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ABSTRACT

We present a user manual for the FISIC code which solves the integrodifferential
wave equation in the finite Larmor radius approximation in fully toroidal geometry
to simulate ICRF heating experiments. The code models the electromagnetic wave
field as well as antenna coupling and power deposition profiles in axisymmetric

plasmas.




1. Introduction.

The FISIC code solves Maxwell equations in a tokamak plasma in the ion cyclotron
frequency domain. The present version assumes circular concentric magnetic flux
surfaces. A generalisation to arbitrary MHD equilibrium configurations is under

way.

The presented report is intended as a ”user manual” for the code. A detailed
description of the physical model and the numerical method including a discussion
of the validity of the approximations which have been made and of the convergence
properties can be found in [1] and [2]. Therefore we shall give in sections 2 and 3
only a brief summary with special emphasis on those features that are important

for the user.

Since the code requires a large amount of CPU-time and memory space unsuc-
cessful runs should be avoided. Therefore we have written a seperate test program
to facilitate the adjustment of certain parameters. This program should be run
before every new run of the FISIC code itself. In Chapter 4 we shall explain how to
use this test code. This chapter contains also a discussion of the input quantities
which are, up to those parameters controlling the diagnostic of the results, the

same as for the main code.

Chapter 5 contains then a description of the FISIC code which is a package con-
sisting of three sequential sets of routines between which auxiliary data sets are
exchanged. In this chapter we shall also explain the output and plots which can

be obtained to interpret the results.

In the appendices A and B we present the calling trees for the essential parts of
this code.

2. The Wave Equation.
The FISIC code solves Maxwell equations in a tokamak plasma in the ion cyclotron
frequency domain, taking into account:

a) full tokamak geometry, i.e. both toroidal and poloidal magnetic field (magnetic

surfaces have circular cross-section);

b) finite Larmor radius effects describing mode conversion to Bernstein waves;




c) kinetic damping: ion cyclotron damping at the fundamental and first cyclotron

harmonics, electron transit time and Landau damping.
The wave equations are then a set of partial integro—differential equations,
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Here the zero order current is given by:
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the FLR ion current is:
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and the FLR electron contribution to the current is:
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Parallel and perpendicular refer to the local direction of the static magnetic field;
E4, E) are the left and right circularly polarised and the parallel components of
I‘_f, respectively, and @4, t'l,'" the corresponding unit vectors. Moreover, we have

introduced a number of operators which are orbit integrals along magnetic field

lines:
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Here wps, flcs are the plasma and cyclotron frequencies, respectively, vis =

\/2Ts/ms the thermal velocity, and
f"(f) =75 — [T ﬁ.]lvl'l dr (2'9)

Collisional damping can be included by giving w in the exponents in the orbit
integrals a small but nonvanishing imaginary part, w = Re(w) + iv, where v

stands for an effective collision frequency.

These equations are the generalisation to tokamak geometry of those obtained by
Swanson [3] and Colestock and Kasuba [4] assuming a plane-stratified geometry.
Details of their derivation [5] and on the associated power balance [6] are presented

elsewhere.

In certain ICRH scenarios the ”quasielectrostatic” ion Bernstein wave is excited
due to linear mode conversion near the plasma center and propagates then with
increasing refractive index to the high magnetic field side. The only collisionless
damping affecting these waves is electron Landau damping. It can be shown, how-
ever, that for k| -p; < 1, p; denotes the ion Larmor radius, the parallel component
of the electric field of the IBW is much smaller than for a truely electrostatic
wave and electron Landau damping becomes almost negligible [7,8]. As these
waves propagate to the plasma periphery with rapidly decreasing wavelength, it
becomes often difficult to maintain enough numerical resolution. To minimise this
problem, and to take into account experimental indications that IBW are subject
to efficient parametric or stochastic absorption well before the condition k; -p; S 1
is violated (9, 10], we introduce a somewhat artificial damping by multiplying Az

by the factor
1+ ;e € (Qei/kLpw vini)? : (2.10)

where € is an adjustable parameter of order unity, and k| g is estimated from the

local dispersion relation. This hardly affects the fast magnetosonic wave, and does




not alter the amount of energy converted into IBW. It is omitted where the IBW
is evanescent. The introduction of this damping also allows the direct diagnosis of

the mode conversion efficiency from the code.

We are looking for forced solutions of the wave equation driven by an externally
prescribed antenna current. The antenna is simulated as a sheath of current
flowing perpendicularly to the static magnetic field. The central conductor and
the Faraday screen are assumed to lie in same magnetic flux surface. The currents

in the feeders and shorts are not taken into account.

The plasma is assumed to extend up to the perfectly conducting wall (”diffuse”
plasma edge), which is also parallel to a magnetic flux surface. The resulting
boundary conditions at the wall and matching conditions at the antenna can be
found in ref. [1] and [2].

3. Numerical Method.

3.1. THE SPECTRAL ANSATZ.

The wave equations (2.1—2.9) are solved with a semispectral discretisation [11,12]:
expansion in Fourier modes in the poloidal direction, finite elements with cubic
Hermite interpolation radially. For this purpose, the electric field is expanded in
toroidal and poloidal Fourier modes:
E = Z E‘m,np(r)ei(m19+npgo) (3.1)
m,ny
and the wave equation is cast in a weak variational (Galerkin) form by multiplying

with the test functions
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and integrating over the plasma volume. Each n, mode can be treated separately,
the power deposition profiles and the antenna resistance R4 being additive in ny.
Therefore we shall omitt in the following equations the ignorable coordinate ¢
and the good quantum number n,, whenever possible. On the other hand poloidal
Fourier modes are not even approximate eigenmodes of the wave equations, so that

a large number is often required for an adequate representation of the solution.




The advantage of the spectral method over a direct discretisation in the poloidal
coordinate ¢ is that it allows the explicit evaluation of the orbit integrals in the

constitutive relations,
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provided that the contribution from trapped particles with reflection point close
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to resonance can be neglected. Here we have defined for each mode the effective

parallel wavenumber
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with

and g denotes the local safety factor. Under rather unrestrictive conditions it is

then possible to approximate 2;‘ through the familiar Fried—Conte Z function [13] :
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Note that for nonvanishing collisions the argument of the Z function is complex.
A more accurate evaluation of 2;‘ could be easily incorporated if a sufficiently fast

algorithm becomes available.

The spectral Ansatz (3.1) converts for each poloidal mode m the integral operators
L P and An s into the algebraic operators L(r, J; k \F P(r, ™) and )\n s(r s k )
and the FLR wave equations into a (large) set of coupled ordlnary dlfferentla.l
equations in the radial variable only. The number Ny, of modes required for
an adequate representation of the solution can be estimated from the shortest
wavelength to be resolved, usually the IBW: N,y is roughly the same as the number

of points which would be require in a conventional discretisation in ¥.




Due to the small electron inertia, E" is efficiently screened at ion frequencies. An
appreciable saving of CPU time and memory can then be achieved by solving the

parallel component of the wave equation as
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3.2. THE SPATIAL INTEGRATION

The variational form of the equations reads then after integration by parts of terms

containing second derivatives :
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Since the electron FLR corrections are always very small at the antenna or wall,
their contributions have been neglected in the boundary terms. This is not the case
for the contributions due to the ion FLR current if a second harmonic cyclotron

resonance lies within the plasma.

The poloidal integration is done by means of the Fast Fourier Transformation
(FFT) [14] on an equidistant mesh of Nps gridpoints for the nonresonant electron
terms and the terms involving only differential operators. For the terms describing
fundamental and harmonic ion cyclotron resonances a denser mesh of Np gridpoints
is used. To make the FFT most efficient Np; and Np should be potencies of 2.
For kl’i" = 0 the upper limit of the widths of cyclotron resonances depends only on

the value of the effective collisional frequency v. To ensure a satisfactory poloidal




resolution, we choose

vw = (3.7

where x is an adjustable parameter of order unity. Eq. (3.7) guaranties that at
least x poloidal gripoints lie within the halfwidth of a resonance. It corresponds
v

typically to values & =~ 104 — 1078, which is well within the usually assumed
w

range and much smaller than what is commonly used in cold plasma codes.
The elementwise radial integration is done by means of a Gauss-sheme with Ny
points per finite element. The criteria used to determine the radial mesh have

been discussed in ref. [2].

In principle arbitrary toroidal spectra and poloidal current distributions of the

antenna can be chosen.




4. Parameters, Input Variables and the Test Program FTEST

With the exception of those variables, which are needed to control the plotting of
certain quantities and the diagnostic, the input variables of FTEST and FISIC
are the same and are read as NAMELIST INPUT. Temperature and density
profiles are evaluated in the routine PROFT D, the antenna current in the routine
ANTC. Moreover some integer numbers used to dimension arrays in the test
program FTEST as well as in the various routines of the code FISIC must be

specified as Fortran parameters.

4.1. INPUT PARAMETERS AND VARIABLES.

The following Fortran parameters have to be specified first:

NM Number of poloidal modes Ny,; The largest prime factor
of NM must not exceed 19. This condition arises from
the FFT-Routine used to reconstruct the electromag-
netic field after its Fourier modes have been evaluated.
On the Cray X-MP memory space sets an upper limit
of NM < 108. Odd numbers might be preferred so
that there are as many positive as negative modes in
the sample.

NTT Number of poloidal gridpoints Np used for the poloidal
integration of resonant terms by FFT. NTT must be a

potency of 2 and larger than 2- NM, a typical value is
NTT =124;

NTTS  Number of poloidal gridpoints Nps used for the poloidal
integration of nonresonant terms by FFT.NTTS must
be a potency of 2, NTTS=8 or 16 should ensure suffi-
cient resolution.

NELM Parameter used for dimensioning of radial arrays. Must
be equal or larger than the actually used number of
finite elements N,,,,, which is evaluated in the routine

MESH.

NGAUS Number of Gauss points Ny used in the radial integra-
tion per finite element. A typical value is NGAUS = 3.

NVRB Number of variables N,,;; NV RB = 2 unless one chan-
ges the code so that all three components of the electric
wavefield are explicit variables.




The input variables specifying basic plasma and Tokamak properties as well as
some adjustable parameters are read as NAMELIST INPUT :

NSPEC
DENEC

DENIC(I), I =1,NSPEC

ATM(I), I =1,NSPEC
AZI(I), I=1,NSPEC
TEMPEC

TEMPIC(I), I =1,NSPEC
RT

RW
RANT
RPLAS
WANT
ALC

BZERO

AJTOR
FREQCY
NPHI
EPS

XSI

Number of ion species, must be smaller than 5.

Central electron density n(0), in electrons per cubic
cm.

Relative densities of the ion species in %, must add up
to 100.

Atomic mass number of the ion species.
Atomic charge number of the ion species.
Central electron temperature Te(0), in eV.
Central ion temperatures T;(0), in eV.

Ry, distance plasma center—vertical axis (large radius)
in cm.

rw , distance plasma center-wall, in cm.

r ANT, distance plasma center-antenna, in cm.

a, distance plasma center-plasma edge, in cm.
Toroidal width w4y of the (dipole) antenna, in cm.

Effective poloidal propagation length v/ LC of the anten-
na.

Strength of the static magnetic field Eo at the plasma
center, in Gauss.

Toroidal plasma current I;or, in Ampére.

Frequency of the excited radiation, in sec™ 1,

Toroidal mode ny.

Parameter € to adjust the ?stoch.” IBW damping, cfr.
eq. (2.10), should be of order 1.

Parameter x to determine the effective collisional fre-
quency so that sufficient resolution of ion cyclotron res-
onances is ensured, cfr. eq. (3.7), should be of order
1.

Moreover the NAMELIST INPUT contains the following integer variables to
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control different options :

IRES1=1/0 Fundamental cyclotron resonance/ no fundamenta cy-
clotron resonance of any ion species lies in the plasma.

IRES2=1/0 Harmonic cyclotron resonance/ no harmonic cyclotron
resonance of any ion species lies in the plasma.

ISTOCH =1/0 ”Stochastic” IBW damping included/ not included,
should be 1 if an IBW might be excited.

IBND =1/0 Contributions due to the ion FLR current in the bound-
ary terms at the antenna included/not included. The
difference between these two options is very small, the
first one is the correct one from the physical point of
view, the latter is simpler.

IFLR =1/0 Ion FLR current included/ not included.

4.2. TEMPERATURE AND DENSITY PROFILES.

Radial temperature and density profiles are evaluated in the routine PROFTD.
They must be chosen in such a way that their derivatives are continuous. In the
present version the following form for the various radial profiles f(r) has been
assumed:
(10 - (F0) - f@) (r/a)’,  ifr<a
1) = { 7lrw) + () (f(a) - FOw)), ifr>a
where ¢ is evaluated in such way that the profiles and their derivatives are con-
tinuous at the plasma edge r = a and f(r) = f(a) - e~ (rw=a)/A  The following

quantities must be specified:

RDPL; RTEPL; f(a)/f(0), relative values of the

RTIEL(I), density, electron temperature and ion temperatures
I=1,NSPEC at r = a compared to the central values.

DEXP; TEEXP; Exponents -y of the various profiles for r < a.

TIEXP(I), I =1, NSPEC

EDFLD; ETEFLD; Exponential decay lengths A in the scrape off layer, in cm.
ETIFLD(I), I=1,NSPEC

11




4.3. ANTENNA CURRENT.

The central conductor of the antenna is assumed to lie in a magnetic flux surface
at r = r 4y and the current flows perpendicular to the static magnetic field. Its
toroidal spectrum and poloidal distribution are specified in the routine ANTC.
We assume that the poloidal current distribution has the same form for all values
of ny. It is specified by means of the array CFJ which is proportional to the
antenna current at the Np poloidal gridpoints used for the J-integration. The
relative weight of the toroidal mode n,, is proportional to g(ny). For example for
a dipole antenna with toroidal width w 4 y7 located at the low field side one would
have g(ny) = sin(z - ny)/(z - ny) with z = wyy1/2 - (raANT + RT) Moreover one
has to specify Sp, which is defined as

Zf dip g(nyp) €™

For the dipole antenne with the toroidal spectrum given above one obtaines for
instance Sy, = 2m. The Fortran names for these quantities are GNPHI and
SNPHI. :

4.4. THE TEST PROGRAM FTEST.
Using the input described above, the test routine FTEST evaluates :

— The radial mesh; The criteria which are applied to ensure sufficient resolution
of the cyclotron resonances as well as of the electromagnetic wavefield and other
properties of the radial mesh have been described in ref. [2]. The user should make
shure that the calculated number of actually used finite elements N,,,, does not

exceed the parameter N ELM which dimensions radial arrays.

— Some central plasma pa.lz'a.meters and properties of the incoming radiation like
Wps» Qcs, Vths>s P = 1_ ﬁ— W_I%T-s ‘::’RT

— Positions of funda.menta.l and harmonic ion cyclotron resonances with their

Doppler widths in the equatorial plane for m=0.
— Positions of confluences, cut—offs or wave resonances.

— The poloidal antenna current profile and its Fourier Transform. The latter

provides some information if Ny is large enough to resolve the current profile.
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Moreover the some plots can be obtained (z denotes here the horizontal coordinate
in the equatorial plane). They are controlled by a set of variables which is read as
NAMELIST IPLOT :

ITEPL + 0" Ty(z):

ITIPL =1 T;(z) for the I-th ion species.

IDPL #0 ne(z).

IQPL #0 ¢(r); This plot can be used to estimate for which poloidal

m,n

modes k” ¥ ~ (nyp + m/q)/ Ry is equal to zero.

IXEPL#0 z{)’;‘fo(.’c); This quantity is important to estimate kinetic
damping through electrons.

INB #0 k| pw -p;(r) at the high field side; This plot should facil-
itate the adjustment of the parameter € in the "stoch.”
IBW damping term: The IBW is usually completely
absorbed before €(k| gwp;(r))? = 1.3.

ISPR #0 S(z); This plot shows if and where an ion—ion hybrid
resonance or an Alfvén resonance nj = S lie within the
plasma.

ILPR #0 f,(:c); This plot shows the position of ion cyclotron res-
onances as well as of the cut—off nﬁ = L associated with

an ion—ion hybrid resonance.

IRPR #0 fE(:z:); This plot can be used to estimate the position of
the low density cut—off nﬁ = K.

ILAMPR #0 iz(z), shows the position of second harmonic ion cy-
clotron resonances.

ILPT #0 L(®) at r = RTNPLT and its Fourier transform.
ILAMPT #0 Xy(¥) at r = RTNPLT and its Fourier transform.

Some of the quantities are evaluated assuming k" = ny/R, i.e. for the poloidal
mode m = 0. The last two plots give also some information if the poloidal mesh
is dense enough to resolve the ion cyclotron resonances and can therefore be used

to adjust the parameter x, eq. (3.7).

There are no data exchanged between this test routine and the main code.
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5. The Code FISIC.

The code FISIC is a package of three sets of routines between which data sets
are transferred. The first and main part which is called MATSOL evaluates the
stiffness matrix and solves the linear system for a given toroidal mode ny, using
a frontal method. In appendix A the calling tree for this program is given. The
input to this routines and the evaluated poloidal spectrum of the electromagnetic
field are, together with the radial mesh, stored externally (on Cray-disc). The
unit identifier for this data file is 9. Upon reading these data the second set of
routines called BALANCE containes the diagnostic of these results and evalu-
ates the power deposition profiles and the contribution to the antenna load due
_ to this toroidal mode. These quantities are then, together with the radial and
poloidal mesh and a few other quantities which will be needed, stored externally
(on Cray disc). The unit identifier of this data set is 11. The calling tree for
the program BALANCE can be found in appendix B.is The third set of routines
called DPROF finally reads these data for various toroidal modes and evaluates

the total power deposition profiles and the radiative resistance of the antenna.

5.1. EVALUATION OF THE STIFFNESS MATRIX AND SOLUTION OF THE LIN-
EAR SYSTEM.

Since this part of the code produces with the exception of the number of radial
finite elements no written output and no plots, those variables of the NAMELIST
IPLOT are not needed here. Otherwise the input parameters and variables for
this routine are the same as for FTEST and have already been explained in the
previous chapter. These variables and the radial mesh are stored externally and
will be read by the following part of the code, the program BALANCE. The

external unit identifier for this data file is 9.

The stiffness matrix is blocktridiagonal. Each block has a size of (2 - Ny, - Nm)?
complex elements. There are as many block rows as radial gridpoints. Since
the whole stiffness matrix would be in many cases much too large for the central
memory of the Cray X-MP, a frontal method which combines the evaluation of the
stiffness matrix and the solution of the linear system using auxiliary storage has

been developed: After a block row has been fully assembled its L /U decomposition
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is evaluated and stored externally. This is done very efficiently by a code kindly
provided by Dr. W. Kerner [15] which saves time as is works simultaneously on
the L/U decomposition of one block row and I/O of another. Later on these
auxiliary data are used together with the right hand side of the linear system to
solve the matrix equation. The solution, i.e. the poloidal Fourier spectrum of
the perpendicular components of the electromagnetic wavefield and their radial
derivatives at the radial meshpoints are then added to the data file where the
input variables and the radial mesh have already been stored before (external
unit identifier 9). Note that due to the structure of the linear solving routine the
solution is stored ”backwards”, i.e. the quantities associated with the last radial
gridpoint are stored first. The interface between the linear solver, which also
handles the I/O operations of the auxiliary data sets and the external storage of
the results, and the routines evaluating the block rows of the stiffness matrix and
the right hand side are called BLOX and RHS, respectively. Otherwise there is
no connection between these parts of the program. This modular structure would

make it very easy to incorporate another solving routine.

In general the program M AT SOL requires most of the CPU time of the FISIC
code. For not too small Ny, it is dominated by the time needed to solve the linear
system, which is proportional to N,j,,, - N3,, whereas the time for the evaluation

of the stiffness matrix scales roughly like N, - Ng+ Nyn - Np - In Np.
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5.2. DIAGNOSTIC AND POWER BALANCE FOR A SINGLE TOROIDAL MODE.

After reading the data written previously by the program MATSOL, i.e. the
values of the input variables, the radial mesh and the poloidal Fourier spectrum
of the perpendicular components of the electric wave field and their radial deriva-
tives at the radial gridpoints, the program BALANCE consists of two parts: one
reconstructs the wave field and visualises it in various plots, the other evaluates
the power balance, i.e. deposition profiles and the contribution to the antenna
load due to the toroidal mode n,. Moreover the same output and plots that have
been described in the section about the test routine FTEST and are controlled
by the variables in the NAMELIST IPLOT can be obtained again. To control
the diagnostic and which plots of the wavefield and the deposition profiles shall be
drawn, the following variables are read as NAMELIST DIAG :

16




NTEPL, NTEPL<5 Number of plots of E"_L(r, ¥) for fixed ¥ to be specified

by ITEPL;
ITEPL(I), I=1,NTEPL Y =2r-(ITEPL(I)-1)/NM
NMPL, NMPL <5 Number of plots of the poloidal spectrum E4(m) and

its Fourier transform E(¥) for fixed radii r = RMPL
to be specified. These plots are particularly useful to
check the convergence in the poloidal direction, i.e. if
NM has been chosen large enough.

RMPL(I), I=1,NMPL radii for the above plots in cm.

IHL(IC) =0/1 Determines if the contour lines of the component spec-
ified by IC shall be plotted.

IC=1 Re(E;)

1C =2 Im(E;)

IC =3 Re(Ey)

IC=4 Im(Ey)

IC =5 Re(E4)

IC =6 Im(E4)

1IC =1 Re(E-)

IC =8 Im(E-)

IC =9 |E | |

IC =10 |Ez|

IC =11 |Ey|

IC =12 |E4|

fC=13 |E—|

Plotted is the region XMIHL <z < XMAHL,
YMIHL <y<YMAHL, in cm.

E; and Ey denote here the horizontal and vertical component of the perpendicular
electric field E, . The units of the electric field is V/cm, normalised to an antenna

current of 1 Ampére.
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IBAL =0/1 If IBAL = 0 the part of the program which evaluates
the deposition profiles and requires much more CPU-
time than the other parts, will not be executed. In this
case the variables discussed in the following need not to
be specified.

ITABL =0/1 No plot/plot of dPspg(z)/(r dr d¥) in the equatorial
plane.

IABPL =0/1 No plot/plot of dPspg(r)/(r dr), integrated over mag-
netic flux surfaces.

I3DI1 =0/1 No 3d-plot/3d—plot of the deposition profile for ion cy-
clotron damping at the fundamental resonance.

I3DI2=0/1 No 3d-plot/3d—plot of the deposition profile for ion cy-
clotron damping at the harmonic resonance.

I3DET =0/1 No 3d-plot/3d-plot of the deposition profile for electron
TTMP.

I3DEL = 0/1 No 3d-plot/3d-plot of the deposition profile for electron
Landau damping.

I3DST =0/1 No 3d-plot/3d—plot of the deposition profile for
”stochastic” damping of the ion Bernstein wave.

ISYM should be equal 0. ISY M # 0 causes a slightly different
form of the local power deposition due to parallel kinetic
flux terms.

IDSAV If IDSAV # 0 the total antenna load and deposition

profiles due to this toroidal modes are, together with
the radial mesh and a few other parameters, stored ex-
ternally for the program DPROF. The unit number
for this data set is 11.

Finally the code evaluates how the incoming power is distributed among the var-
ious damping processes for this toroidal mode. The CPU-time for the program
BALANCE scales like Ngjgp, * Ng* Nm - Np if IBAL = 1.
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5.3. EVALUATION OF THE TOTAL POWER BALANCE.

Using the data sets provided by the program BALANCE for various toroidal
modes ny,, DPROF evaluates the total power balance, i.e. deposition profiles
and antenna load. To save CPU-time one usually does not run the programs
MATSOL and BALANCE for the complete toroidal spectrum launched by the
antenna. Instead the total power balance is estimated as a weighted sum of the
contributions from those toroidal modes which have been analysed. In the pro-
gram DPROF their number must be specified as parameter NNPHI. In the
present version NNPHI must be smaller than 10. The weights of the contribu-
tions from the individual n,’s must be specified by the array WNPHI(INPHI),
INPHI =1,NNPHI. For example if the power balance has been evaluated and
stored for the toroidal modes n, = 0,4,8,12,16 and 20, NNPHI would be 6 and
WNPHI(1) = 5 (the five modes n, = 0,%1,+2 are assumed to give similar re-
sults), whereas W NPHI(2 — 6) = 8 since each of these contributions stands for 8
(positive and negative) ny’s. Moreover the parameters NR, NT, NT'S which are
used to dimension certain arrays, must be specified in such a way that they are

equal or larger than the greatest values of N, +1, Np+ 1, Nps + 1, respectively.

The program DPROF evaluates then the total antenna load and power deposition
profiles including 3-d plots for the various damping mechanisms and a plot of

dPypg/rdr. The CPU-time required by this part of the code is negligible.
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Appendix A. Calling tree for the program MATSOL.

To initialize the program FISIC and the test program FTEST the following
routines are called (underlined names refer to external routines; if nothing else is

stated they are Cray routines):

PARA
BINI CUBSPL
PROFTD
MESH CL CZETA
CLAM CZETA
RTEN
RX
SURF
INIFFT CFFT2
GAUS
ANTC FFTDIR
SCNRM2
RX
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Then the routine MASTSOL is called. We list the subroutines in the calling tree

in alphabetic order:

MASTSOL CONX RHS
SOLV ALU BLOX BNDAFP CLAM  CZETA
CLAMS
FFTDIR
RX
SURF
TENST CTEN (d.a.)
OP CL CZETA
CLAM  CZETA
CLAMO
CLAMS
CP CZETA
DIFF
FFTDIR
FFTS
OPADD  FFTS
OPADDT FFT (d.a.)
RTEN
RX
SURF
TENST CTEN (d.a.)
CDOTU
CGEFAP ICAMAX
CGESLP
RSOLV CCOPY
CDOTU
CGES2P CCOPY
SKPIPR
VSOLV CCOPY
CDOTU
CGES2P CCOPY
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Some of the routines listed here still refer to other subroutines:

FFTDIR CFFT2
FFTS CFFT2
CLAMS CLAM CIZETA
CST CL CZETA
RTEN
SURF BPOL VALSPL
DTHETA VALSPL
PROFTD
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Appendix B. Calling tree for the program BALANCE.

After the external data file provided previously by the program MATSOL has
been read, the initialisation of the program BALANCE is, up to the routine
MESH which is not called, the same as for the program M ATSOL, which has

been described in appendix A. Then the routines DIAG, OUTPUT, ANTP and,
if IBAL # 0, PABS are called:

DIAG CUBSPL
EANT
ERLHL
FFTREV CO6ECF
GPLOTS3
MINMAX
VALSPL
ZREX ZRT

OUTPUT CL CZETA
CLAM CZETA
CLAMS
FFTDIR
GPLOT
GPLOT3
RTEN
RX
SURF

ANTP
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PABS CL CZETA
CLAM CIZETA

CLAMC
CP CZETA
CST CL CZETA
RTEN
ERL3D
MINMAX
PLOTTH
PPLOT
RX
SUMOD
SURF
ZEL ZRT
ZET ZRT
Z11 ZRT
Z12 ZRT
Z8T ZRT

COGECF is a NAG Library, MINMAX a Erlgraf Library routine. The plot-
ting routines ERL3D, ERLHL, GPLOT, GPLOT3, PLOTTH and PPLOT
contain Erlgraf routines. See appendix A for the calling trees of FFTDIR and
SURF. The routine OUTPUT is also called by the test program FTEST.
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