU

In practice, reversibility is destroyed by collisions. A resonant electron is detrapped if

case given by

its parallel velocity is changed by the small amount

e® 1/2
by (—Q;H—e) (1.26)

Since Coulomb collisions are a random-walk process, this requires a time

(L ( e® )
Tdet =2 Teoli(V = - 1.27
det = Teoli(Vg) vlzl = mevg (1.27)

Within 74.; a resonant particle is detrapped, and replaced by an equivalent one; if the
collision rate changes slightly, the time during which a single particle remains in reso-
nance changes, but this will be compensated by an opposite change of the replacement

rate. Hence if 74¢¢ is shorter than 7 the damping rate will be independent from v,.

Under these conditions, collisions are able to mantain a Maxwellian distribution

arbitrarily close to the resonant velocity. Hence, in particular, the condition

2820 (3—’—3—)2/3 (1.28)

T, Wpe

is also a sufficient condition for the validity of the linear Vlasov equation (”neoclassic”
theory of heating, [5], [6]).




1.5 - Quasilinear description of heating At low frequencies antennas are necessarily of
dimensions comparable or smaller than the wavelength. As a consequence, they cannot
launch a single plane wave: instead, the radiated field will consist of a more or less
broad superposition of such waves. In the presence of a spectrum of waves with closely
spaced wavevectors,

EFt) =Y Ejeitki—wn (1.29)

j
the phase between a resonant particle and any one wave is perturbed by all other waves,
whose phase velocities are also not far from resonance. Thus to the particle the wave
phases appear random, even if they are not really so. Collisionless stochasticity of this

kind can replace collisions to justify the linear description of plasma waves.

Under these conditions the long term evolution of the distribution function f, is
obtained by substituting into the nonlinear part of Vlasov equation the formal solution

J1 of the linearised equation, and by averaging the result over times ¢ >> w1 ([7], [8]):

s\t o hBef it ot BN\ LB ) 3 25 B
ot )QL = —§¥<Re (E ' ‘a?)> =% (—QQL(”) 66) (£.30)

The general form of the quasilinear diffusion tensor in a uniform magnetized plasma has

been derived in [9].

When the conditions for the quasilinear description are satisfied, the power absorbed

per unit volume can be shown to be

spec
7"“__00 o n - E(kj)
where 5 L
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It is not difficult to see that this result could also be obtained by summing over the

spectrum the expression (1.12) for a single plane wave.




2 - LOWER HYBRID HEATING.

2.1 - Lower Hybrid Resonance and Linear Turning Point. Lower Hybrid Heating
relies on damping of the slow cold plasma wave, Eq. (1.16), at frequencies in the Ghz
frequency range,

Qei << w << Qee (2.1)

At these frequencies the ion respond as essentially unmagnetised. The elements of the

cold plasma dielectric tensor then simplify to

o o i 5
S="1 £2 =i D=-—E P=-—-E 2.2
+Q§e Z',:wz wQee w? (22)

The LH resonance is the frequency which makes S = 0:

w,,,-

WLH = — (2.2)
1+ ﬁ’i
For a given frequency f (in Ghz), the resonance will occur at the density
2.26 1013 4; f 3
— = 2.
ne,LH 1 _ 2.3444,‘]‘2/.82 (cm ) ( 3)

Here f is the applied frequency in Ghz, and B, the static magnetic field in Tesla.
The resonance density increases with increasing frequency, and goes to infinity when

w — ci$2ce; above this frequency there is no resonance.

In a hot plasma, the resonance is replaced by a confluence between the slow wave
(1.16) and the hot plasma wave (1.22), known as Linear Turning Point, which occurs
at a density slightly lower than the LH resonance. The FLR correction to €, in this

frequency range can be approximated as

w2 v2 . 1 wt 1
2 _ 27p Yihi e A3 2
ML= 902 (1 402,02 T,-) L (24)

(electron and ion contributions to ¢ are of the same order of magnitude). The position
of the LTP can then be easily deduced from Eq. (1.21) by factorising away the fast

root:
-1

wp,-

1 (2.5)

w?

it w? +|n|||VT--i 1+l wt Z‘i
.00 6.25 49202 T;

An example of exact dispersion curves (k) versus density) in the vicinity of the LTP

is shown in Fig. 1. One recognises a further conversion point to a third wave with
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very short perpendicular wavelength, which moreover depends sensitively on the ratio
w/Qei: it is a high-order Ion Bernstein wave, not described by the FLR dispersion
relation (1.21), but only by the complete one (1.7). For the following discussion, it
is useful to keep in mind that all these waves, because of the large value of n,, are
essentially electrostatically polarised (for the cold SW this holds as soon as nﬁ 28y
for the mode—converted waves always). The SW moreover is a backward wave, i.e. its

perpendicular group velocity is opposite to the perpendicular phase velocity.

2.2 - Absorption mechanisms: a) ion heating. Hystorically, interest in the LH wave
was motivated by its slow perpendicular phase velocity in the vicinity of the LH reso-
nance. As the wave approaches resonance from the propagative side, both its phase and
group velocity perpendicular to B, tend to zero. Any dissipation mechanism, however
weak, can then produce very strong damping. This is confirmed by solving the wave
equation in the vicinity of the resonance layer. Taking advantage of the fact that in this
region the wave must be essentially electrostatic, this equation can be simplified to

2

% (S%) ot %nﬁPE,, =0 (2.4)
(here x is the direction of the density gradient, assumed to be perpendicular to the
static magnetic field). Approximating S by a linear function of z in the vicinity of
the resonance S = 0, with a small imaginary part to take into account dissipation and
guarantee causality, this equation becomes a particular case of Bessel equation. The
solution satisfying the appropriate radiation conditions shows that there is no reflection
(and of course no transmission, since the wave is evanescent on the high density side of
the resonance): all power is absorbed. By placing the resonance so that w/k; becomes

comparable to v3; in the plasma core, it was hoped to heat the ions efficiently.

When finite temperature effects are taken into account, the wave equation becomes
of fourth—order, the singularity of Eq. (2.4) being eliminated by the small higher order
terms. With an elegant solution of this equation near the LTP using countour inte-
gration, Stix [10] has shown that an incident SW is completely mode—converted to the
hot-plasma wave, again without reflection on the cold plasma branch. As the mode
converted wave propagates back towards lower densities, its perpendicular phase veloc-
ity decreases, and becomes rapidly comparable to the ion thermal speed. Thus finally
total absorption by the ions can again be expected.

Strictly speaking, the linear hot plasma dispersion relation predicts absorption by

the ions to be localised in the vicinity of high—order cyclotron harmonics [4]: in the
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antihermitean part of the dielectric tensor the effects of the magnetic field cannot be
neglected, so that between harmonics the plasma remains transparent however slow the
wave, as Is clearly to be seen from fig. 1. A closer investigation shows however that
this prediction is due to the fact that the linear theory attributes to the ions an infinite

memory of the gyration phase, an assumption which is never realistic in practice.

Let us briefly comment on the ion absorption mechanism. During a cyclotron orbit,
the phase of the electric field seen by an ion oscillates rapidly, since w >> Q.;. If
w/kivy > 1, however, the phase is stationary twice per orbit (fig. 2). The resulting
ion-wave interaction ressembles closely a Cerenkoff resonance, since the curvature of
the ion orbit is clearly negligible to a first approximation-. Then if a mechanism exists
which decorrelates the phase between £, and 7 rapidly enough, absorption of LH
waves should become identic to Landau damping by non—-magnetised ions. Such a
mechanism is usually provided by the simultaneous presence of a spectrum of waves
with slightly different phase velocities. Under these conditions, the long term evolution
of the ion distribution function can be described in the quasilinear approximation. With
the approximations suggested by the inequalities w >> Q;, k1 vi3i/Qei 2 1, Eq. (1.30)
becomes ([13])

ofi: = 140 0f; ] (5fs'
ot LN Nt PR bl :
6t V) av_]_ [vl oF (vl) 6v_1_ 5 815 coll (2 5)
where the last term is the Fokker—Planck collision operator, and
Z2%e? (%)3 w
Dor = L0 | E (k)2 ( > 1) 2.6
“FT miu %: T+ (g 0 kivy 48

Ion absorption is then perpendicular Landau damping, which differs from Landau damp-
ing in the unmagnetized plasma only because the energy gained is immediately re-
distributed equally among the two perpendicular degrees of freedom by the gyration

motion.

Even in the case of a narrow spectrum, moreover, the methods of modern Hamil-
tonian mechanics show that the ion motion becomes stochastic as soon as a very low
threshold in the wave amplitude is exceeded, provided k, p; = 1, where p; is the Larmor
radius (w/kivy S 1 and w >> Q. together imply that this condition is satisfied).
Stochastic ion heating by LH waves has been studied in two very interesting papers
by Karney [11], [12]. Karney has shown in particular that well above the stochasticity

threshold equation (2.6) holds also in the monochromatic case.
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A characteristic of perpendicular ion Landau damping is that the diffusion coeffi-
cient (2.6) is isotropic in the direction perpendicular to the static magnetic field, and is
not localised in velocity space (Fig. 3): all ions whose perpendicular velocity is larger
than the phase velocity are heated. Thus as soon as a few ions satisfy the resonance
condition with the slowest waves in the spectrum, they will begin to gain perpendicular
energy, and to interact also with faster waves, which would not be absorbed in a thermal
plasma. Because of this synergetic effect, the predicted power deposition profile broad-
ens considerably when the power is increased (Fig. 4, [13]). Above a few hundred kW
in medium-size tokamaks, stochastic ion heating is expected to become very efficient as

soon as:
w

< 6to8 2.7
ki vni 2 (27)

and to produce tails of energetic ions with a large effective perpendicular temperature.

Experimentally however it has proved difficult, if not impossible, to achieve efficient
ion heating with LH waves. At densities somewhat short of those which would be
required for this purpose the waves cease to penetrate into the plasma core. The reason
for this is not completely clear, although several mechanisms have been suggested,
scattering by density fluctuations and/or depletion by parametric decay processes near
the plasma edge being the most likely candidates. Fast ions are often seen e.g. by charge
exchange diagnostics; hoverver in most cases they come from the plasma periphery, and
appear to be accelerated by mechanisms different from the one sketched above.

2.3 - Absorption mechanisms: b) electron heating and current drive. Interest in the
LH frequency range has nevertheless survived, and has even been dramatically fostered
by the success of LH current drive. The possibility of sustaining the toroidal current
necessary for the Tokamak equilibrium with LH waves was first discussed by Fisch [14];
the theory of CD was later developed in several papers by Fisch, Karney and others
(for a review, see [15]). LHCD is based on Landau damping by electrons satisfying the
parallel Cerenkoff resonance w = kjjv). The effects of this wave—particle interaction on
the electron velocity distribution can again be described by a one-dimensional quasi—
linear diffusion equation,

0fe _ 0 61&-] (% )
o~ Oy [DQL(Ull)avu R 8
where
£ ’ 2.9
1y omiw kzué(“’ = Ky £ (ky)| (2.9)
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In this case, quasilinear diffusion is localised to a well-defined range of parallel velocities,
defined by the externally launched kj—spectrum. Since moreover under usual conditions
the h.f. term is much larger than the collisional one (i.e. Dqr/veonvd, >> 1), the
electron distribution function develops a “plateau” in the corresponding velocity range
(Fig. 5). An asymmetric spectrum, which can be realised by launching traveling waves,
thus results in a net electron current. Collisions tend to reduce the plateau population
by slowing down and scattering the electrons in pitch-angle; since collisionality decreases
with energy, the efficiency of CD is expected to increase when the parallel phase velocity
of the vawes increases, i.e. the parallel index decreases. This prediction is quantitatively
confirmed experimentally.

It is unfortunately impossible to discuss in the space of these notes the very inter-
esting and successful theory of LHCD; we must limit ourselves to a few comments on
the points which are still not completely understood. The most puzzling is the so-called
velocity gap paradox. It is intuitively clear that the ‘heigth’ of the plateau should be
roughly proportional to the number of electrons near the slowest waves in the spectrum
(cfr. Fig. 5). Indeed, while the efficiency, i.e. the ratio J/P (current to power required)
is expected to increase when faster waves are used, J and P separately should decrease
exponentially (as exp {—(w/ k[l”!he)?mn})- It was a fortunate circumstance that in the
first investigations of LHCD emphasis was put on the efficiency J/P, rather that on J
and P separately: otherwise LHCD might at first have encountered considerably less

enthusiasm among experimentalists!

In the experiments however all the power having access to the plasma core is ab-
sorbed, so that not only the efficiency, but the current itself is optimised when the wave
spectrum is optimised according to Fisch theory. To explain this behaviour, it is nec-
essary to postulate a mechanism capable of extracting electrons from the bulk thermal
population and to feed the quasilinear plateau across the velocity gap in the spectrum.
This mechanism must require relatively little power, so as not to deplete the spectrum of
waves launched from outside: any explanation invoking a substantial difference between
the externally excited spectrum and the spectrum driving the current would be in sharp
contrast with the experimental evidence [16], [17]. Moreover, bridging of the velocity
gap seems to occur in the plasma center more or less independently of the width of the
velocity gap there, yet never at the plasma periphery. Such a mechanism has not yet

been unequivocally identified.

I would like to stress here that the velocity gap is a problem for the theoreticians,

not for the plasma, who is perfectly happy with waves as fast as compatible with the
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accessibility limit to be mentioned below. In the literature one reads from time to time
suggestions to ‘help’ LHCD by in some way increasing the electron population in the
velocity gap. Such methods might be useful only if they extend the density range in
which the plasma is capable of sustaining a large population of suprathermal (but non
run—away) electrons. As long as this is the case, LH waves approach the maximum

theoretical efficiency with no external help, even if we do not really understand how.

The last remark naturally introduces the second problem of LHCD, namely the
existence of a density limit above which the efficiency rapidly drops to essentially zero.
The critical density for LHCD is within a factor 2 of the penetration limit mentioned
above, although the two effects are probably distinct. Both limits scale empirically as
the square of the applied frequency, a fact that has favored the use of higher frequencies.
There are however technical limitations, which come in particular from constraints on
the miniaturisation of the launching structure.

2.4 - Coupling and accessibility. After this rather superficial overview of the heating
and current drive mechanisms, we turn to propagation and launching of LH waves.
Fig. 6 shows the qualitative behaviour of n? with varying density (or with the distance
from the plasma edge), for different values of the parallel index. A very important
feature of these dispersion curves is the presence of a cut—off, n2 = 0, at low density.

For the slow wave the cut-off is at the density where P = 0, i.e.
ne (cm™3) = 1.24 101052 (2.10)
while the cut-off of the fast wave is at
. (6m~) 5 3.47 lollfnﬁ —1|B,f (2:11)

This means that a wave propagating inside the plasma is necessarily evanescent in
vacuum: nf > 1,7} =1-— nﬁ < 0. Such waves can be excited only with a slow-wave
structure. The cut—off density of the slow wave is so low that waves excited by such
a structure will easily tunnel through the evanescence region, provided the antenna is
placed close enough to the plasma surface. The cut—off density of the fast wave, on the
other hand, is appreciably higher: coupling of the fast wave will accordingly be much
less efficient under otherwise similar conditions.

From Fig. 6 it can furthermore be seen that waves with low n|| encounter a confluence

with the fast wave followed by a layer of evanescence between the plasma edge and the
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LTP. Waves which do not satisfy this condition are trapped between the wall and the
confluence, and excluded from the plasma interior. To avoid this confluence, a somewhat
more stringent condition than evanescence in vacuum (nﬁ > 1) has to be satisfied in
practice, namely [20]:

w2 o w?
Ingl > /1+ 22 -Y £ £ (2.12)
Il Q2, Z,: w2 Q2,

This accessibility condition is not in itself in contraddiction with Cerenkoff absorption
by the electrons, nor does it impose further severe constraints on the antenna design. At
high densities however, it can limit the efficiency of Current Drive by setting an upper

limit on the parallel phase velocity of the waves which can reach the plasma core.

The nature of the required launching structure can be further clarified by exhamining
the limit polarisation of each wave at vanishing density. In vacuum, the slow wave
requires a toroidally oriented electric field (E,), the fast wave a poloidally oriented one
(Ey). This is again a distinctive advantage for the slow wave, which can be launched by
a phased array of waveguides mounted flush on the plasma vessel with their short edge
in the toroidal direction. This arrangement, originally suggested by P. Lallia [18] and
known as Grill, allows great flexibility in the shaping of the launched spectrum, and
would be easy to incorporate in the design of a reactor. The Grill has been successfully
used in many heating and current drive experiments, and its coupling properties are
well understood [19].

Waveguide coupling of the fast wave, on the other hand, although not impossible,
would be much more difficult. The guides must be aligned with their longest side in
the toroidal direction: this not only requires a lot of space between magnetic field coils,
but is incompatible with the requirement nﬁ > 1 unless ridged or dielectrically loaded

guides are used.

The description of Grill coupling is greatly simplified by neglecting the finite heigth
of the guides in the poloidal direction. Then the field in each guide is a superposition
of the fundamental TEM mode, and of evanescent TM modes excited at discontinuity
represented by the openings of the guides on the plasma chamber:

N 00
' Sew nm(z — zp)
Eg =-Eo Z: ep(z) Z {anper)'n:c + ﬂnpe Y } coS Tp
" " (2.13)
- o nm(z — zp) .
a—— . i i W — D
Bj = —Eogep(z)’ay_n{anpew * A i }COS ;
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where ©,(z) is unity in front of the p-th guide, z, < z < 2, + b, and zero elsewhere,
and
propagating mode

W (nzﬂz )112 (2.14)

evanescent modes (o, = 0)

The excitation configuration is described by the complex coefficients a,p, which can be
chosen arbitrarily; the reflection coefficients Bop and the coefficients B, of the evanecent
modes must be evaluated. In the plasma, the field is written as usual as a superposition
of plane waves of the form

400 : +oco .

1,4 =/ Eg(k“,z‘)e'k"z by =f B;(k”,x)e'k"z (2.15)
—0Q — 00

where Ef(ky,z), BY(k|,z) are the solution of the wave equations in the plasma which

satisfies outgoing radiation conditions. The ratio

By (ky,0)

By 0) = Y (ky) (2.16)

for such waves is the surface admittance of the plasma for plane waves. Assuming a
linear density profile near the plasma edge, Y (k)) can be expressed in terms of Airy

functions; for most purpose, an adequate approximation is

1

Y(ny) =~ W

(2.17)

In the plane of the guide mouths, z = 0, E, must be continuous everywhere (in
particular, it must vanish on the metallic wall). This implies the identity of the z—
Fourier transform of E{(z = 0) with E£(k,0). The Fourier spectrum of By(z = 0) on
the plasma side, Bf(k),0), must be related to E?(ky,0) by Eq. (2.16). In the plane
z = 0, however, By is continuous only at the guide apertures (in the wall currents
will generally flow). Exploiting the orthogonality of the waveguides eigenmodes, this
condition can be transformed into a set of linear equations for the unknown coefficients
Bnp, which is solved numerically. This allows to evaluate the reflection (in amplitude and
phase) in each guide. The total reflection R is a function of the phase A® between guides
(Fig. 7), and, for a given A®, of n. and dn./dz at the plasma edge; for A® = 90°
or 180°, R has a shallow minimum of the order of a few percent or less (Fig. 8).

The agreement with coupling measurement is usually quite good, to the point that the
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reflection coefficients measured in the different guides are considered a reliable indication
of the plasma density in front of the Grill.

The most important output of the Grill theory is however the radiated power spec-
trum:

P;(n)) = Cte - |E§(k",0)|2 y W (nﬁ > 1) (2.18)
The functional dependence of the r.h. side on k) favours somewhat waves with low
parallel index. Thus it is difficult to satisfactorily shape the spectrum with only two
waveguides: the spectrum of a two—guide Grill is always “triangular”. Grills with 4
guides or more however allow great flexibility: the kj—depence of the surface admittance
is relatively slow, and the spectrum is dominated by the form factor |E,|?, which can
be directly manipulated by phasing the guides, as long as reflection is low. An example
of power spectra from a Grill with 8 waveguides excited with equal amplitudes and

different phases is shown in Fig. 9.

One should however be aware that the freedom of spectral shaping is limited by the
properties of Fourier transforms. Thus the finite length of the antenna, and the fact
that evanescent guide modes excited at the guide mouths radiate somewhat at larger
values of nj, put an upper limit of about 0.8 to the directivity which can be achieved

in view of Current Drive.

2.5 - Resonance cones. Let us briefly mention another peculiar property of LH waves.
In the electrostatic approximation, the direction of their group velocity does not depend
on the value of k:

1/2 , 2 9 \1/2
vg1  O0H/0z L (me) (w ‘-"LH) (2.19)

Yyg|| o BH/BJI ! E ""?LH

This has the consequence that the field excited by a finite length antenna is localised
along the bundles of “rays”
de/dz = vy [vg, (2.20)

from the antenna itself (known as resonance cones). Resonance cones where discovered
by Kuehl [21]; their effect on LH waves launching was studied by Bellan and Porkolab
[22]. Note that at the frequencies of interest in tokamaks, LH resonance cones make an
angle of order (m./m;)'/? with the static magnetic field: this implies that LH waves

have to travel a very long optical length to reach the plasma core.
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To get more feeling for resonance cones, it is useful to start from the cold Poisson

d o8\ 0 0%
a—m (fxx 55) + 5‘; (533 a) =0 (221)

(Eq. (2.4) is a particular case of this equation). In the LH domain, Poisson’s equation

equation

is hyperbolic and admits wave-like solutions because ¢y, /¢,, = S/P < 0; the “rays”,
solutions of the ray equations (2.20), are its characteristic, and can be used to construct
the solution which satisfies given boundary conditions. Assuming the applicability of the
WXKB approximation (i.e. that S and P vary slowly on the scale of the SW wavelength),
the general solution can be written:

®(z,2) = @4(z — 9(2,2)) + (2 + (2, 2)) (2.22)

where z = +g(z, z) are the equation of the two rays through the point z from appropriate
points in the antenna plane # = 0. The functions ®. are arbitrary, except for the
condition that no power must come from infinity toward this plane. By considering the
Fourier decomposition of the antenna field in the z—direction, it is not difficult to show
that to satisfy causality the signal going to the right (®,) must contain only partial
waves with positive k), the signal going to the left only waves with negative k. This
has an obvious interpretation in terms of group velocity; but it complicates somewhat
the explicit imposition of given boundary conditions. Nevertheless, in simple cases the
single-sided Fourier integrals can be evaluated, and the field pattern can be written in
closed form.

This is the case for the electric field launched by a Grill of N guides phased by A¢,
which in the z = 0 plane can be fairly well simulated by the boundary condition

N
Bz =02 =B, Y e (2.23)
p=1

In this case one finds

so 2 g SOPEY SN ipag[ (e F9@.2) | i 1 = (5 Fe(z,2))
B (2,2) _EOS(:J:)P(O) Ze { 2 g log z—(2zp +bF g(z,2)) }

(2.24)
This shows that the field in each Resonance Cone is not just the image of the field of

p=1

the antenna enhanced by the usual WKB factor, as it is often assumed. A logarithmic
singularity develops along the rays which start from each discontinuity at the boundary
(here the edges of each waveguide). Moreover the field from an antenna of finite length
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decreases relatively slowly in the parallel direction away from the Resonance Cones,
namely as

1
¢, =0 (m) for |zxg(z,2)| — o0 (2.25)

Note that both the singularity and the slowly decreasing tail in the field pattern are
in quadrature with the field at the antenna, and do not contribute to the transport of

pOWer.

Of course, the singularity is a consequence of the approximations made: thus it
can be removed by taking into account the decrease of tunneling efficiency from the
antenna for waves with large ny| predicted by the Grill analysis. Nevertheless, at least
in the plasma periphery, strong localised peaks of the electric field intensity must be
expected. They are likely to be responsible for the sensitivity of LH waves to parasitic
nonlinear effects near the plasma edge (parametric decay, filamentation, etc), and might

thus indirectly play a role in the penetration problems encountered at high density.

Further inside the plasma, Resonance Cones need not be taken as seriously. Two
effects severely limit the radial range over which their coherence can be maintained, even
disregarding non—linear phenomena. First, electromagnetic corrections to the dispersion
relation, although small, are cumulative. They make waves with smaller n penetrate
radially slower than predicted by the electrostatic approximation, and thus broaden
the illuminated region along B,. This effect will be particulary strong for the ‘fast’
wavepackets which optimise CD efficiency: as n|| approaches the accessibility condition,
field localisation is completely lost, since the fast wave does not form Resonance Cones.
Secondly, the nj—spectrum reaching the plasma core is limited from above by electron
Landau damping. Obviously, the field pattern cannot possess features with a spatial
scale along B, finer than the minimum parallel wavelength not yet absorbed.

2.6 - Toroidal effects. Throughout the preceding discussion, it has been tacitly
assumed that k) is constant during the propagation of LI waves. In a tokamak, this
is only approximately true; instead, because of axisymmetry, the field can be Fourier
analysed in ¢ (toroidal angle), and the constant component of the wavevector is the

toroidal wavenumber ng. When the poloidal static magnetic field is taken into account,

ng Bg
ky = 7 -E;kg (2.26)

kg is essentially zero at the antenna, but needs not to remain zero in the plasma because
of refraction.
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The effects of toroidal geometry on the propagation of LH waves can be investigated

by taking advantage of their short wavelength. This justifies the Eikonal Ansatz [23]-[24]
(for a review, cfr. [25]):

E(7,t) = E,(7,1)e!SFt)-wt) (2.27)

The phase S(7,t) is supposed to vary on a scale much faster than the amplitude and
the equilibrium quantities, and defines the local wavenumber through

F=VS$S (2.28)

When (2.27) is substituted into Maxwell equations, to lowest order in the geometric optic
expansion one finds that k¥ must satisfy the Dispersion Relation H (E,w) = 0, which is
thereby interpreted as a non-linear first-order partial differential equation for S(7,1);
its characteristics are the rays of geometric optics. The integration of the corresponding
system of ordinary differential equations (Ray Tracing)

OF11 L Ol O - 1w g pp : = 0H
6S_D oL BS__D 57 with D=k i (2.29)

provides direct insight into the field pattern. From the next order in the expansion one

obtains an equation for the propagation of power along the rays.

One should not overlook the fact, however, that the field radiated by a slow wave
structure is necessarily dominated by diffraction. The way out of this difficulty is to
exploit axisymmetry to Fourier-decompose the total field in the toroidal direction, and
to apply Ray Tracing separately to each partial wave. In addition, the power transport
equation can then be integrated along each ray, with initial conditions given by the

theory of the antenna; in this way power deposition profiles can be easily evaluated.

The example shown in Fig. 10-11 illustrates the tendency of refraction to reduce
the value of k| with respect to the initial value at the antenna: this effect is negligible
at low densities (w? /wﬁe < 0.1), but increases the severity of the accessibility condition
at intermediate and high densities. In Fig. 10 the central ray is followed for different
initial values of n): for large n)| all rays tend to follow the same path, as predicted by
the electrostatic approximation, while waves with lower values of n|| penetrate more
slowly. This makes visible in toroidal geometry the behaviour already discussed in the
slab approximation. Because of the toroidal downshift in n), a relatively broad portion
of the spectrum penetrates almost to the plasma center without appreciable absorption,
and is reflected before reaching the magnetic axis by “whispering gallery” phenomenon

[24]. When the outgoing wave is reflected once again from the plasma surface and
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propagates again inward, there is then a finite probability that its n undergoes a rapid
upshift. With a quantitative investigation Bonoli [26] has suggested that this effect
could fill the gap in phase velocities, and explain the already discussed Current Drive

paradox.

2.7 - Conclusions. LH waves have very attractive features as far as generation and
coupling is concerned, and have proved to be the best candidate for h.f. current drive.
They are however truly “collective” plasma waves, i.e. their properties are quite different
from those of h.f. waves in vacuum or in ordinary dielectrics. As a consequence of the
strong electric fields along resonance cones, and of the long path they must travel to
reach the plasma core, they are very sensitive to changes in the plasma parameters,
and to depletion by parasitic effects which are not easy to identify and understand
theoretically. While at low densities these effects seem to contribute to the success of
Current Drive by broadening the kjj—spectrum, at higher densities they make penetration
problematic. This must be taken into account when evaluating the reactor prospects of

LI waves.

3 - ION CYCLOTRON RESONANCE HEATING.

3.1 - Heating mechanism. In its simplest form, Ion Cyclotron Resonance Heating
exploits the secular acceleration of ions by the left-hand circular component of E when

the resonance condition

w = ko = e (3.1)

is satisfied. An appreciable number of ions will simultaneously satisfy this condition if
w— Qe

=0 3.2

10 (1) (3.2)

Taking into account the horizontal variation of the magnetic field strength in a tokamak,
this defines a vertical layer around the cyclotron resonance w = Q,;, of width

M p (3.3)

0
C

The phase € between E, and the gyration velocity of an ion moving along a magnetic
field line is stationary at the point where condition (3.1) is satisfied. If the parallel
velocity is sufficiently large so that the parallel acceleration ji - VB can be neglected, it
is not difficult to show that the resonance duration (the time during which [{| S 7/2) is

TR%q A2
i (QC,'TI’U" sin 9|) (34)
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(The horizontal projection of the path of a single ion during the resonance time, AR ~
(1rr|v|| sin HI/Q,,.,-q) 1/2’ should not be confused with the region of strongest damping
defined by Eq. (3.2)). During this time the perpendicular velocity of the ion changes

1/2
ZeEy e, 2mR%q ) ‘
IU'L 4 i 3 (T‘Qﬂ'l'v" sin 9| (35)

from v, to

Here r, 6 are polar coordinates in the poloidal cross-section, R is the distance from the
vertical axis, and ¢ = rBy/RBy the safety factor; £, is the phase at some reference
point along the ion trajectory. Averaging over £, and taking into account that there
are two resonances per connection length 2wrgR, one obtains an estimate of the rate of

increase of the ion perpendicular energy K, namely

dK, Z%e%R ;
S
dt m; Q7| sin 0|

(3.6)

(for obvious geometrical reasons this estimate does not hold on the magnetic axis and
when the magnetic surface is just tangent to the resonance; this however concerns a

very small number of particles).

Under usual conditions, the fractional energy change of an ion at each crossing of
the resonance is small; moreover it is reasonable to expect phase correlations between
the waves and the ion to be destroyed (by collision and/or by the simultaneous presence
of a broad spectrum of waves with different k) in a time much shorter than the time
of flight between two passages through resonance. Under these conditions, heating can
be described as a hf-driven diffusion in velocity space. The long—term evolution of the

ion distribution function obeys an equation of the quasilinear type [27]:

dfy. 1 8 0f; ofi
dt vy fuy (UJ’DQL 8'01_) * ( at )co” it
where P 1 dK
£ 'UJ_ e AL
Dor =73 >€u T om; dt oy

and the last term is the Fokker-Planck collision operator.

The fundamental cyclotron resonance however cannot be made into a working ICRH
method for tokamak plasmas without some refinement. As we will see in the next
section, the natural way to perform ICRH in axisymmetric toroidal geometry is by
launching the Fast Wave, Eq. (1.15), which in this frequency range is also known as

the compressional Alfvén wave. This name comes from ideal MHD, which is a valid
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description of HF waves in the limit w/Q, — 0. Its use here is however perfectly
justified, since the properties of the fast wave are little influenced by finite w /i effects.
In particular, its perpendicular index (1.15) remains finite and well behaved at the
cyclotron resonance itself: L and S diverge together, so that
Jlim (n})r = —2(nf - ) (39)
How this is possible can be understood by inspection of the wave polarisation, which
with good accuracy is given by
2
E, _m—&
E_ nﬁ - L
It follows that for kj = 0 the left-handed component E, vanishes at the cyclotron

(3.10)

resonance, I — 00, so that the resonant ion current (4r/w)Jy = LE, remains finite.
In other words, the resonant response of the ions completely screens the component of
the field which would be absorbed.

In practice, k| is not zero: a finite length antenna always excites a relatively broad
k; spectrum (cfr. below), even if centered at kj = 0. For finite kj, L does not
actually diverge at w = Q, but in the resonance region is nevertheless very large,
L >~ (w2 /Q%)(w/kyvins) >> 1. The fractional absorption through the resonance layer
(3.8) can then be estimated by integrating the power balance equation

dP,
dz

1 2
= 871_Im(.i_',)|E+| (3.11)

across this layer, with Im(L) = ﬁ(wg,-/ﬂf,-)xoe'wf. Taking into account that the
incident flux is
¢
P g;mlEyF (3.12)

and using the above estimates for the polarisation, it is not difficult to obtain:

APy w Wpi SN
7= (5) (Q—z) i (313)

Because of the very small factor nﬁvfm /c?, the efficiency of fundamental ICRH in a
single species plasma using the fast wave is expected to be uninterestingly low.

The simplest way to overcome this difficulty is to heat at a frequency equal twice
the cyclotron frequency (we will call this frequency the first harmonic; in the american

literature, however, it is often called second harmonic). First harmonic heating is a
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finite Larmor radius effect. Indeed, when w = 2Q,;, the sign of E 1 - vy changes twice
per cyclotron orbit; in a spatially homogeneous electric field the energy gained during
half of the gyration period would be lost during the other half, with no net effect. If the
wave has a finite perpendicular wavelength, however, the field seen in the two halves
of the Larmor orbit is different, and cancellation is incomplete. From the equations of

motion one easily obtains for the heating rate of a single particle

dK Z%*R 2 v}
2

~ e 14
dt m.-Qc,-r|sin6|| + nLe (5-19)

while the fractional absorption through the resonance layer can be estimated to be

2\ 1/2
A% . (2r) (22) 2 Vb
Thus the efficiency of first harmonic heating will be about k3 / kl2l times larger than that

of fundamental heating. From the FW dispersion relation ki/klgl o~ ‘-‘-’3;‘/ Q2 ~ 30 to

50; this factor is large enough to make first harmonic ICRH attractive. A favorable

(3.15)

feature is moreover the fact that the efficiency is predicted to increase with increasing

ion density and temperature,

When first harmonic ICRH heating was first attempted in small and relatively cool
deuterium plasmas, the observed heating rate was even considerably higher than ex-
pected theoretically [28]. This was soon attributed [29] to the presence of a small
fraction of HT ions, whose fundamental resonance coincides with the first harmonic of
the majority DT species. At low concentration, the H ions cannot screen the £ com-
ponent efficiently, so that the wave polarisation is determined by the majority. Then
the minority species can then be heated with very high efficiency. Minority heating has
since become the most popular I[CRH scheme. The coincidence between the minority
fundamental and the majority first harmonic is not a necessity: thus minority heating
of Heg"*' in Ht or Dt has been successfully attempted, and can be even more efficient
than H* in Deuterium [30].

ICRH tends to produce suprathermal ions with large perpendicular energy. This
can be qualitatively understood by observing that according to Eqgs. (3.6) and (3.14),
the quasilinear diffusion coefficient (3.7) does not decrease (in the case of first harmonic
heating it even increases) at large velocities. In the minority case moreover the power
available per minority ion can be very large, so that they can reach quite high energies
before thermalising it on the majority and on the electrons. Approximate expressions

for the ion distribution functions under these conditions have been obtained by Stix
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[31] by solving Eq. (3.7); they appear to be in excellent agreement with experimental
charge exchange measurements. In some ICRH scenarios the presence of non negligible
populations of suprathermal ions can be exploited to enhance the yeld of thermonuclear

reactions.

Before turning to propagation and coupling, let us make a last comment about
electron heating in the IC frequency range. The k|| spectrum of usual antennas is broad
enough so that the Cerenkov condition w/kyvine S 1 is easily satisfied in the plasma

core. Nevertheless electron Landau damping is always negligible, since E, is far too

E, n|ny Me 32
—_—= = — B |
E_-;,- nﬁ_ - P 0 (m,) (3 6)

(in this frequency range, electron Landau damping is negligible also for Bernstein waves,

small:

cfr. section 3.4). The Fast wave however can be damped by electron Transit Time,
which is similar to Landau damping, except for the fact that it is driven by the - VB
force, rather than by E,. In Eq. (1.9) electron Transit Time is decribed by the FLR
contribution of the electrons to €4 :

vy*
dFy

w2 2 o w 2
2| =6 (), 1B = ke e e @ g (ga)

e 8w 8w Q2, 2 kyvene

Being a finite Larmor radius effect, its efficiency increases with #: in a medium-size

tokamak it is negligible as long as T, is lower than 3 to 5 keV, but in a reactor plasma
it could account for a sizable fraction of the total absorbed power (< 50 %), at the
expenses of ion heating.

3.2 - Ion—ion Resonances and Cut-offs. Eq. (1.15) is the exact form of the cold
plasma dispersion relation in the limit of zero electron inertia (=P = O((m;/m.)?) —
0). In a single species plasma, L and S are both positive if w < Q. and negative if
w > {2¢;, and change sign only at the common singularity w = Q.;, so that n? )p remains
regular. This is possible because, as already mentioned, E; — 0 so that J, remains
finite. The oscillating magnetic field is parallel to the static one, whence the name of
compressional wave. R is always positive, so that waves with nﬁ > 1 are evanecent

below a density such w;/QZ =~ nf.

In multispecies plasmas, S and L have a zero between each pair of cyclotron fre-
quencies. The quantitative investigation of minority heating must therefore take into

account the existence of a perpendicular resonance [3],

n? — oo where nﬁ =15 (3.18)
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and an associated cut—off

pl =0 where nﬁ =1L (3.19)

2

separated by a layer of evanescence. Since nj << wgi /Q2

%;, these conditions can in
practice be assimilated to S = 0 and L = 0 respectively; this allows to derive simple
formulas for the position of the wave resonance and cut—off. Denoting with indexes M

and m the majority and minority species, respectively, one finds:

i) _ 1+ Zmvm (%ﬁf*l) 1, (ZM/AM _ Zm[Am
s

-1~ ) (3.20)
R, Lt Zvm (Z2442 1) 2 Zm/Am  Zy/Am
& ImfAm )
— = IV | ————— -1 3.21

where A;, Z; are the mass and charge numbers, and v; = n;/n. the concentrations; z is
the horizontal distance from the position of the cyclotron resonance of the minority, R,.
Both the resonance and the cut—off are located between the cyclotron resonances of the
two species, and approach the one of the minority, R,, when the minority concentration
tends to zero; thus they are both on the high magnetic field side if the charge—to—
mass ratio Z/A of the minority is larger than that of the majority (e.g Ht and Hed*
minorities in DF), to the low field side in the opposite case (e.g. He'3*'+ minority in H*);
the cut—off is always to the outside.

When a fast wave is launched towards such a confluence, it will be partly reflected,
partly transmitted, and partly absorbed. In a plane stratified model in which only the
variation of B, in the horizontal direction is taken into account, the cold plasma wave

equations in the resonance region for kj = 0 can be cast in the form (Budden model,

[32])
d2

zs 2 o _
e [(1 - ?) By +nip(1- -x—) Ey =0 (3.22)
where ; .
(nf — Rp)(ni — Lp)
nip=——1I I 3.23
1F (nﬁ = SD) ( )

is the FW perpendicular index of the pure majority plasma. A simple change of variable
transforms this into a Whittaker equation (a particular case of the confluent hypergeo-

metric equation), whose solutions satisfying the appropriate conditions at large distance
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yield the coefficients of transmission and reflection. For a wave incident from the low

magnetic field side one finds
R, =(1—e2m)? Ty =e 2" (3.24)
and for a wave incident from the high magnetic field side
R_=0 T =¢ 21 (3.25)

where 7 is the optical thickness of the evanescence layer, evaluated with the perpendic-

ular index of the FW in the absence of minority ions:

oz [ -
4¢ (nﬁ—SM)3(nﬁ—LM) Q2

Ry, Lar, Sy being the contribution of the majority ions to the corresponding elements
of the cold dielectric tensor. Note that R+ and T4+ do not add up to unity: the missing

power, respectively
Ay =e (1 -2 A_=1—¢2 (3.27)

is interpreted as absorbed, in agreement with the fact that the group velocity tends to
zero near the resonance. Absorption is more efficient for a wave incident from the high

magnetic side, which encounters the resonance first.

Direct cyclotron damping on the minority species can be estimated by integrating
the power balance equation (3.11) over the cyclotron resonance layer, where now the
dominant contribution to the r.h. side,

wgm —z?
Im(L) = \/7_1'971.'0,“6 s (328)
cm
is that of the minority, while the solution of the wave equation is used to relate |E|?
to the incident flux. In this way it is found that

AP, €' qwy (wiy\Y?
P, 1+el (ER) (QﬁM) i (829)

whith

w2\
e~ a (nﬁ 'Z;m) v (3.30)



where & = O(1) depends on Z/A of the two species. AP;/P, is proportional to v, at
very low concentrations (¢ >> 1), and inversely proportional to it in the opposite limit

(e << 1), when screening becomes important again.

When finite electron inertia and/or finite temperature effects are taken into account,
the FW resonance is replaced by confluence with a slower wave. Thus mode conversion
is expected to play a central role also in ICR heating. Eq. (1.21) shows that the nature
of the mode-converted wave depends on the ratio

Po m;
—=0— 3.31
S (me ) ( )
If 3 & me/m; (and even much lower near the IC first harmonic where o is resonantly
large, while S remains finite), the slow wave is the Ion Bernstein wave (1.22). When
this very mild condition is satisfied, the strongly evanescent slow wave n2 = P can be
factorised away by letting —P — oo (zero electron inertia limit), so that the dispersion

relation becomes:

—ond + [(nf = $)+ (nf = R+ (o} — L)p] n} + (nf - R)nf - L) =0 (3.32)

Fig. 13 shows dispersion curves near the ion-ion resonance in the limit kj = 0, for
a few values of the minority concentration. Confluence and cut—off are separated by a
region of evanescence, as in the cold limit, except that its width § X does not shrink to
zero in the limit v,, — 0. 6X and the corresponding optical thickness (defined again
using the refractive index of the Fast Wave in the limit of cold majority alone) can be

can be estimated from Eq. (1.21) with suitable approximations. For v = 0 one finds:

56X rw_ (wip\?
_— 4\/3- = ""‘"‘Ro( P ) 3.33

As soon as vg & fBp, on the other hand, §X is determined mainly by the minority ions,
and includes, in addition to the zone where the two roots are complex conjugate, also

the region extending to the L = 0 cut—off:

6X 33 vy \ /2 W w,"jp)”z
_ = 0 D 34
R 202 VH(BD) T g e \ gy (3-34)

A quantitative evaluation of mode conversion requires the solution of a wave equation
taking into account the finite temperature corrections just discussed. The differential

form of these additional terms cannot be determined unambiguously with elementary
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considerations, however, and has been obtained only relatively recently by Swanson [34]
and by Colestock and Kashuba [35] by expanding in powers of the ion Larmor radius the
solution of Vlasov equation in a non—uniform magnetic field. The finite Larmor radius
(FLR) wave equation thus obtained has been solved analytically in a few limiting cases
(pure first harmonic heating, and v, > B, both with ky = 0, [36]), and numerically.
The results suggest that for small kj Eqgs. (3.24-27) still hold, if n >~ np + ng, and
A4 is interpreted as the fraction of power which is mode converted to the IBW. This
power is thought to be finally damped on the electrons; this is not predicted by the
linear theory (cfr. below), but is in agreement with the direct electron heating seen in

the experiments under conditions of efficient mode conversion.

At large values of k)| the dispersion curves are modified by cyclotron damping, as
shown in Fig. 14. If the width of the absorption region extends to the evanescence
region, the confluence is washed out, and the efficiency of mode conversion is drastically

reduced. The critical value of k| can be obtained by comparing (Az)ge, with zg:

v
Igle="7 = Bp (3.35)

in the case of first harmonic heating, and

UVthH

3
|n[||¢ o ng (3.36)

in the case of minority heating. The last equation is often used, for a given n), to de-
fine a critical H* concentration below which absorption will be dominated by cyclotron
damping on the minority ions (“minority” regime); above this critical concentration on
the other hand mode conversion will be predominant (“mode conversion” regime). The
best absorption occurs always well in the minority regime. In practice however the con-
centration is fixed, while the kj—spectrum excited is broad: conditions (3.31) should be
interpreted as separating the low k) part which is predominantly mode-converted, from
the large k|| part which is mostly absorbed directly by cyclotron damping. The relative
weight of the two damping mechanisms can be influenced by shaping the spectrum (cfr.
below).

In scenarios where the cyclotron resonance of the minority ions does not coincide
with the first harmonic of the majority, the details of the dispersion curves near the
associated ion—ion resonance are more complicated. In this case FLR terms are not
resonant, hence much smaller than in the Ht in Dt case. Whether FLR or finite

electron inertia corrections are more important depends then on wether g is larger or
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smaller than m./m;. In tokamaks, the former is usually the case, so that one would
again predict confluence with the pressure-driven wave (1.22), rather than with the cold
lon cyclotron wave (1.16). However, the wavelength predicted by (1.22) are so short that
the condition k; p; << 1 is violated: under this condition Eq. (1.22) itself is no more
reliable, and one should solve the complete hot—plasma dispersion relation. Moreover,
one can argue that in this case the poloidal component of the static magnetic field could
also play a role.

In practice however this discussion is pointless. Because of the smallness of the FLR
corrections, the resonance of the fast wave is so sharp that residual cyclotron damping
by the minority ions, or even the very weak collisional damping, is sufficient to wash
out completely the confluence. Ion-ion resonances of this kind (which we propose to
call “non—degenerate”) are to all purpose really cold plasma resonances, as described by
the Budden model. Examples of “exact” dispersion curves for the case of He ™ in Ht
are shown in Fig. 15. The electric field pattern in the vicinity of £ = zg obtained by
solving the FLR wave equations numerically is dominated by the logarithmic singularity

associated with the wave resonance.

Let us finally exhamine in some more details the properties of the slow cold plasma
wave in the IC frequency domain. Taking into account that |P| is m;/m. times larger
than the other elements of the dielectric tensor, the only possibility to satisfy Eq. (1.16)
is to choose nﬁ so that

n2| =9 (3-37)

In the MHD limit, this is the dispersion relation of the shear Alfvén wave. In the ion
cyclotron range this wave is known as the ion cyclotron wave, and suffers a parallel
resonance, k| — oo as the frequency approaches Q. Thus it can be excited only at
magnetic fields higher than the resonant value, and the launcing structure must impose
a very short parallel wavelength to match (3.37). These properties have been exploited
in the well-known magnetic beach concept by Stix [37]. In a tokamak however there is
no possibility of launching this wave from the outside.

When (3.37) is not satisfied, the dispersion relation of the slow wave reduces to
nie=p (3.38)

Under normal conditions (w/kjjvihe >> 1), this represents an evanescent wave with
extremely short evanescence length. For most purposes, as already mentioned, it can

be factorised away from the dispersion relation by letting m./m; — 0. In this limit,
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the plasma is a perfect conductor along magnetic field lines, as in ideal MHD. At the
plasma-vacuum boundary, the evanescent wave (3.38) is then replaced by image surface
currents which screen any h.f. poloidal magnetic field from the plasma interior. To
avoid dissipation associated with these surface currents, the parallel component of the
electric field in vacuum is often suppresseded using an anisotropic Faraday screen, made
of conducting rods aligned with the static magnetic field. If the condition w/kjvine sd
is satisfied, the slow wave becomes again propagative, but is then heavily damped on
the electrons. This situation is however unlikely to occur in the cool outer layers of the
plasma.

3.3 - Fast Wave coupling. The natural candidate to implement ICRH in tokamaks is
clearly the fast wave. Let us now consider its coupling and propagation from the plasma
perifery to the absorption region. To launch this wave, an oscillating magnetic field
parallel to the static one must be excited. The most convenient launching structure is
therefore a metallic antenna, oriented so that the current flows in the poloidal direction.
Using multiple loop antennas and phasing the single conductors, spectral shaping can
be achieved.

If for simplicity the antenna is considered infinitely long in the poloidal direction,
the power per unit area radiated on the partial wave with toroidal wavenumber ng can
be written as [38]

E sinh? vy (w — a) Re{Y (ny)}

P(ng) = Cte - |J(ny)
(ne) (ng cosh® v, w |v2 — iY (ng) tanh Vmw|2

(3.39)

Here J(ny) is the toroidal Fourier transform of the antenna current, and Y(ng) the

surface admittance of the plasma, defined as

Y (ng) = 22 (3.40)
B,y

for the wave with parallel wavenumber k| =~ ng/R satisfying the outward radiation
condition at high density (here it is assumed that corrections to kj due to the poloidal
magnetic field of the tokamak can be neglected in the near field region). The other
factors take into account propagation in vacuum (the antenna is at a distance a, the
metallic wall at a distance w from the plasma surface); vZ = nﬁ —1 is supposed positive,
i.e. (3.39) is written for a wave evanescent in vacuum. Summing over ny and dividing
by the square of the total current I, flowing in the antenna one obtains the radiation

resistance per unit length in the poloidal direction.
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The surface admittance Y (ng) must be evaluated numerically. The main properties
of Eq. (3.39) can however be easily understood by noting first of all that the width w, of
the conductors (10 to 30 cm) is necessarily much smaller than the vacuum wavelength;
as a consequence, the factor |J(ng)|? is very broad, its main peak extending to values
of ng corresponding to n| =~ c¢/ww, > 1. The waves must however first tunnel to
the cut—off R = nﬁ: this filters out effectively waves whith too large n, for which the
evanescence layer in vacuum and at the plasma periphery is optically thick. Typical
spectra for a two conductor antenna in the symmetric and antisymmetric configuration

respectively are shown in Fig. 16 and 17.

The fact that the width of the radiated spectrum is determined partly by tunnel-
ing rather than by the antenna geometry alone has important consequences. First, to
achieve a good radiation resistance the antenna should be as wide as compatible with
the available access, and must be placed as close as possible to the plasma. The decrease
of loading when the plasma moves away from the antenna is well-known to experimen-
talists. Secondly, the flexibility of spectral shaping is somewhat restricted: indeed, one
cannot hope to achieve fine tuning of the spectrum with a coupling structure much
shorter than one wavelength. In particular, an antisymmetric antenna often has an
appreciably lower radiation resistance than a symmetric one: to locate the maximum of
|7(ng)|? within the domain of good tunneling requires rather broad conductors, which
can be used only in devices with wide access ports.

Although predicting a loading resistance in reasonable agrement with the measured
one, the above model of IC antennas is very rough. In the first place, one has to take
into account that the antenna has a finite length in the poloidal direction, which is
again usually small compared to the wavelength in vacuum. For this purpose, it is
necessary to know the poloidal distribution of the current in the antenna. The usual
method consists in treating each antenna conductor as a piece of transmission line, with
appropriate boundary conditions at feeders and shorts [39]. In principle however the
antenna current should be evaluated self-consistently: an elegant variational method
for this purpose has been developed by Teilhaber and Jacquinot [40].

In the second place, the definition (3.40) of the surface impedance assumes that once
the wave has reached a density sufficient for the validity of the WKB approximation it
is never reflected back again towards the antenna. This requires a strong single transit
absorption, which is by no means always guaranteed. If damping is weak, reflection
from the opposite wall (or in the mode conversion regime, from the cut—off associated

to the ion—ion resonance) gives rise to standing waves. The plasma filled vessel can
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then be regarded as a cavity, possessing eigenmodes with a relatively large quality
factor. Under these conditions, the level of excitation of individual ng modes by the
antenna will depend on how well they match one of the possible eigenmodes. The power
spectrum, which can be evaluated only by solving the wave equations through the whole
plasma numerically, has then a typical line structure (Fig. 18). Note however that its
overall width is unchanged: as a consequence several eigenmodes can be simultaneously
excited. If the plasma parameters vary slightly, the corresponding peaks in the spectrum
will just move around a little, without sharp effects on the global loading. Nevertheless
a scan of the radiation resistance versus static magnetic field (Fig. 19) shows that
loading peaks occur when an eigenmode corresponds to values of n|| close to unity. The
reality of these loading resonances has recently been confirmed in JET. The results of
Figs. 16-19 have been obtained with a Finite Element code which solves the FLR wave
equations in a plane stratified model of the tokamak, in which curvature and shear are
neglected.

3.4 - Heating with Bernstein waves. Direct launching of Bernstein waves has been
proposed as a viable alternative to fast wave launching, and has been successfully tested
in several moderate power experiments. Here we will comment very briefly on this
heating scheme (for a review, cfr. [41]).

Bernstein waves are hot plasma waves associated with the harmonics of the ion
cyclotron frequency. Because of their large perpendicular index, their properties are
usually investigated in the electrostatic approximation, €;on? +e¢, znﬁ = 0 (cfr. Eq. 1.8).
Expanding the full dispersion relation in powers of n72 shows however that the first
electromagnetic corrections cancel the last term, so that the correct dispersion relation
is simply [42]:

w?
n=—oo

+oo 2
Wy 4 n -
1m0 2y Tea)e™ (e Zlan)) =0 (3.41)
j

The lowest IBW has already been discussed at length above in connection with mode
conversion; higher order BWs are of correspondingly higher order in k% v2,,/Q2.

According to Eq. (3.41), Bernstein waves are subject to strong ion cyclotron damp-
ing in the vicinity of ion cyclotron harmonics. On the other hand, the parallel electric
field is much smaller than predicted by the electrostatic approximation; as a conse-
quence damping of BW by the electrons is very weak, since neither Transit Time nor

Landau absorption can occur to lowest order. This allows good penetration even in
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high temperature plasmas. In the experiments, absorption by ions appears to take
place also near half-harmonics of the cyclotron frequency [43], [44]: this is attributed
to parametric decay processes, or possibly to stochastic ion heating.

An advantage of IBWH is that in sufficiently large devices BW waves could also be
launched with waveguides (at least two are needed to produce an antisymmetric spectre,
cfr. below). A complete theory of coupling to BW exists however only for the lowest
one, for which the FLR wave equations derived in [34]-[35] can be used [42]. To launch
this wave with a metallic antenna, the conductors must be oriented so that the current
flows parallel to the static magnetic field. This immediately shows that to achieve good
coupling the plasma density in the vicinity of the antenna should be low, otherwise
this current will be competely screened by currents on the surface of the plasma (in
practice, a density not exceeding a few times 10! cm™ is adequate). On the other
hand the loading resistance will not drop dramatically if the plasma shifts away from
the antenna. Secondly, since coupling is ensured by E,, which is proportional to k (crf.
Eq. (3.16), which is valid also for these waves), the antenna must be antisymmetric:
e.g. a T-antenna with feeder at the center and with shorts at the ends, or two guides
excited in opposition. Finally, although the lowest BW exists throughout the frequency
range between Q.; and 2Q.;, good loading is found only when the first harmonic is just
behind the antenna (Fig. 20), so that the difference between the wavelength in vacuum
and in the plasma is not extremely large. The need to match the applied frequency to
the edge magnetic field limits somewhat the flexibility of IBW antennas.

3.5 - Global solutions of the wave equations in Tokamaks. The effects of toroidicity
on the propagation of h.f. waves in the IC frequency range are even more important
than in the LH case. Ray Tracing has been used also in this domain [25]: although it is
only justified in very large plasmas (JET or bigger), it is fast, and can easily deal with
general equilibria (non-circular, high 3, etc). Coupled with a fast code evaluating the
antenna, and with a one-dimensional treatment of mode conversion and absorption in
the resonance regions, Ray Tracing provides a rapid and reliable estimate of first transit
absorption. This also immediately points out its main limitation, namely its inability to
give a complete picture of what happens when absorption is weak and global eigenmodes

are excited.

The numeric solution of Maxwell equations in tokamak geometry is a difficult prob-
lem for two reasons. First, because of parallel dispersion (of which cyclotron damping

is a consequence) the the h.f. current is a non-local function of the wave electric field.
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Since the tokamak does not posses translational symmetry along magnetic field lines, it
is not possible to transform this integral relation into an algebraic one using a Fourier
transformation, as in slab geometry. As a consequence, one has to solve a system of
integro—differential equations. Secondly, the need to resolve short wavelength Bernstein

waves puts extremely severe requirements on the mesh to be used.

The first attempts to global numerical solutions where based on the cold plasma
approximation, and used suitably enhanced collisions to smooth the singularities at
ion—ion resonances (for a review, cfr [46]). This procedure of course eliminates mode
conversion and cyclotron damping. The first hot plasma codes neglected the poloidal
magnetic field [47], or made use of a method known as “order reduction” to take into
account FLR effects on the Fast Wave (including depletion by mode conversion), while
eliminating the short wavelength BW from the solution [48]. Both these approaches
avoid the difficulties mentioned above. While the cold model is too crude to be really
useful, and can be even misleading, the “mode reduction” approach is likely to give

excellent results.

A code which solves the full integro—differential FLR wave equations in tokamak
geometry (although only with circular cross—section) has recently been developed by
Kriicken and myself [49]. To cope with the integral operators of the constitutive relation,
we have used a semispectral approach, expanding the solution in poloidal Fourier modes,
and using cubic Hermite Finite elements in the radial direction. Poloidal modes are not
even approximately eigenmodes, so that a large number is needed to ensure convergence.
This unfortunately puts an upper limit to the size of the plasma which can be simulated:
when BW are excited, ASDEX is close to this limit. On the other hand convergence is

robust, and BW can nicely be resolved.

A global code of this kind requires large amounts of computer time, and is therefore
hardly suited for parameter studies: its natural use is to test the validity of our ideas
about mode conversion and absorption, and to benchmark simpler models such as Ray
Tracing, or the plane-stratified code mentioned above. Two examples of such a com-
parison is given in Fig. 21, showing the ng—power spectrum coupled in the case of first
harmonic heating of Deuterium and in the case of 5 % H* minority heating in ASDEX.
The former is a weak single-pass absorption scenario: both codes predict the excitation
of eigenmodes. In the second case the temperature was taken to be higher because the
plasma was pre-heated by neytral beam injrction; single pass absorption is therefore

large, and eigenmodes are not excited. In view of the different geometry, agreement is
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surprisingly good. In the high absorption case, Ray Tracing can also be quantitatively
trusted (fig. 22).

The most significant discrepancies between the one-dimensional and fully toroidal
simulations concern, not astonishingly, the behaviour of Bernstein waves: the efficiency
of mode conversion is considerably reduced by toroidicity. This can be easily understood
by noting that the integral operators describing parallel dispersion are in this respect
equivalent to a quite strong broadening of the k—spectrum. Thus even the ngy = 0
toroidal mode, which in the slab limit has kj = 0 and is strictly in the mode—conversion
regime, in toroidal geometry suffers severe cyclotron damping. Not foreseen was the fact
that BW are found to propagate away from the mode conversion layer with essentially
vertical wavefronts (Fig. 23). As expected, they are rather weakly damped by the
electrons, so that it has proved necessary to introduce an ‘ad—hoc” damping where
their wavelength becomes comparable with the ion Larmor radius: otherwise they are
finally damped numerically, making it impossible to check the global power balance.
Although such ad-hoc damping lacks theoretical justification, it is a fair phenomenologic
description of what is observed experimentally.

3.6 - Conclusions. ICRH has proved very successful, and there is every reason to
believe that it will remain so in reactor-grade plasmas. The status of ICRI theory
can be considered satisfactory: the basic mechanisms of coupling, propagation and
absorption are well understood, and modeling has recently improved to the point of
including also fine effects such as the influence of toroidicity on mode conversion. Among
the points which require further investigation, we can mention the details of absorption
of Bernstein waves, the effects of ICR heating on particle and energy lifetimes, the
mechanisms of impurity production during high power experiments, and more generally
the interactions of the h.f. fields with the scrape—off plasma. Not clear is also whether
current drive is possible at these frequencies with sufficient efficiency.
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FIGURE CAPTIONS.

Fig. 1 - Exact dispersion curves near the LTP (in the electrostatic approximation).
Deuterium plasma, n) = 1.8.

Fig. 2 - Sketch of the ion resonance with a LH wave propagating in the z—direction.

Fig. 3 - Diffusion coefficient for Stochastic Ion Heating by a plane LH wave.

Fig. 4 - Damping a LH wave by perpendicular ion Landau Damping, as a function
of applied power. The plasma parameters are those of the ASDEX LH experiment [40].

Fig. 5 - Quasilinear plateau formation in thr electron distribution function.

Fig. 6 - Schematic dispersion curves illustrating the accessibility condition (y? =
wz/gcigce).

Fig. 7 - Total energy reflection coefficient in the ASDEX 8-waveguide Grill (f = 1.3
Ghz, b = 2.1 cm) versus A® for a few values of the edge profile parameters (n¢(0), cm™3

and dne/dz),, cm™*, are assumed numerically equal).

Fig. 8 - Total energy reflection coefficient in the ASDEX 8-waveguide Grill at
AP = 90° and A® = 180° versus the edge density, for different values of the edge
density gradient.

Fig. 9 - Power spectra of the Asdex 8-waveguide Grill for different values of A®.

Fig. 10 - Ray tracing: projection of the central rays from the Grill in the poloidal
plane (dots are 5 wavelengths apart) for a typical ASDEX Lower Hybrid case (R =
1.65m, ¢ = 0.4 m; B, = 2.2 T;-n;(0) =6 10 cm7; T:(0) = 0:6ikeV;.T;(0)=-0.55
keV).

Fig. 11 - Ray tracing: evolution of n| along the rays.
Fig. 12 - Ray tracing: evolution of n; along the rays.

Fig. 13 - Dispersion curves near w = 2Q.p for perpendicular propagation in a D-H
plasma (Jet-like parameters: R = 300 cm, B, = 2.7 T, n = 610! ecm™>, T = 2 keV).

Fig. 14 - Dispersion curves near w = 2Q.p in pure D, n| = 3.
Fig. 15 - Dispersion curves near w = Q.pe; 0.5 % Hej T in a Hydrogen plasma.
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Fig. 16 - Power spectrum from a two conductor antenna (widh of each conductor
14 cm, gap 10 cm) in the symmetric configuration, outward radiation conditions at 30
cm from the plasma edge. The parameters are those of the ASDEX ICRH experiment
[45] (f = 33.5 Mhz, 5 % Ht in Dt; Tp(0) =2.2 keV, Ty(0) = 4.4 keV).

Fig. 17 - Power spectrum from the antisymmetric configuration of the same antenna,
outward radiation conditions.

Fig. 18 - Power spectrum for D* first harmonic heating, symmetric configuration,
taking into account reflection from the opposite wall.

Fig. 19 - Magnetic field scan of the 1-dim. FELICE code with reflection at the
inner wall, showing eigenmodes. ASDEX parameters at 67 Mhz (first harmonic of H):
a) Radiation resistance; b) Power balance.

Fig. 20. - Loop antenna launching of IB waves (parameters of the ALCATOR-C
IBWH experiment, [43]). a) Radiation resistance versus magnetic field (w/Q.; = 2 at
the plasma edge when B = 7.18 T). b) fraction radiated into the BW, the FW, or
absorbed in the near—field layer.

Fig. 21 - Power spectrum according to the fully toroidal simulation, compared to
the one predicted by the plane-stratified model. ASDEX, a) first harmonic heating of
Deuterium; b) 5 % H* in D¥.

Fig. 22 - a) Contour lines of E, (horizontal component of the electric field) for the
ng = 2 mode of Fig. 21 a); b) E in the equatorial plane for the same mode, showing
the Bernstein waves to the left of the magnetic axis.

Fig. 23 - a) Countour lines of Im(Ey) for the ny = 16 mode of fig. 21 b); b)
wave—fronts according to ray tracing for the same case.
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