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ABSTRACT

A finite difference time-dependent algorithm for the steady-state solution of conduction-convection
problems is discussed. The scheme is applied to a boundary layer problem; in the region where
steep gradients occur a higher grid resolution is used. The accumulated mesh is mapped to an
equidistant grid by a suitable space-transformation. A corresponding time-transformation has the

potential to reduce the computational effort.
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1. Introduction

The numerical treatment of boundary layer problems, where in part of the region
steep gradients can occur, usually requires an accumulation of gridpoints. This
paper describes a method for achieving this and discusses a scheme to reduce the

computing time for obtaining the steady state solution.

We adopt as a model the conduction-convection equation for A(y,t), y € [0,1],

2 Ay = %(K(A)% = v(y)‘Z—j +5(y), (1)

with appropriate initial- and boundary-conditions. & , v and S are given functions
of the spatial variable y (or -in the nonlinear case- functions of y and A); all
quantities are assumed to be dimensionless. In particular we are interested in the
steady state solution of eq.(1) for the case v >> k; this limit is known as the

convection dominated case.

The above equation (1) models a variety of physical problems; it constitutes a
general Eulerian description of the diffusive transport of any fluid property A; in
that case « is the diffusion coefficient, v is the flow velocity field by which A is

convected, and S is a source term.

Most previous studies of non-linear cases of eq.(1) have been restricted to non-
linearites in the first derivative term (e.g. v(A)=A leads to Burger’s equation).
We are however interested in the application of eq.(1) to the description of heat
transport in a plasma; in that case A is the temperature, « is the heat conductivity.
Along field lines, in a classical (collision dominated) plasma & is proportional to
A5/ 2. hence we will restrict ourselves in the following to this kind of power non-

linearities in the highest derivative term.

Numerical difficulties arise when convection dominates conduction, since then very
steep gradients can originate. To qualitatively see why, we can compare in eq.(1)
the convective term with the conductive one, by introducing the (mesh) Péclet

number

Convection v x* Ay
Pe = ~

Conduction K
Even in the convection dominated case there nevertheless exists a small space scale

€ ~ & < 1 over which conduction is important. Physically, if v > x > 0, the left




boundary condition is convected through almost all the domain, and the solution
is affected by the right boundary condition only in the region [1 —¢,1]. Depending
also on the boundary conditions imposed to the problem, steeper gradients than
elsewhere in [0,1] can arise in that region, since the curvature of the solution is

relatively large there.

Considering a finite difference approximation of equation (1), and restricting our-
selves for the moment to the linear case, it appears as a result of many investi-
gations, that a key role is played by the way in which the first derivative term is
discretized. One may be faced in this respect with two different practical problems:
either only a reasonable approximation of the hyperbolic part of the solution is
required, then also Pe >> 1 is sufficient, or there is interest in the resolution of the
boundary layer, so that Pe ~ O(1) is required. Furthermore, it is clear that the
steady state of eq.(1) may be found either by directly (or iteratively [1 ]) solving
the steady state equivalent of eq.(1), or by reaching it, letting an initial condition
evolve in time. In the latter case, either explicit or implicit time integration can
be used. The direct solution and the implicit time-evolutionary approach both
require a matrix inversion; they are equivalent as far as the following discussion is

concerned.

When Pe >> 1 the (first order) upwind approximation of the first derivative term
in eq.(1) is reported [2 ]to give a more accurate solution than the (second order)
central difference for the direct approach; and, with the second order upwind a
steady state is reached in a smaller number of iterations than with the central
differences [3 |. Also for the time-dependent approach one would prefer using
upwind differences, since there is a weaker stability constraint [2 Jon the time step

by using upwind than by using central differences.

When Pe ~ 1, on the contrary, the situation reverses and it is advisable to use
central differences: they give more accurate solutions than the (first order) upwind,
do not give rise to spatial oscillations as in case of Pe >> 1, and, they have for
the time-dependent approach a weaker stability constraint than the upwind [2 |.
Higher order upwind schemes are also used [3 |. If a very high accuracy (say
fourth order) is required, then so called compact implicit schemes [4 |have been

developed, which use a computational molecule smaller than the corresponding




standard finite differences. We have chosen to use a weighted central/upwind

scheme, the weight depending on the mesh Péclet number.

It is our purpose to show in the following how to determine a steady state solution
of eq.(1) by using a finite difference method both in time and space, which be

reasonably (second order) accurate, as to resolve the boundary layer, and fast.

1) Provided v(y) and S(y) do not vary on a scale-length comparable with the
mesh interval (cases when this requirement is not satisfied are reported in [3 ]) a
relatively coarse space discretization is sufficient over most of the domain, but the
mesh must then be necessarily non-uniform in order to resolve a layer of thickness
O(e ). A non-uniform grid is not only uncomfortable but usually also lowers
the accuracy of the finite difference formulas. Therefore we choose a suitable
space transformation, described in section 2.1, which maps equation (1) to a new

equation in a transformed coordinate x that can be discretized uniformly.

2) If an explicit scheme is chosen for time integration, the maximum At is

generally constrained - due to stability requirements [6 |- by the minimum Ay; for

instance
Ay? €2
Atma.x A ymm
Kmax Kmax

so that the explicit time integration of eq.(1) can become very expensive when

Y~ % > 1. In section 2.2 we therefore construct a suitable time transformation

K
such that the numerical convergence is speeded up for both the explicit and implicit
time integration scheme, provided that one be only interested in the steady state

solution of eq.(1), and not in reproducing the transient.
In section 3 the numerical schemes and the boundary conditions will be discussed.

After developing the method and checking the results against analytical steady
state solutions for the linear form of eq.(1) the algorithm is applied to two different

non-linear cases (section 4).




2. Space- and Time- Coordinate Transformation

2.1. SPACE TRANSFORMATION

In order to resolve the steep gradients of A(y) arising in the vicinity of a point
Yo, one has to accumulate gridpoints around yg. For instance, in the convection
dominated case of eq.(1) this occurs, for v > 0, near the right boundary (yo &~ 1);
i.e. Ay(y) has to be much smaller near yg = 1 than for the left part of the domain.
To achieve this mesh accumulation, and still have the benefit of an equidistant
grid for the numerical treatment, one can map the non-uniform mesh y to an

equidistant mesh x, ( Ax = const(x)), by
y =y(x)

For the transformation of eq.(1) into the new coordinate frame we express the

derivatives according to

By T F(x) % where  F(x)

The space-transformed eq.(1) then reads

I

1
a_-
%

e} ) AA AA
e A1) =Fo(k(A)F o) = v(x)F 5 + S(x). (2)

In the examples discussed later, we have used the following spatial transformation

1
y(x) = sin(szl)

sin(%x) ;

(A less general transformation (with ¢ = 1) is used e.g. in the NAG routine
DO3PBF [6], devoted to the solution of problems similar to eq.(1).) With our
choice of y(x) we get for the spatial mapping function F(x)
F(x) = sin(%) ]

- (g%r_) cos(szﬂx)'

The particular function y(x) we selected and the corresponding F(x) and Ay(x)
are plotted in fig.1 for some values of the parameter ¢ (fig.1a: ¢ = .25, fig.1b:
¢ = .999).




A space coordinate transformation cannot obviously lead by itself alone to a faster
algorithm. If one would solve (2) explicitely, the formal conservative requirement
on the maximum At allowed would be for an Euler scheme

Ax?

"'maxF?nax

At ~

which can as before result in an unreasonable constraint when ¢ > 1, i.e. when
the layer to be resolved becomes very thin. In that case, as it can be seen in fig.1,

¢ — 1 is required, so that Frax ~ tan(¢7) — oo.




2.2. TIME TRANSFORMATION

When only the steady state solution of eq.(1) is required, a time-transformation
t = t(r) can be employed in order to relax the mentioned constraint on the timestep

At. If we define a new ”"time” coordinate 7 by means of

then the relationship between the corresponding time-derivative operators is

a d
5"{ = G(X)"a";

Applying this time-transformation to eq.(2) leads to the space- and time-

transformed formulation of eq.(1):

G() 5 A7) = Fo-(s(A)F o) ~ v()F 22 + 5(x) 3)

The formal stability condition arising from the diffusion term in case of an explicit

difference scheme is
Ax?

(%)«

If the space-dependent function G(x) is chosen to be

Afd S

G(x) = F*(x),

then the diffusive timestep limit is

2
Ar Ax ,

Kmax

i.e. a factor of F2__ larger than for the original problem eq.(1), or the space-

transformed formulation eq.(2).

The time 7 as a function of x is plotted also in fig.1 for two different values of ¢;
¢ = .25 (fig.1a), ¢ = .999 (fig.1b).




Some remarks concerning the time transformation (3) are due:

e The artificial time 7 depends on x (7(x,t) = G(x) * t), but the timestep Ar
doesn’t (A7 = const(x)) . If we imagine to take a picture of the system after
M artificial time steps, i.e. at 7 = M x Ar, then, because At = At(x) =

G_(IJJAT , one has

t1 =M=« At(l) <<tg=M+x At(O).

The function At vs. x is shown in fig.1 for two different values of ¢.

e The last relation makes clear that marching the system forward in 7, as we
do in the numerical solution, formally corresponds to having the real time
t flowing slower in the region of steep gradients, making it easier for the
system to deal with the stronger transport and mixing there present. This
kind of compensation in some sense evens out the different behaviour of
the solution A for x far away or near to the right boundary, and ultimately
explains why the combination of space- and time-transformation allows both

good resolution and affordable ”time”-stepsize.

e On the other hand it is also clear from the same relation that one cannot use
this time-transformation technique when the details of the time transient are

important, since it is not the true time transient that is being followed.
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3. Methods of Solution and Boundary Conditions

For the solution of the previously described partial differential equations we have

followed several approaches:

e An analytical solution for the stationary, linear case is derived in Appendix
A, and has been used as a check of the numerical solution; the solution for
a very particular non-linear case, to be used with the same purpose, is also

reported in the same Appendix.

e As the basic numerical method of solution, a standard time dependent, Fi-
nite Difference (FD) scheme, described in Appendix B, has been used. The
scheme is second order accurate in space but only first order in time, since
we are only interested in the steady state solution. Both explicit and implicit
time integration has been considered within the so called 6 -scheme. In the
non-linear cases a linearization procedure has been used, also described in

Appendix B.

For the purpose of comparing efficiency and accuracy two other approaches have

been considered:

¢ First and second order Lagrange, and, cubic Hermite Finite Element (FE)
methods, described in Appendix C, to get a solution of the stationary equiva-
lent of eq. (2) using a mesh accumulation according to the mapping function
F(x).

e A Chebyshev Collocation (CC) method, discussed in Appendix D, to solve
eq.(1); this method is particularly suited for problems where high resolution
near the boundary is required, being the Chebyshev mesh "naturally” denser
there.

The specific choice of boundary conditions can have an important role in deter-
mining the features of the solution. We have considered two types of boundary

conditions; first
BOL . #A(y=0)=0, . A(y=1)=AR

have been chosen since they are typically used in the modeling of the scrape-

off layer plasma; in that case the left boundary corresponds to the midplane of
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the tokamak, where a symmetry condition can be imposed, whereas the right
boundary is practically set at the (limiter) divertor plate. However, these BCs
lead to amplitudes of the steady state solution growing exponentially with J%l at
the left boundary, so that the case of very thin boundary layers cannot be treated

conveniently, if an explicit scheme is used.
Therefore in the following discussion we will use Dirichlet conditions:

BC II: A(y =0) = AL, A(y =1) = AR.
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4. Results

A number of different cases has been studied in order to assess the usefulness
of the method described above. The linear, constant coefficients cases are used
to develop the algorithms and compare the results with the stationary analytical

solutions. In all cases the Dirichlet boundary conditions
A(y =0) = AL =2, Alyvs1)=AR=1
have been applied.

4.1. LINEAR CASES:

The steady state FD solutions A(y) and A(x) of eqgs.(2) or (3) respectively, for
v=1, S=1, k = .01, are shown in fig.3 as functions of y and x. The representation
of the solution in terms of x exhibits the smoother form of A(x) due to the spatial
transformation. In fig.4 the solution obtained by the Chebyshev technique is shown

for different numbers of points.

To check the accuracy and convergence of the different approaches, the solutions
of eq.(3), corresponding to a different number of mesh points, are compared with

the analytical solution A,(y) :

AD) = Asly)y.

Brra= max { AaW)

y€[0,1]
This relative deviation from the analytical solution is illustrated in fig.4 for the
Chebyshev method. The convergence (i.e. the maxumum deviation from the
analytical solution) of several FD schemes as Az — 0 is plotted in fig.5a (¢ = 0.1
equidistant grid) and fig.5b (¢ = .999 accumulated mesh). The dotted curves are
obtained from first order upwind differences, the dashed curves are from central
differences. For the weighted scheme (solid lines) a second order convergence is

obtained for both cases ¢ = 0.1 and ¢ = .999.

The absolute improvement of accuracy due to the space-transformation is illus-
trated in fig.6 for several difference schemes: the broken lines are for approximately

equidistant (¢ = 0.1), the solid lines are for ¢ = .999.

Plots of Err vs. Ax are also shown in figs.7a (Lagrange Elements; ¢= .100 solid line;
¢=.999 dashed line; Lagrange FE of second order, ¢ = .999 dotted line) and fig.7b
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(Cubic Hermite Elements), for the solutions obtained using Lagrange and Cubic
Hermite FE respectively. In fig.7c the results are plotted for the case in which
the Chebyshev collocation method is applied. In this last case the remarkable

property of exponential convergence is apparently verified.

4.2, NON-LINEAR CASES:

Two types of nonlinear conduction terms have been studied:

(NL1) w(A)2(2),
and
(NL2) 2 (x(4)%8),

where k(A) = kgA% kg = .00, = %; both cases have been solved using the
implicit scheme. The FD solutions of eq.(3) for these two cases are plotted in
figs.8a,b (NL1) and figs.9a,b (NL2).

In order to check the improvements due to the time transformation, the num-
ber of time-steps necessary to reach the steady state solution is plotted vs. the

(normalized) time-step size in figs.10 and 11, for some different cases:

In fig.10a the results for the case (NL1) are shown; the solid curves represent the
results of the space-transformed eq.(2); the dashed curves demonstrate the gain
in computing effort when the time-transformed scheme (eq.(3)) is employed. The
same result still holds, with a smaller gain, for the case (NL2), as it can be seen

from fig.11a.

When the linearization procedure is applied to the non-linear conduction term,
the same conclusions of the non-linearized case remain valid. The corresponding

results are shown in figs.10b and 11b.
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5. Conclusions

The possibility to reduce the computational effort required to obtain the time
asymptotic, steady state solution of a conduction- convection, boundary layer
problem has been investigated. A space dependent transformation of the time

coordinate is employed to this purpose.

e For the linear problem a substantial advantage in terms of CPU time can
be gained with the time transformation when an explicit difference scheme
is used; not even the time transformed explicit scheme, however, reaches
the effectiveness of either the standard or the time transformed implicit

algorithm, and these two have the same performance.

e For the case when a nonlinear conductive term is considered, the time trans-
formation significantly improves the performance of both the explicit and
the implicit scheme, against their standard counterparts. This gain tends to

grow as the non-linearity increases.

A rather elegant procedure to accumulate meshpoints in regions of steep gradients

by means of a spatial mapping to an equidistant grid has also been documented.
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Appendix A: Analytical Solutions
The time-independent spatial differential equation for A(y), y € [0,1],

) 5) ~ V)G +86) =0

can be solved analytically, if x,v,and,S are const(y). For the homogeneous part

of this equation

KAyy —VvAy =0
the Ansatz A = eV leads to the characteristic equation
(kA2 —vA)eY =0
i.e. the homogeneous solution is:

Apomo(y) = C1+Cze™,  with A=

| <

A particular solution of the inhomogeneous equation can be found as:

S

Apart(y) = oy, with ¢ =i

Hence the general solution (type I) is:

A(y) = Cq + Cqe™ + oy

; d e - VAN .
BCIL yAly=0)=0, A(y =1) = AR;
these boundary conditions lead to the following integration constants:

cl=AR+5:-e)‘—a, cz=—§-.

BCI:  A(y=0)=AL,  A(y=1)=AR;

for these boundary conditions the integration constants are:

_AR—a—ALeA
- 1—e? 2

__AL+o0- AR

C Cy =
1 2 l—e'\




For the special case of v(y)= 0, i.e. kAyy+S = 0, one can integrate by quadrature

and get the solution (type II):

S o
A(Y)—C1—02Y—§EY-

BC I: ad;A(y =0) =0, A(y =1) = AR;

Ci=AR+—, Cqg =0.
2K
BC II: Ay='0) =AlL, Aly="1)="AR:
S
Ci = AL, Co = AL - AR — —.
2K

For the nonlinear equation
(x(A)Ay)y —v(y)Ay +8(y) =0

where x(A) and v(y) may be arbitrary functions (e.g. x(A) = KgA?%), a special

analytical solution can be found by prescribing the source term S(y) as:
8(y) :i= —(k(A)Ay)y + v(y)Ay.
Hence the solution (type III) can be:
A(y) = Ao+ Ay + Agy?,

where for BC II: Aly =0) = AL; A(y="1) =AR; the integration

constants are:
Ag=AL, A;=AL-AR, Aj;=2(AR- AL).
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The time-independent form of (1), in the linear, variable coefficients case reads

(x(y)Ay)y —v(y)Ay +S(y) = 0.

This equation can be reduced to a linear, first order equation, and thus be analyt-

ically solved. Defining

and q(y) = ig—g

v(y) — ky(y)

p(y) 0

the above ODE can be rewritten as

(Ay)y —p(y)Ay +4q(y) =0.

The general solution is
Ay) = [ ay{e/ PO [- [ q(y)e [P0 4 By]} 4B,

with the integration constants B; and By to be determined by the boundary con-

ditions.
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Appendix B: Finite Difference Approximation
For the solution of eq.(2)
d 0 0A dA

aA(x,t) = FE;(E(A)FE—X") - V(X)Fa +5(x)

by Finite Difference methods, some details are written down here:

The dependent variable A is defined at the center of cells j: A; at meshpoints
X1; (see fig. 2). For the time-coordinate (i.e. when advancing from time t by a

timestep 6t to t + 6t) the following nomenclature is used:

c+>

=t + 6t

The time derivative is hence discretized as follows:

d A — A,
—A = 1
at At

The time average Aj, governed by the impliciteness factor @, is defined as:

Aj — ﬂAj + (1 — B)AJ

which is applied to all terms but the time-derivative. This time averaging proce-
dure is performed before the spatial averaging and derivatives are processed. For

6 = 0 one gets the explicit, for # = 1 the fully implicit scheme.
In the spatial coordinate, where two staggered grids [X1;, X2;] are used, the quan-

tities S; and vj are defined at cell centers X1;, whereas the quantity x; is more
naturally defined at the cell boundaries X2; (see fig. 2). The mapping function
F is defined both at cell centers F1(X1;), and at cell boundaries F2(X2;). The
spatial average of A (i.e. A at X2;) is usually:

" I
(Ajr1/2) = 5 (A5 + Ajpa)

For the spatial derivatives the following standard second order scheme is applied:

a (Aj+1/2) - (Aj—1/2)
&A = Ax
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82 Aipg —2A +A;_
e d L i i .
dx? i Ax?

In general the diffusion term Faa;(rc(A)F %%) is approximated as:

F1; Asr g — A A == A
A lege ikl ™ Ty viey Mo B
Ao [K'Jsz Ax 1821 Ax ]

When & = k(A), then x; could only be evaluated at the previous time t, i.e.
K; (Aj). A better approach is to apply the following linearization procedure: the

above PDE can be written as

where U, = {A(x), %%} When advancing from t — § = t + 6t, one expands
D(U,) into:
D aD aU,

Dx~D+—At=D At
5 T30, at
i.e.

DzD+5-[E(U“_U“)

In order to get the time averaged expression, the # -weighting has to be applied:
D = 6D + (1 — 6)D, hence:

~ dD -

Dmﬂ{D-{—éﬁ—;—(Up—Up)}—t—(l—ﬂ)D
or
S\L+gh 5 aD
~0—0,+ (D—0=—
> U, wt BaU,,U“)

For a conductive term of the form ;%(rc(A)%;), where k(A) = kpA% , this lin-

earization technique leads to:

~

a a a ~ 3 a g
— a___ ~ e e 1 LA A a_~
(koA®—A) = 0a—(kgA® A : A) + 00— (koA I A)

+{1 - 8(a+1)} & (koA%ZA)
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For the convection term v%‘}, in case Jﬂg > 1, usually an upwind difference
approximation is applied. The standard upwind scheme is only first order accurate
in space and therefore we use instead a weighted upwind method, described in the
following.
We define

Vi+1/28Y
| 854172 | + [ V5417287 )

1
Wit1/2 = 2
and consequently
1
wUj1/2 = +(Wig1/2 + 3)s

1
wDj 172 = ~(Wip1/2 = 3)

to calculate the space average as:
(Ajr1/2) = wUjp1/2A5 + WDj 1724541

------------------------------------------------------------------------

This leads for v > 0 to the following extreme cases:

[Vit1/2|8Y 1
for—l’a_%/zl—>>1 = Wji1/2 % 3 =>WUj+1/2”1=WDj+1/2"°”O’

hence (;&J +1/2) & Aj ...UPWIND — differences

IV‘+1 zlAy ]: 1
for—rn—jil—/z|-<<1 =>wj+1/2z0 =>WUj+1/2“§sWDj+1/2“~“§5

hence (AJ +1/2) ® %(Aj + ;&j+1) ...CENTRAL — differences

When the velocity v flows to the left (v < 0), we get similarly:

IVit1/21Ay 1 1
o W L1, = Wap~0 =505 27D 7

hence (AJ 41 /2) A~ %(Aj + Aj+1) ...CENTRAL — differences
vi+1/218y 1

for%»l = Wj11/2 ™ —3 :>ij+1/2%0,ij+1/2%1;
hence Ajpd A ..DOWNWIND — differences

For conduction dominated cases we thus recover the second order accurate, central
difference scheme; whereas for cases where convection becomes more important,

the described formalism tends towards upwind differences.
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Appendix C: Finite Element Method
Part I: General

The treatment of the second order, two-point boundary value problem

)5~V G +56) =0 (5.4)

for A(y), y € [a,b] = G, with Dirichlet boundary conditions (BC II)
A(y =a) =, Ay =b) =

in terms of Finite Elements requires the following steps:

(1) Multiplication of the above equation with a testfunction T(y) € H (H a suitable

class of test functions), and integration over G:
({ dy(Td—y(m—d—y—) + Tva) " c[ dy(Ts) =o. (5.5)

Using the identity

d(ndA d(TRdA) dT dA
&y’ T &\ ey’ T @y ey

reduces the second order integrand to first order

dA dA, b
f dy( E%E—i- 37 = —T)‘ - [ dy(ST). (5.6)
dy b4

(2) Galerkin representation of a function u(y):

N
u(y) = > u®u(y)
p=1

where the {®,(y)},=1 N are the basis functions. Using this Galerkin representa-
tion for both the dependent function A(y) and the testfunction T(y), we get:

d®,d® d® dA
BV L5 K L1 [t s
att {fdy( ndy i -{-vdy Qu)} t{ ( o

22 /dyS‘I)y}. (5.7)
G
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(3) As this expression must hold for all test functions T, all its partial derivatives
with respect to {t“},—; y must vanish. Hence a solution of (4) under general

boundary conditions is given by
A(y) =a"d3.(y) (5.8)
where the {a”},—; N are determined by the linear system of equations

M’_‘yau = bp (5,9)

The solution of this system can be calculated by several algorithms, depending
on the form of the matrix Mj,, which is determined by the choice of the basis

functions (see part II).

(4) For Dirichlet boundary conditions (BC II) the values of A|8G, (i.e. A(a), A(b))

are given. For a subset of test functions T € fIO vanishing on dG
Ho={Tel:TjoG=0} cH (5.10)

the first term on the RHS of (7) vanishes; hence:

a{ dy(—nd(;I; “ d(;l;” + vdj;“ 2,)} = ([ ayse,}.  (s.11)
G

Part II:

Basically two different types of basis functions have been utilized in solving the

above problem:

e Lagrange Elements of several order; the simplest ones being the linear ele-

ments; in addition higher order elements are used.
e Cubic Hermite Elements.

In case of linear Lagrange elements the matrix M in the linear system M, a” = b,
is tridiagonal, as in case of the implicit finite difference (FD) approach. In contrast

to the time-dependent FD algorithm the inversion of M yields the solution for the
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FE case directly. In case however the original equation is nonlinear e.g. k = K(A),
the FE algorithm has to be iterated [7 |.

For the higher order Lagrange elements and the Cubic Hermite elements the matrix
M is block-tridiagonal, or generally speaking a band-matrix. Both can be treated

with a band matrix solver, or special techniques [7 |.
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Appendix D
An alternative solution using Chebyshev spectral collocation in space

and Gear’s method (high order backwards differentiation) in time

Interpolation of a non-periodic function f at N equispaced points in (-1,1) by means
of a trigonometric polynomial presents the Gibbs phenomenon at the boundaries,

where overshooting occurs (8 |.

On the other hand, if one takes a Chebyshev grid on (-1,1)

x; = cos(mj/N) 0<j<N, (5.12)
and interpolates f with Chebyshev polynomials

Tk (x) = Tk (cos8) = cos(kd), (5.13)

then the interpolation is spectrally accurate, i.e.

' N
Vx € [-1,1] max |f(x) — 3 Tx(x) |[~e™N  c¢>0
Chebyshev polynomials are very well suited to represent functions which have
boundary layers. As one sees from (1), the distance d between the first two (or
the last two) points of the mesh is

2

T

d=1- N) ~ —
cos(m /N) N2
so that one can resolve, with N polynomials, layer thicknesses of order N™2,

One can take advantage of the mentioned and other properties, to discretize space

derivatives in PDE’s.
Assume we want to compute df/dx at the points (1):

i) think of these values as 27 periodic data at
0;=mj/N 0<j<2N;

ii) compute f} via Fast Fourier Transform

2N |
fio = > e k0if(g;)
j=0
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iii) compute g—g— via inverse FFT

ied (6;) = = Nf (ik)el*fify (5.14)
J 2 )
do 27 = N41

iv) change variables to get finally

o _doar 1 &
dx  dxdf  1-x2df’

The previous expression is not defined at the boundaries. An easy way out (not

necessarily the best one) is to use I’Hopital rule and get

ff s d’f/de?  _a*f |
dx =*17 g2y /a2 ~ Tag2 13=°

where the last derivative can be computed by an inversion similar to (3), premul-

tiplying by —k? instead of ik.

The first step in the solution of the PDE is thus to "collocate” it at the mesh
points (1).

In our case this means, considering for instance the second order term, that
one computes Ax(x;) via the described procedure, then multiplies locally
[A(x;)]*Ax(x;), and then differentiates the result. The other terms are treated
similarly.

Following the procedure indicated, one reduces the original PDE to a system of
ODE’s of the form

Tt %) = 2. DixAlx)  j=0,.,N

Due to the global nature of the spectral approximation, the matrix D is full, in
contrast with the banded matrices of finite differences. Implicit time integration

is thus expensive, at least with exact, direct methods.

On the other hand some of the eigenvalues of the second order derivative matrix
are ~ N4; the corresponding stability limit on the time step for explicit (say Euler)

integration could then be

At < O(N™4).
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However, numerical experiments have shown that the actual constraint on the case

at hand is

At < O(N72)

but nevertheless the solution by means of the NAG routine DO2EAF, which utilizes

Gear’s method, proved to be an order of magnitude faster.

A word of caution must be added when collocation is applied to non-linear prob-
lems, since aliasing errors generally occur: only frequencies up to a certain thresh-
old can be represented on the given grid. Higher frequencies, eventually generated
by the non-linear operator during time evolution, are fed back to the lower ones
that can be represented on the grid, introducing errors. These errors should how-

ever become of the order of the truncation error as N becomes large enough.
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