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NEOCLASSICAL IMPURITY TRANSPORT IN THE PRESENCE
OF TOROIDAL AND POLOIDAL ROTATION

W. Feneberg

Abstract

This paper presents an extended theory of neoclassical impurity transport, starting
from the parameters of bulk plasma toroidal and poloidal rotation. Analytic expressi-
ons resulting from the influence of a compressible flow on the perpendicular momentum
balance and on the neoclassical Braginskii parallel viscosity are derived. The predicted

impurity transport is extensively compared with that in earlier papers.




Neoclassical Impurity Transport in the Presence of Toroidal and Poloidal

Rotation

I. Introduction

It is still an open question whether neoclassical theory is able to explain impurity
transport in tokamaks. In particular to understand the impurity accumulation often
observed in experiments, it is necessary to look for hitherto disregarded effects which

could open up the possibility of classical flow reversal.

There have been numerous publications that study neoclassical transport in plasma
discharges for zero toroidal rotation and take into account the influence of inertial

forces arising with rotation in neutral-beam-heated tokamaks.

In addition to earlier work, this investigation presents an extended theory of neoclas-
sical impurity transport valid for all cases of background plasma rotation poloidal as
well as toroidal, whose parameters are considered as given. As will be shown later, the
method of expansion into the inverse aspect ratio € used here restricts us to a toroidal

rotation velocity V; , < Cs, z, where Cg, z is the impurity sound velocity.

Especially the poloidal rotation is an important parameter which could allow classical
flow reversal [1]. Even if one leaves aside the practical questions of how to create a
desired amount of poloidal rotation in the presence of the strong damping associated

with the inhomogeneity of the toroidal magnetic field, and how to maintain such rota-




tion at all toroidal azimuths, this is still a meaningful investigation owing to the fact

that the background plasma might not strictly adhere to neoclassical theory.

We treat here the case of a two-ion mixture (bulk ions and impurities) where impurities
are taken into account in a trace amount with a concentration a = Z%2-nz/n; < 1 ( 2
and nz being the impurity charge and density, n; the bulk ion density),and so collisions
between impurities of different charges can be neglected as compared to collisions of
impurities with bulk ions. While the impurities are calculated within the collisional
regime, the light ion regime is arbitrary, this being expressed by an additional friction

term depending on the temperature gradient (2.

The parallel viscous force acting on the impurities is determined by the Braginskii
viscous tensor (3], which is used here in the formulation given by Stacey and Sigmar
[4]. The gyro-viscous force is one order of magnitude smaller than the parallel stress
in the wz/vz expansion and is therefore neglected (wz/vz being the impurity gyro

frequency and collision frequency, respectively).

This viscous tensor contains the effect of magnetic pumping and also the contribu-
tion of terms describing a compressible flow, which has hitherto been neglected in the
theory. An important feature of this Braginskii viscosity is that it strongly influen-
ces the poloidal impurity variation, and hence the Pfirsch-Schliter expression for the
transport, by a term of first order in ¢, which is also within the theory of Callen et al.
[5] but was not taken into account in earlier papers [6, 7]. Especially at the transition
from the collisonal to plateau regime, where we fit the viscosity coefficient so that the
average value of the parallel force agrees with that published elsewhere (7], the impu-
rity transport is found to be dominated by the viscosity which depends mainly on the
poloidal rotation velocity. Flow reversal is therefore obtained as a result of viscosity
forces for the case where background ions rotate poloidally in the direction opposite to

the poloidal magnetic field by an amount larger than the bulk ion diamagnetic velocity.

In the same way as carried out by Stacey et al. [7] in the equation for the momentum

balance perpendicular to the magnetic field, the poloidal flow of the impurity ions
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is considered to be compressible. This yields expressions for the impurity transport
which strongly differ from those given by earlier work [6, 8], where this quantity was
treated as a surface function according to a first-order Larmor radius expansion, which
we do not use here. Our calculations deviate from the earlier ones mainly in the region
of high éollisiona.lity, this being a realistic regime for medium and high-Z impurities
under a lot of experimental conditions. The inward drift is found to be a factor of

between two and three as small as in the old approximations based on the assumption

of incompressible flow.

I1. Basic Equations

We start with the impurity momentum equation as given by Braginskii for the colli-

sional regime:

—

nzmz(ﬁz . V)‘?z +VPz+ V. .1—1‘.3," +nzezV‘§ - nzcz(ﬁz X g) =Rz; (1)

In this equation, nz,mz,ez and I_/‘z denote the impurity density, mass, charge and
flow velocity; Pz is the pressure, 7 z,)| the anisotropic parallel Braginskii stress tensor,

¢ the electrostatic potential, and B the magnetic field.

The friction B z,i between impurities and bulk plasma ions depends besides the relative
velocities ff‘z, v corresponding to a shifted Maxwellian distribution on the influence of
the parallel heat flux on the bulk ion distribution function, which stays in an arbitrarily
collisional regime. According to our basic assumption a << 1, the bulk ion distribution

function is the same as calculated for a pure plasma. According to Ref. [2] this yields

’

¢B3 cose) (2)

Rz;= az,.‘(‘?f — Vz — 2b¢e

and ¢ = 1;1.5; —0.75, respectively, in the collisional, plateau and collisionless regimes
of the bulk ions. We have az; = mn,v; z, where m;, n; is the bulk ion density, and

the Braginskii collision frequency v; 7 [3] is defined as
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The unit vector along the magnetic field is b = B /B, and T; = g 18 the gradient of

(3)

Vi, z =

the background ion temperature.

To obtain explicit expressions for the impurity flux and density variation in a flux sur-
face, we specialize to circular cross-section geometry with Bg = B3 R,/R the poloidal
and B, = B, R, /R the toroidal magnetic field, where we use R = R, —rcos ©,Z =

rsin®. (O being the poloidal angle, and r the minor radius of the flux surface)

The system of equations for the impurities terminates with the equation of continuity
V(nsz) =0, (4)

where the source term is neglected, and the ansatz of the temperature Tz is constant

on the magnetic surfaces.

The bulk ion density n; and their temperature T; are regarded as surface quantities
consistently with our ordering into small rotation velocities and small a: From the
equation of quasi-neutrality n, = n; + Znz it is concluded that the influence of the

poloidal impurity variation on the background ions can be neglected for a < 1:

Sn,'/n,' = 6n,/n‘- = %5nz/nz.

In keeping with our concept of assuming the bulk plasma flow as given, we need only

consider two equations for the backbround ions, viz. the equation of continuity

V(nV;) =0 ()
and the radial momentum balance
P! —n;e(E, + (V; x B),) =0, (6)
where E, = —¢/(r) is the radial electric field and the electric potential is a surface
function.
4




The expression for the perpendicular flux 'z =< nzV3z, > is derived as usual from

the toroidal component of the momentum equation (1) as

I'z=-< Rz,;'(p/ZcBe > . (7)

An equivalent relation which gives some insight in the transport mechanism can be
found by combining this eq.(7) with the parallel component of eq. (1), where the flux

can be split into three parts:
Tz=T%" +Tz°+T3. 8)
The first term I'$E is the classical flux
I$E =< azi(Vie — Vze)/ZeB, > (9)
due to the cross field flow Vg x ﬁp in a straight cylinder.

The second term is the so-called neoclassical Pfirsch-Schliiter term arising from the

forces associated with the curvature of the bulk magnetic field:

I‘Zs = - (EVPZ + nzezl_;VqS + nzng(‘?z . V)I}‘z)/zeBe) > (10)

and the last term calculates the direct contribution of the parallel viscosity:

1“5 =— < bV- ?Z,ll /ZeBg > . (11)

The parallel electric field will be neglected in eq. (10) and in the parallel component
of eq. (1). Considering it would introduce into the calculations the inertial term of the
plasma ions, which can be neglected in relation to the inertial term of the impurities,

ordering to heavy ions so that m;/Zmz < 1.

Only the radial electric field therefore enters the perpendicular momentum impurity
balance, where inertial and friction forces are unimportant in relation to the radial

pressure gradient corresponding to our ordering V; , < Cs, z:

Py —nzez(E. + (Vz x B),) = 0. (12).
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Eliminating the radial electric field from egs. (6) and (12), we find the impurity flow
to be always coupled to the bulk plasma ions by

(Vz'q, - Vf,lp) =T fp_l(Vz,e ot V,‘e) = P:/en,-Be r. P'Z/chzBe (13)

(here Vz ,, Vi, is the toroidal component of the velocity, f, = Be/By).

IT1. Ordering into Inverse Aspect Ratio

Analytic expressions for the impurity transport and the poloidal asymmetric distri-
butions of impurity ions are derived in this section. In solving the equations for the
unknown quantities G, where G stands for Vz,,Vz,e,nz, an expansion into the inverse

aspect ratio € was carried out with

G =G°(r)(1 + €G.cosO + €G,3in0). (14)

It will only be necessary to work to first order in ¢, so that R, B=1 — ecos©.

The equation of continuity (4) is treated in the usual way on the assumption that the
flow comes into equilibrium along the magnetic field lines on a time scale much shorter

than it does perpendicularly to field lines, which implies that

RnzVze = Kz(r), ~(15)

where Kz is a surface function.

It is worth noting that this time scale model is not at all trivial: Let us estimate the

radial transport with nzVz, ~ zegpr%ﬁ& and the poloidal impurity rotation V",,;",e
with eq. (16), but for Vie = 0; it is then clear that comparing terms coming from
‘—%(n zVz,) with those from %(n zVz,e) we find the condition to hold for the neglect

of the radial velocity in the continuity equation to be
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Tn%/Zn% > P!/ni,
which means that only cases far away from accumulation equilibrium can be investi-

gated with the simplified model of eq. (15).

To lowest order €° we have, as published elsewhere (8],

Vie =Vz,=0

and (16)

1

o
ch

Vi‘,’e = Vzo,e = (Pf'/"i = P;/Z”Oz)-

To first order in € eq. (13) reads, when the first-order terms of Vz ¢ are computed with
eq. (15),

2 - -
Vie = Vz,p = € cosOf" ( (Pi/ni — PZ|Zn%) + fiz,V3e + —msmiiz,e
eB::, 4 eBPZ
3 T ; (17)
+ GStnefp (Vz’enz,s -+ an,s).

Comparing this expression for the differences in the toroidal velocities with Ref. [8],
we observe, in addition to the first term, terms caused by the c.ompressibility of flow,
which we take into account here. To neglect these quantities arising from the poloidal
density variation is not allowed, because they are of the same order in € and they are
responsible for the existence of neoclassical flow reversal with poloidal rotation, which

is missing if the transport is only calculated with the often used approximation of

incompressibility here.

Unfortunately, the analytical result for the impurity flux now depends nonlinearly on
the difference (P//n;— Pg /Zn%) in the pressure gradients and can no longer be divided

into convective and diffusive components.




In leading order, the averaged flux I'z is €2

eq. (9))

and we have for the classical part (see

2 /
CL o € T P{ P 2 oy *
= — — NeBLV™, 18
) ﬂ"zZev'B;;’( i an)/q 2 (15)
with the definition of a parameter of collisionality
1= —(w,-/u,-,,-)fle"2P;/rPf (19)
and the ion diamagnetic drift velocity
V* = P/[eBn; (20)
(ws is the bulk ion gyro frequency).
The Pfirsch-Schliiter flux I'5S is given by
2 Vo2
PS _ ofT~ Mz¥ie (4 _ 1yro—1
I' zZerB;’,nZ’S (1 g T (1 zfp V‘-tp (Vz,e + S))) (21)

It is this term that depends linearly on the up-down asymmetry and can change sign
with the sign of 2z s. But for this purpose it must dominate over the classical flux,
which makes a minimum of up-down asymmetry necessary. At the plasma edge, where
the parameter of collisionality is 2 < 1, the classical flux always dominates over I'5S

and the viscosity contribution I'}.

It should be mentioned here that in other devices, such as stellarators, the geometry-
dependent flux T'4S might be found to be different from that in tokamaks, e.g. much
smaller when the return currents are minimized, but the inward drift of the classical

term is expected to be always the same.

In order to calculate the viscosity-dependent part '} (eq. 11) of the flux, we worked
with the Braginskii expression in the formulation of Stacey-Sigmar (4) and found the

following expansion in e:




e 2fon 2. 1R
bV- 7z = fonzecoae(Vg,e - ':,:"Z,CVE,G - ——n'z,c)

r2 eB,Z
P P . 2. o T .
—_ —-‘;.—Z—e stne(gnz,svze + mn'z’s) (22)
3fon% & 2. T .
NS #2252 (VZ,B == Enz,cvzo'e —_ ;"ﬁ;‘gnfz‘c)
+Terms of order e?s5in20, e2¢0s20. (22)

We retained one second order €? term, which contributes to the flux, while the periodic
terms with €23:n20 or €2c0s20 would only contribute with ¢* and can therefore be

neglected.

As already mentioned in the introduction, the first order € terms are important for their
strong influence on the poloidal impurity variation and hence on the Pfirsch-Schliiter
flux (eq. 21). The first term proportional to Vze in the equation above describes
the magnetic pumping present when impurities rotate poloidally and is also consistent
with the theory of Callen et al. [5]. But the compressible parts are of the same order,
especially the inside-outside variation 72z ¢, which rapidly grows in the case of toroidal

plasma rotation due to the centrifugal force.

The Braginskii coefficient of viscosity depends on the total collision time 7z ; between
impurities and bulk plasma ions [6] and scales as T%/2. It therefore becomes unreali-
stically large at the transition between the collisional and plateau regimes. For this
reason the viscosity coefficient n% was corrected so that the average value < bV .7 z,| >

for the incompressible term proportional to V2 e in eq. (22) fits to that given by Stacey
et al. [7]:

nz = ng Tz, withy = uf,zeaﬁ/((l +v.,z)(1+ 63/2u.,z)) (23)

and v.,z = vz,iqR,/(vin,ze¥/?).

This expansion of the viscosity (eq. 22) now yields the following result for I'g:
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2€2f n 3 2 = -
R e
e

The final result for the impurity variation is obtained from the parallel component of

the momentum equation (1), the parallel electric field being neglected as previously.

The driving forces for the parallel pressure gradient are friction due to egs. (2) and (17),
the above-treated parallel viscous force due to the first-order € part of eq. (22) and the
inertia, which also was taken fully into account. The poloidal and toroidal zero-order
rotations enter in addition to the perpendicular pressure gradients of bulk plasma ions
and impurities, as two further parameters for defining the solution completely. They
are connected with the background ion flow through eq.(16). As is well known, using

a complete neoclassical model fixes the poloidal rotation at [2]:

Vie = —gT;[eBo;g = 1.7; 0.5; —1.117, (25)

respectively, in the collisional, plateau and banana regimes.

In solving the parallel momentum equation it was necessary, for simplicity,to work with

the ansatz for the radial derivates of the Fourier components:

fizs,clfizs,c ~ng/ng.

After some tedious calculations consisting of collecting all quantities proportional to

3in©, cosO, we got the result for iz s, and nz.c:

nzs = —ﬂ(2aG‘ - 5zU2)/(02C_;2 + 6;—) (26)
and

nzc = —(2aéz + 0°U2G)/(02G? + 63). (27)

The following definitions are used:

_ ¢ Y P PY € 0 Ao .
a5 (eB; (n,- i Zn"z) - eBg,T" = Evz,e)/v ) (28)
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V*=P![eBoni;; 4= e~3/2 (i:—f-) l/2/((1 +v.,z)(1 + Es/zvs,z)) )

5z = (V}le(l-i-g"i) + —e;r;%;%(l—}—%))/v”, (29)
G=1- (v + Vio i) () 2
v? = ((f;v,-f,,, I vg,’e)/(ﬁ—j)- (31)

IV. Discussion of Results and Conclusions

Figure 1 shows the evaluation of the inward drift velocity with the formulas already
given (curve (1)) for a typical ASDEX pellet discharge at a time where accumulation
equilibrium has not been reached (T'n’,,/Zn, , << P!/n;), this condition also applying
to Figs. 2 and 3. The background plasma (peak density n., = 1.5 - 102°m ™3, peak
temperature T, , = 780 €V') is mainly in the plateau region. The dominating metal is
iron. Viscosity effects could be neglected here and the toroidal rotation is zero (V?, =
0), but inertial terms due to the poloidal impurity rotation, which are important for

heavy impurities in smaller devices when

(5) 1(55) > 04+0s,
have been retained. For comparison, we present in curves (2) the result from calcula-
tions with the formulas for the Pfirsch-Schliter lux as published by the TFR group
[9] (solid line), and [8] (dashed line), which are based on the usual neoclassicl Larmor
radius expansion, while the classical flux T'§% to be added to the Pfirsch-Schliiter con-
tribution was calculated according to eq. (18) of this paper. The solid curves result from
the complete neoclassical theory including the V ; T contribution with £ = 1.5; ¢ = 0.5

(see egs. (2) and (28)), whereas this contribution is omitted in the dashed curves.
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The inward drift of the “old” theory is found to be much too high: This effect is due
to a difference in the scaling with the collisionality parameter {1, which in Fig. 1 here

is always in the range {1 < 1. In the theory of Rutherford the flux scales as
PZ ¥ n—l,

while we found

Tz ~0Q/(1+0%+(¢*0)7",

where the last term is the classical flux always dominating in the region {1 << 1. The

predicted flux of curve (1) fits well to the bolometric measurements [10].

Temperature screening has very little effect: In studying cases with lower collisionality
1 > 1, the viscosity entering with the coefficient 7 into egs. (28) and (29) becomes
important, growing to 4 = %(m z/m;)'/? at the transition from the collisional to the
plateau regime, and so always overcomes the 7] term. There is no flow reversal due to

the temperature screening.

The only classical flow reversal we have found is caused by poloidal rotation of the
bulk ions, as shown in the example in Fig. 2: When background ions are at rest
(V,—"’e = o) then the radial electric field acting on the impurities produces a rotation
of the impurities with V7 g = —P//eBg,n; (eq. (16)) in the direction of the poloidal
magnetic field, shifting the impurities downwards so that the coefficient 7z s for up-
down asymmetry becomes negative, which always leads to inward drift (see eq. (21)).
This effect is further increased in the presence of toroidal rotation. On a rotation of
the background plasma with V% = 2P]/eBgn; the impurity rotation is reversed and
the flux is directed outwards. This result shows the importance of neoclassical effects
for understanding impurity transport. When strong plasma rotation is induced by the
momentum transferred by neutral injection, a neoclassical transport is observed to be
highly dominant over the anomalous one. Besides toroidal rotation, we found poloidal
rotation here as a second parameter, which not only influences the asymmetries but
also significantly defines the transport. Inward drifts of impurities as measured in the

burst-free H-mode of ASDEX can be interpreted according to neoclassical theory as

12




an effect of the toroidal rotation velocity in conjunction with poloidal rotation of the
bulk ions that is smaller than the ion diamagnetic drift motion. Under this condition
there is an explosive increase in the central impurity concentration that culminates
in radiation collapse. This result emerges out from calculations éven for co-injection
and seems at first glance, contradictory to that reported in the work of Stacey et al.
[17], who predict that there is always flow reversal with co-injection. We studied these
differences to our work and found that it is due to the ansatz of highly anomalous drag
frequency, which is not introduced into the momentum balance equation presented

here:

The anomalous drag frequency has two important features from which it could be

measured in principle.

Firstly it describes radial momentum loss of impurities and could give rise to a con-
siderable shift between impurity and bulk plasma rotation. With the drag frequency
v4,z defined in the same way as was done by the authors already mentioned, the fol-
lowing relation for the zero-order quantities was found from the parallel momentum
balance neglecting the parallel electric field and the source term, which is small in

relation to the friction forces:

mzld z

o o — o = —
Vie—Vz,=0aVz with a= == TEo

e (32)

In order to explain shifts between impurities and bulk ions of the order of 50 %, one
needs, for values typical of JET or ASDEX, anomalous impurity confinement times
about two orders of magnitudes smaller than the plasma energy confinement time, this

being consistent with the drag frequency values used by Stacey et al. [7].

Secondly, studying the radial momentum balance (eq. (13)) we obtain in zero order

Vie = V2o =—Pify [eniBy + [ (Ve — Vi e)- (33)

From this and eq. (32) we find the interesting result
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Vze =Vie — P![en; By, — Vl'?gofp_la/(]' + a), (34)

from which it is concluded that an anomalous drag frequency produces impurity po-
loidal rotation V¢ = Ve, fo'e/(1 + a) such as is always necessary for outward
drift with co-injection (V;°, > o) or inward drift with counter-injection (V;, < o) in

keeping with our statements on poloidal rotation.

But in H-mode discharges with improved confinement time the anomalous drag fre-
quency is too small to reverse the flux; we therefore did not include this effect in the

theory.

In Fig. 3 we show the calculation for the coefficient 72z,c of the inside-outside asym-
metry in the case of zero toroidal rotation. It is interesting to see poloidal rotation of
bulk ions causing a change in sign here, thus opening the possibility of measuring the

important parameter of poloidal rotation by measuring the inside-outside variation.

In the presence of toroidal rotation such a measurement is not so informative owing to
the fact that the centrifugal force always leads to impurity accumulation on the torus

outside.
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Figure Captions:

Fig. 1:

Fig. 2:

Fig. 3:

Prediction of neoclassical inward drift of iron impurity in a typical ASDEX
pellet discharge.

Curves (1) and (2) refer to calculations presented here and elsewhere [8, 9],
respectively.

Measured temperature and density profiles.

Prediction of neoclassical impurity drift velocity of iron impurity in ASDEX
with toroidal (V;,, = V(1 — p?);p = r/a;V = 10°m/s) and poloidal rota-
tion. Peak temperature T, = 2 keV, peak density n., = 1.5 X 1020 ;3.
Co-injection. Calculation done with freely invented temperature and density

profiles.

Prediction for the inside-outside asymmetry of iron impurity in ASDEX as a

function of poloidal rotation. Temperature and density profiles as in Fig. 2.
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