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ABSTRACT

The necessary response times for feedback stabilisation of the m=2
tearing mode with externally applied m=2 helical fields are examined.
Since the timescales for full penetration of the applied field are much
longer than the relevant times for the feedback, the cancellation of
the m=2 island by the applied field 1is necessarily transient.
Continued penetration of the applied field leads to an island whose
phase is 'flipped' relative to the initial plasma island. This flip
mechanism places constraints on the helical coil current. If the
feedback helical field is not exactly anti-phased relative to the
plasma island, then a net torque results which also tends to flip the
plasma island. This torque mechanism places constraints on the
tolerable phase error and response times of the feedback helical field.
For parameters consistent with JET and a phase error of 100, the
necessary response time < 500 us.



1. INTRODUCTION

The major disruption limits both the achievable density and current, in
the tokamak [11, and thus places constraints on beta. The disruption
density 1imit is increased by up to a factor ~ 2 by Neutral Beam
Heating but care must be taken to step the beam and density down
gradually to avoid a major disruption. The 1imit imposed on the
current by q,> 2 appears to be a fairly hard 1imit, although a few
Tokamaks have succeeded 1in bettering it [2]. It is thus highly
desirable to investigate means of controlling the major disruption to
improve Tokamak operating parameters. Both experimentally [3] and
theoretically [4,5] the m=2, n=1 tearing mode is implicated as playing
a major role in the events leading up to a disruption. Thus,
stabilising the m=2, n=1 tearing mode should help to prevent the major
disruption. Several schemes to stabilise the m=2 tearing mode have
been suggested. By locally flattening the equilibrium toroidal current
near g=2, with RF current drive/heating, the driving term is removed
and the tearing mode 1is stabilised [6]. This local flattening,
however, tends to raise the current gradients elsewhere and thus
destabilises other tearing modes, though tokamak profiles which are
stable to all tearing modes have recently been found [7]. Another
stabilisation scheme which has been suggested is to use RF to drive
local currents which exactly cancel out those forming the tearing mode
[8]; for a rotating mode this implies an active feedback system. The
required RF power levels to stabilise the tearing mode with this scheme
appear to be rather high [9]. The stabilisation method which has
received the most attention experimentally, is to use helical coils,
external to the plasma, to induce resonant helical fields. In
experiments such as TOSCA [10] and PULSATOR [11] a steady current (DC)
was applied in the helical coils, and in some cases, a stabilising
effect on the oscillating m=2 mode was observed. The stabilisation
presumably arises because of changes in equilibrium profiles caused by
the resonant fields [10]. In other experiments on ATC [12] and TO01
[13] active feedback using resonant helical fields was attempted, with
some success. The active feedback in these cases involved tracking the
position of the magnetic activity, and attempting to apply equal and
opposite magnetic fields to cancel the mode out. Calculations assuming
the ability to exactly track the mode and instantaneously apply
stabilising helical fields, have shown that such a stabilisation method
will work [14]1. However, in practice of course, the mode position can
not be exactly tracked nor can the feedback system apply the necessary
fields instantaneously. 1In this paper, we will address the questions
of the necessary accuracy in tracking the mode and the response times
for the feedback system to work. 1In the next section, we will describe
the equations used in this study and briefly discuss the codes used




to solve them. 1In Section 3, we examine the penetration of the helical
fields into the plasma and the response of the plasma to these fields.
An understanding of these issues will allow us to assess the required
timescales for feedback stabilisation. These issues are addressed for
the specific case of the proposed JET helical coil system in Section 4.
Finally, conclusions are given in Section 5.

2. [EQUATIONS AND NUMERICS

In the 1imit of small inverse aspect ratio (e) and low B(ve?) a simple
set of reduced Tokamak MHD equations may be derived [15,16]1. As this
derivation is documented in Refs 15 and 16 we reproduce the equations
here, without further comment. The magnetic field B and velocity V are
represented in polar cylindrical co-ordinates as

B= Te’z X ﬁlm + BOEZ and V= EZ X v’l¢ (1)

In the 1imit e<<l, B ~ €2 equations for the time evolution of ¥, ¢ may
be derived from the resistive MHD equations.
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In these equations, all lengths are normalised to the minor radius 'a';
the poloidal flux ¥ is normalised to by B_a?, where BO is the toroidal
field strength; time is normalised to the poloidal Alfven transit time
FHoo aJE;/(eBO) where p_ is the peak density; and S = 1,/T,. is the
so-called 'Magnetic Reynolds Number' with T, = azlno being the
resistive diffusion time, where o is the peak resistivity.

Near the origin, the boundary conditions for Egs (2) and (3) are given
by regularity



6, ¥ a rIml

(5)
where m is the poloidal mode number., At the edge (r=1), we consider
the idealised situation of a plasma in contact with the helical coils
which are in turn surrounded by an infinite vacuum region. In
practice, the helical coils are discrete and have a broad toroidal and
poloidal Fourier spectrum. Here, however, we are only interested in
the effect of the m=2, n=1, fields and thus only consider that Fourier
component of the coil current. Therefore, at the plasma vacuum
interface, we consider a sheet current

IC Cos (26 + &) (6)
(the current flowing in the plus or minus direction of the poloidal
cross-section is ZIC).

Here, and throughout this paper, we assume without loss of generality
that the coil only has a Cosine component. At the edge the boundary
condition on Ve Cos(28 + &) is given by

ay

PO S ] v * I (7a)

ar

and for all remaining components of y the edge boundary condition is

oy _ ~lml , (7b)

ar r

The boundary condition on the velocity stream function ¢ is less well
determined. We use the condition that no radial flow may occur across
the coil surface (r=1) which gives ¢(r=1) = 0. It should be noted that
this boundary condition leads to a resistive layer at r=1 [17]. We
have, however, tried alternate boundary conditions on ¢ and find that
the results are not sensitive to this boundary condition.

Numerically, we advance Egs (2) and (3) using a Fourier representation
in 8 and &, and finite differences in the radial direction. We have
used two distinct codes to solve these equations, one of which uses an
explicit time centred scheme with the V2 terms included implicitly
(18], and the other which includes all linear terms implicitly [19].
Detailed and favourable comparisons between these two codes serve as a
valuable validation of the numerics.




3. (2RESULTS

We will first study how the helical field penetrates into the plasma
and then examine the interaction of this field with an existing m=2
tearing mode island. We will identify two distinct processes
associated with this interaction. First, because the penetration of
the applied helical field occurs on a fractional resistive timescale, a
quasi-steady state is only reached after a time which is far longer
than relevant times for the feedback (eg plasma rotation time). Thus,
exact cancellation of the intrinsic plasma island, by the applied
helical field, is necessarily transient. Thereafter, a magnetic island
grows in phase with the helical coil (and opposite to the intrinsic
plasma island). This disland grows both due to the continued
penetration of the helical field, and also due to the intrinsic tearing
instability in the new phase. This ability of the tearing instability
to 'flip' is discussed by Monticello et al [20]. A second distinct
process occurs if, as must occur in practice, the plasma island and
applied helical field are not exactly anti-phased. In this case, a net
torque arises between the plasma island and the helical coil. The
effect of which is also to flip the plasma island and align it with the
phase of the helical coil island, thus defeating the feedback system.
To distinguish these two flip mechanisms, we adopt the terminology of
calling the first the 'flip' and the second the 'torque mechanism'.

3.1 Penetration of Helical Field

We start by studying how the m=2, n=1 applied helical field penetrates
into the plasma. Many of the phases in this process are discussed by
Hahm and Kulsrud [21], and the additional effect of viscosity is
considered by Park et al [22].

Insight into the field penetration process may be gained by deriving a
simple dispersion relation from Eqs (2) and (3). Linearising, the
ideal (n=0) equations, introducing radial, kr and parallel k”(=E.§eq)
wavelengths and a growth rate w we find in leading order that

- -—m e ’ =
e TR A S i S (KHZ) Koos= 0 (8)

where primes denote differentiation with respect to r. In the limit of
no shear (JZ = constant), we recover the Alfven wave*dispersion
relation. This gives propagation parallel to Be but no
radial penetration of the magnetic field. Introducing the shear we
obtain radial propagation both from the JZ term and because k” =



k”(r). Resistive diffusion can also play a role in the radial
penetration of the magnetic field. This is particularly true near the
edge, where the applied helical fields cause large current gradients.
Away from the edge, however kr ~ 1 and the inward propagation is due to
the shear (and independent of resistivity). As g=2 is approached, k-
0 and a sheet current is set up near g=2. Physically, this sheet
current is set up to resist tearing of the field and formation of an
m=2 island on an Alfvenic timescale. On a fractional resistive
timescale, the field can tear and allow island formation. Several
possible regimes relating to island formation are studied in Ref 21.
These results are borne out by the numerical solutions. To study the
penetration phase, it 1is convenient to study equilibria which are
intrinsically stable to the m=2, n=1 tearing mode; this avoids any
confusion arising between the penetrating fields and a growing tearing
mode, Here we study the profile q = 0.7(1 + 2.75 r?) which has
A", , =-0.71. Initially on application of the helical coil current we
find a sharp spike in the perturbed m = 2, n = 1 toroidal current at
the edge (r = 1). A similar spike in the current was observed by
Park et al [22]. This current spike diffuses resistively into the
plasma. At the singular surface, however, the evolution of current is
relatively independent of resistivity.

The various regimes discussed in Ref 21 give different scalings for the
evolution of the m=2, n=1 current at the singular surface (Uz(rs)) and
for the formation the magnetic island. In the linear regime after the
Alfvenic penetration of the sheet curngnt a norma] tearing mode type
scaling gives the island width, Wat (n/S) JI While 1g,§he non
linear regime a Rutherford 1ike scaling occurs, WG (Icnt/S) . The
associated evolution of 3 (r ) is given by the identity

dw? __g_ H
7 T U (r,) (9)

Hence in the linear tearing regime J_(r)a(l 21.'.'S/n)2'5 and in the non
linear regime Hz(rs)aIC/N (and independent of S). After the initial
penetration of the fields the 1linear tearing regime is observed
ng@grica11y. This is demonstrated by plotting W(S/n) I Versus
t in Fig 1(a). The applied helical current is IC=10-7 and results
are shown for S$=10° and 10°; it can be seen that the linear tearing
scaling is obeyed well. We have also tested the scaling waJIc in this
regime and find it is obeyed to excellent accuracy. For larger applied
helical currents after an initial phase the non linear Rutherford like




scaling is obeyed to rqu%nab1e accuracy; this is demonstrated in Fig
1(b) by plotting w(S/IC) versus t for various values of S and Ic'
Closer examination of scalings in this case however, show that
numerically WaS-°-28 (as opposed to the analytic prediction of
WaS TP« X3,

After a long time, the radial magnetic field will limit to the A, ,= 0
solution of the marginal stability equation:- :

dJ
Ky V30 - My 2802 g (10)
r dr

Thus the steady state radial magnetic field 1is independent of
resistivity. However, the evolution of field and time to reach steady
state is strongly dependent on the resistivity [cf Eq(9)]. Figure 2
shows the V,,, evolution at various times for S = 10® and q = 0.7 (1 +
2.75r2). It can be seen that the time to reach steady state ~ 0.05
Tg- From Eq(9) we expect the time for the radial field to penetrate to
scale as S-!' in the non linear regime. Thus for JET where Tp ™ 10
sec, we see that the applied field will not fully penetrate on the
timescales of the feedback (~ 0.1 to 1 ms). Thus, as discussed in the
introduction to this section, the cancellation of intrinsic plasma
island by the applied helical field will be transient.

3.2 The Flip Mechanism

In order to find a description of the variation of island width with
time we choose the following representation of magnetic flux:

W= (a(t)lbt + Icwh)e
where w w are solutions of the marginal force balance, Eq (10), with
w (r ) = 1, wh (r ) = 0, and at the edge (r = 1) ¢ satisfies the
tear1ng mode boundary condition [Eq 7(b)] and Yy sat1sf1es the helical
coil boundary condition [Eq 7(a), with IC 11. The flux reconnecting
on the island separatrix is determined by the current at the X-point

dt o CID (12)
The various scalings for reconnection are equivalent to scalings for

J (rx) given the total current. For a forced reconnection, such as
occurs when the helical coils are turned on, Sweet-Parker reconnection
£J (r ) a(n/S)-"1 can occur. For strongly forced reconnection other
sca11ngs can occur [24]. For non-driven reconnection the current
inside the island is to lowest order constant and independent of




resistivity. In this case Rutherford reconnection occurs and the
island width (W) evolution is given by [25]

daw _ -1

dt 1.66 At S (13)
It should be noted that the Rutherford scaling of the tearing mode is
reproduced by our numerical simulations to excellent accuracy.

The island width variation in the general case including forced
reconnection due to the helical coil is essentially a combination of
Eqs (9) and (13)

a - N, 8¢ n
gt - 1.66 Ay g ¥ rsq' WS Jh(rs) (14)

In the non6 linear regime the current due to the helical coil,
JhaIC(S/n) /W; analytically 6=0 but as noted above the numerical
results indicate 6=0.14. Substituting for Jh into Eq(14) we have

1-6
(n/S) I
dWpo-afo asihifiyed. T
SEe SE e (15)
with a = 1.66 A. and b = 3%, ¢
- t = rsq' :

This equation can easily be integrated, yielding the implicit time
dependence of the island width

JA(NO - W(t))

has$ > .
t = [W(t) wo + {\ tanh-t ( N WOW(t) )]

na

(16)

where wo =W(t =0), and A = bIC(n/S)-ﬁla.

In Fig 3 we plot the island size versus time for several different
resistivities and a helical coil current of I_ =2 x 10-3*. The
equilibrium in this case, q = 1.1 (1 + 232r®)*-¢, is tearing mode
unstable and the calculation is initiated with a 4.2%, m = 2 island at
t = 0. The other parameters are nul/JZ, with the phase of the helical
coil island exactly opposite (180° in &) to the initial plasma island.
Results of the full numerical treatment are represented in Fig 3 by the
solid Tines, whereas dashed curves correspond to the analytical
solution, Eq(16). The required constants (a, b) in Eq(16) are obtained




from solving with IC = 0 (see Fig 4) which gives a = 2.36 (for this
equilibrium) and b = 49.5, is obtained by matching to the time to drive
W to zero at S = 10® (see Fig 3). There is reasonable agreement
between numerical and analytical results in Fig 3. Note that slight
deviations for the S = 10% case are probably due to effects of the
current penetration phase which are not taken into account in the
analytic analysis. In Fig 4 an equivalent comparison of Eq(16) with
the numerical results 1is made for various helical coil currents with
$=10%. Again there is reasonable agreement between the analytic and
numerical results; the worse agreement at the lower current
(I =2.5 x 10-%*) is probably due to this case having a longer linear
phase From Eq(16), and from Figs 3 and 4, we see that after the
island width has reached zero, it then grows again, but with its phase
'flipped' to align itself to the phase determined by the helical coil.
For the feedback system to work, this flip time (Tf) must be longer
than the feedback system response time (t_.); this places an upper limit
on I_. Alternatively a lower 1imit on I_ is placed by the requirement
that the island width decreases in time (dW/dt<0). Thus the role of
the phase flip is not to determine Ty but is to determine the
permissible range for I Estimates of requ1red I will be given in
Section 4.

3.3 Torque Mechanism

In the previous section, we assumed that the helical coil field was
exactly anti-phased to the intrinsic plasma island. Of course, in
practice there will be a relative phase error between these two fields
and as we shall show, this leads to a net-torque which causes the
island to rotate. This torque mechanism is discussed in Ref 26.
Ignoring the convective derivative term in Eq (3), integrating twice by
parts over r, and averaging over 0, z gives

??9 ws = ??_ mC]O (17)
ar

d (Ll m
Tovdn B3 Vsadl 5.7 [
0 80 2 ar

dt

where the subscripts 'c' and 's' denote Cosine and Sine components
respectively, Ve is the m=0, n=0 poloidal flow (= d¢o o/dr) and we

have retained only the m=2, Y components. Using the boundary
conditions Eq (7) we find that

b}

m
n [f rt Vo, drd =2 T vl (18)

™o

where we are using the assumption that the helical coil only has a
Cosine component. Hence the magnitude of ws determines the phase error



between the Cosine helical coil field and the magnetic island. We will
denote the phase error as BO in the poloidal plane. From Eq(18) we
then find that

d 1 ,
@ f . rEVgundrli ad TpoWsaSin 26y (19)

This equilibrium poloidal flow (Veo) results in the plasma island
rotating to align itself with the phase determined by the helical
coils. The timescale of this torque rotation places an upper limit on
the response time of the feedback system (TO).

We may calculate this spin time from the helical coil (wt) and tearing
mode (wt) basis functions introduced in the previous section.
Neglecting parallel viscosity we find that the island can slip over the
magnetic surfaces outside the island. To calculate the acceleration of
the island due to the torque we integrate the m=n=0 poloidal component
of the equation motion across the island.

dv przW d2e r.tW/2
005i nintS O _ m S
prsw TTEE e 13 T f i rIm(w(rS)JZ(r)) dr (20)
§95°rY W/2

We note that this integral may be represented in terms of the basis
function as

1 r5+w/2
r

r.+W/2
_ pdyy"s
rJZdr L ]rs_w2

dr = a(t) Ai(W) + AIC (21)

rs—W/Z

where A is the discontinuity in dwh/dr at r..

Thus

d*8, . ; mI.q'WA .
I = ﬁ —“"B-rST S1n 280 = CIICN Sin 280 (22)

We may solve this equation in the 1imit that the initial angle, GI<<1
and that J(ZClICw)t<<1 to find

d8
HEQ - mveo = 2 9C,T Wt (23a)




and

90 = 81(1 + Cylcwtz) (23b)
These results are again borne out by the numerical simulations. Figure
5 shows that the relation Eq (18) is well obeyed by code. The
equilibrium in this case is again g = 1.1(1 + 232 r®)*-* with $=10°,
n=1/JZ, IC = 108, 80 = 45° and an initial island, wI= 3% raIns facts
apart from ignoring the convective derivative Eq (18) is exact and
confirmation of it with the code provides a useful check on the
numerics. Figure 6 shows the various scalings predicted by Eq 23(b)
are reproduced by the code; Figure 6(a), (b) and (c) showing the Ic, BI
and W scalings respectively. The curves do not show the linear time
dependence predicted by Egq 23(b); this appears to be because W changes
in time an effect not considered in deriving 23(b).

The 'flip mechanism' discussed in the previous section also produces an
apparent variation of the island phase. Hence, to determine the
contribution of the torque mechanism to the change in island phase, we
calculate the change in phase with the torque mechanism artificially
suppressed (ie, Ve = 0) and subtract the result from the equivalent

0

case with the torque mechanism enabled. In this manner, we can
calculate the change 1in phase (88) caused by torque mechanism
(alternatively as in Fig 6 we can use V8 as a direct measure of the

0

strength of the torque mechanism). Figure 7 shows that the change in
phase (06) is weakly dependent on S, by plotting 66 time for S = 10°
and 3 x 10%, the equilibrium being the same as that for Figs (5) and
(6).

4. PARAMETERS FOR JET FEEDBACK

We are now in a position to examine the constraints on a feedback
system imposed by the flip and torque mechanisms described in the last
section.

The equilibrium dependent constant C, in Eq(22) may be estimated for
the cases considered in Figs 5 and 6, to be ~ 6. If we consider the
coil island to have a poloidal phase of 90° and let BI be the initial
phase of the plasma island, then the time (Tspin) for the torque
mechanism to rotate the island from BI to 90° is

m, 1(6;)
N g = (24)

T . =
spin 5 %
I (cllcw)% (Cos28; - Cos20)%  (CiIW)




Evaluating I(BI). numerically for BI =8%,1:108 and.20° .gives
I(GI) = 2.7, 2.22 and 1.76, respectively. To evaluate this time
(IS in) we must determine the necessary helical coil current Ic‘ In
Sec{ﬁon 3.2, it was shown that the role of the helical coil current is
to control the timescale for the plasma island to be reduced in size by
the applied helical field. Unfortunately, it was also shown that
continued penetration of the applied field leads to a flip instability.
Thus, for the feedback to work, we must apply a helical field that is
large enough for the field to penetrate and the island to be reduced in
size but small enough that the flip mechanism does not exceed the
response time of the feedback system.

The requirement that the island width be reduced in size by the
feedback current in the helical coil is given by Eq 15,

b(n/S)_élc

T > a (25)

For JET like parameters (S=5x107, W=3%) this gives IC>5x10" (or
current in helical coil >0.05% of the plasma current); where the
parameters a, b are taken to be those relating in Figs 3 and 4.

For this value (IC =5 x 10-*), the spin time [Eq (24)] assuming a
phase error of 0, = 10° is 240 Ty which ~ 0.05 ms. These values may be
scaled to other assumedyparameters by noting that Ica W2 from Eq (25)
and Ispin%(WIC81n 281)‘Z from Eq 23(b). This spin time (0.05 ms) may
seem rather rapid but it must be remembered that the simple MHD model
used includes no viscosity effects which would tend to couple the flow
(Veo) in the vicinity of the island to the rest of the plasma. If the
whole plasma rotates poloidally with the island then the spin time

becomes 0.5 ms. Further if poloidal rotation 1is inhibited by
neo-classical effects then the toroidal torques, which are € smaller,
will lead to 1/4e 1longer spin times. In fact comparing the

acceleration (and deceleration) of rotating m=2 instabilities with
applied helical fields on TOSCA [10] does indicate that the observed
effects are weaker than those which would be expected from poloidal
torque and are more consistent with the strength of the toroidal
torque.

5. SUMMARY

The necessary timescales and currents for a helical field system to
feedback and stabilise the m=2 tearing mode, have been studied.
Analytic and numerical solution of the reduced tokamak equations have
been used to analyse two effects which play a role in determining the




feedback system parameters. Firstly, since the time for full
penetration of the applied helical field (~ 0.05 tR) is far longer than
relevant timescales (3 1 ms), the cancellation of the plasma island by
the applied field is necessarily transient. Continued penetration of
the applied field then leads to a rapidly growing island in phase with
the applied field. These considerations mean that the helical coil
current must be large enough to cause the m=2 island size to be reduced
in time but not so large that the mode flips in a time less than the
response time of the feedback system. The second mechanism which
dictates the timescale for the feedback, occurs because the feedback
field is inevitably not exactly anti-phased with the plasma island.
The result is a net torque which causes the plasma island to align
itself with the island of the -applied field, thus defeating the
feedback system. Estimates for JET with a 3% plasma island and
loophase error show a required response time from the feedback v 0.05
ms (0.5 ms if the whole plasma rotates), and a current in the coils of
2 0.05% of the plasma current. It must be remembergd, however, that
the 'coils' are idealised and produce a pure m=2 B field. For
realistic discrete coils (with a broad Fourier spectrum), the required
currents will be larger.
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Figure Captions

Fig 1 Comparison of expected scalings for penetration of fields in (a)
the linear phase and (b) the non linear Rutherford regime. The
broken Tine in (b) is that predicted by the scaling law.

Fig 2 Penetration of magnetic field from (2,1) helical coil for tearing
mode stable equilibria [q = 0.7 (1 + 2.75 r2)].

Fig 3 Time evolution of 4.2% (2,1) magnetic island when a helical
current Ic =4 x 10-® is applied. Results are shown for several
S values, the solid curves are the numerical results and the
broken curves are from Eq (16). '

Fig 4 (2,1) Magnetic island width evolution for various IC, all other
parameters as Fig 3.

Fig 5 Comparison of %f [Iérzve dr] computed directly numerically and

evaluated from Eq (18).

Fig 6 Scaling for Maximum of Veo (at %rs) with, (a) IC for 8I=0.1, W=
3.6%, (b) 81 for wI=4.24%, IC:10-4 and (c) wI for IC=1O-‘,
BI=0.1, in all cases $=10®, The broken curve in each case is the
scaling law prediction for the upper curve from the lower curve
values.

Fig 7 Variation of 08 with time for IC = bx 10-%, 80 = 45°, and S =
108, 3 x 1068,
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