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9. RADIOFREQUENCY PLASMA HEATING and CURRENT DRIVE

E. CANOBBIO and R. CROCI

Abstract

The mechanisms underlying radiofrequency plasma heating and current drive in closed
configurations are considered together with the theoretical tools describing them, with
just a brief mention of the actual experiments (see the other chapters). The heating
schemes of interest for thermonuclear devices span a wide range of frequencies from
the Alfvén wave resonance to the ion—cyclotron, lower hybrid and electron-cyclotron
resonances. Heating at frequencies below the Alfvén wave resonance (magnetic pumping
in its numerous versions), which is of limited thermonuclear relevance, is presented for
its fundamental aspects — more than any other heating scheme it involves properties
of particle motion in the large which are specific to the magnetic traps — in order to
provide a broader and more integrated view of the whole subject. The areas covered in
the various sections are indicated in the table of contents. Special attention is devoted
to the following:

in Sect. 9.2, the relation between power absorption, flow and source terms in the
Eulerian and in the (more useful) Lagrangian description; in Sect. 9.3, the adiabatic
single—particle behaviour (with application of the three adiabatic invariants to various
kinds of heating) and a relativistic effect of cyclotron resonance which already fully
manifests itself at low speed; in Sect. 9.4, the interplay of Doppler effect, particle
trapping by a wave, and collisional diffusion in velocity space as a) the key to the
general behaviour of wave-particle resonant interaction, and b) as the cause of the
Fokker—Planck-like diffusive character of the slow-time-scale response of plasmas to
waves when particle trapping is negligible; in Sect. 9.5, a new quantitive derivation
of quasilinear velocity space diffusion and ponderomotive plasma density shaping; in
Sect. 9.6, the body of basic properties and heating-relevant aspects of waves in confined
plasmas; in Sect. 9.7, a global view of RF energy flow, accessibility of resonance surfaces,
mode conversion and power absorption with reference to the specific heating schemes
used in fusion devices; and finally, in Sect. 9.8, a general model of the behaviour of
lower hybrid waves launched by finite-length antennae, which solves both the spectral

gap and the density limits problems.




9.1 Introduction

In a closed magnetic configuration, there are two ways of achieving cross-field penetra-
tion of external energy for the purpose of heating the bulk plasma (as well as for current
drive):

a) with neutral particle beams. The neutral particles must be of sufficiently high
energy that they do not ionize until well inside the plasma. Conditions have to be
such that the ionized particles lose kinetic energy in Coulomb collisions with less
energetic charged particles before they suffer charge exchange (with like neutral
atoms) or diffuse out of the plasma. This is discussed in Chapter 8.

b) with electromagnetic fields. Conditions for energy propagation and absorption
within the plasma exist over a wide range of situations, but are less straighforward
than in the previous case. In this chapter special attention will be devoted to de-
scribing and clarifying the physical mechanisms underlying the various heating and
current drive schemes, whereas only a brief mention will be made of the experi-
ments, which as an integral part of most thermonuclear confinement experiments
are covered in other chapters.

Broadly speaking, RF heating can be considered as sufficiently well understood,
with the notable exception of some essential aspects of lower hybrid wave heating and
current drive, a fact which justifies the term ”problem” in the heading of Sect. 8 of this
chapter. What is not yet sufficiently understood is the degradation of the confinement
characteristics of all auxiliary—heated plasmas, by both neutral beams and RF fields;
but this is an entirely different story, which will not be considered here.

References are limited to papers providing additional information useful for a better
understanding of specific topics, often irrespective of priority and historical importance.

In agreement with the cited literature gaussian units are used throughout, at va-

riance with the other chapters.



9.2 Macroscopic Conservation Laws

When applied to plasmas in their own and in external EM—-fields, Poynting’s theorem
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casts energy conservation into a similar theorem

-
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where &r and Qg are, respectively, the density and flow density of the kinetic energy
(macroscopic plus thermal). Thus, when ; E is a source of EM-energy, it is a sink of
kinetic energy, and vice versa.

If a plasma volume V is enclosed by a surface through which the total flux of Cj k

vanishes, (9.2) gives

f%ek dv = /}'-E‘dv. (9.3)

v |4

Accordingly, the plasma in the volume V is heated if the time average of the RHS of
(9.3) is positive.

The above equations also show that the heating power deposited by an EM-field
into a plasma is some fraction of the time average of the integral of ;E" over the
volume of the EM-field source.

It should be clear that ; E need not be equal to %&; , not even on the time aver-
age. Consider, as an example, a low- 3 Maxwellian plasma heated by a low—frequency
(w < wei, the ion gyrofrequency) extraordinary wave (E; = 0). It will be shown
later (Sect. 4) that, either directly or through Landau damping (and the like), Cou-
lomb collisions cause the induced current — here the magnetization current — to have
a lossy (anti-Hermitian) component; in this case —rof (v (7) %5) . Here « is a small

non-negative real scalar proportional to the plasma pressure p(7), which is supposed
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to vary smoothly on the ion gyroradius scale length. Then, by Faraday’s law and with

the complex conjugate being indicated by an asterix it is found that
1. fa @ o _ = ¥
SRe (7-8) = 2 (7) rot B + div [%’y (7) Re (E* x rotE)], (9.4)

which is nothing else but the time average of (9.2): the first term of the RHS, the
absorbed power density, is always positive, while the second term, the heat flow induced
by the EM-field (for a single particle calculation of a special case see /9.1/), can have
different signs in different regions of the plasma profile. This is best seen in the case
of an x-dependent Cartesian plasma slab with B, along the z-axis, in which case the
RHS of (9.4) is simply proportional to

p(m)aia(m,z,t) - % [p(m)Re (E‘*(z,z,t)iﬂ(x,z,t))] , (9.5)

T dz

E(z,z,t) being the y-component of the E -field, which is allowed to propagate in the
z— and z-—directions.

In a uniform plasma region where expression (9.5) reduces to

2

—pRe (E“(m,z,t)%f)(x,z,t)) ; (9.6)

we take E(z,z,t) = Eexp(i(kyz+kiz—wt)) and consider the Alfvén wave dispersion
relation in the two cases,
a) k=0, ki=z=%(w/VvaZ+es?)(1+im), (9.7)
b) es? < (w/ky)? < va?, ki = Liky(1—inz) (a surface wave). (9.8)
Here c¢s and wy4 are the sound and Alfvén speeds, respectively, and 7n; and 7,
are small positive quantities proportional to the plasma resistivity /9.2 /. When the
wave is travelling across B, (case a)), the time-averaged ; . E_f, given by (9.6), is
positive and the last term in (9.5) vanishes. When the wave is evanescent across B,

(case b)), such an average is negative and, incidentally, just equal to minus the first term
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in (9.5). The different nature of the interaction in cases a) and b) is actually already
apparent from egs.(9.7) and (9.8). Equation (9.7) states that dissipation simply damps
the propagating wave, the damping factor being proportional to e~wmz/yvaites?
while (9.8) states that as a result of dissipation the surface wave gives rise to the
emission of a travelling wave proportional to e—kizei(kmzz—wt) A similar result can
be found when the losses are due to Landau damping (and the like).

Returning now to a plasma profile which is x-dependent, we notice that it is the
regions where one has % # 0 that contribute positively to the RHS of (9.4).

By subtracting from (9.2) the equation for the macroscopic kinetic energy derived
from the momentum and continuity equations, one gets for the internal (thermal) kinetic

energy density

8 (3 .5
7 (EnkT) + div (Hk +v- 11+ EnkTﬂ') =
(}— 5) - (B+5x Bfc) +5-divfl+ 5 grad (nkT), (9.9)

where € is the net electric charge density, IT the traceless stress tensor, and §k the
flow density of the internal kinetic energy in a coordinate system in which the plasma

is locally at rest.

From this equation, with the continuity equation, one gets for the entropy per

particle, defined as s =1n ((nkT)%/n%) '

3 _ e I J
E(ns)-&dzv (nsﬁ'—l—s—;-i--ﬁ-v) =E(‘]—EU)'(E+'{TXB/C)—

—

i 1 ;
T grad (In kT) — (kT -gra,d) - 7. (9.10)

The first term of the RHS of egs. (9.9 and 10) involves the work performed by
the electric field in the co-moving coordinate system on the conduction current density

induced in the plasma. The two remaining work terms on the RHS’s, when considered
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as quadratic terms in the EM-field amplitude (by proper use of the linearized versions of
the various equations of the system, including (9.9) and (9.10) themselves), represent the
two other possible irreversible plasma heat sources: relaxation of temperature gradients
by heat conduction and relaxation of velocity shear by viscosity /9.3/.

Equation (9.10) immediately shows that when time and space scales are such that
the plasma is frozen to the B -lines of force, and the ohmic, viscous and heat flow terms
are negligible, the process induced by the EM-field is adiabatic: -c% (kT/ng) ==

In general, however, egs. (9.9 and 10) are of little use for evaluating the absorbed
power density. A straightforward way to do this is found by abandoning the Eulerian
viewpoint for the Lagrangian one. The rate of change of the single-particle energy
(species a ) due to an oscillating EM-field, Ko , is averaged over velocity space. Then,
after complex quantities are introduced, the time mean value of the absorbed power

density is
1 i
Py = > Re UKQ 2 d%] : (9.11)
where f, is the a—particle distribution function, which in first order in the EM-field
amplitude obeys the Boltzmann equation

d

. 1
nga - ch EfﬂM = Ca o _Va:fcx 3 (9.12)

here % is the total time derivative following the unperturbed particle trajectory

in phase space, C, = Z,@ Cop(fas f) is the collision term and v, the collision
frequency for the species a (which, in general, depends on all species); for simplicity,
a Maxwellian unperturbed distribution function has been assumed. The point that is
important to stress here is that the very presence of a dissipative term provides f,

with a component in phase with Koy fo:

fo ~ fartKa/ kTs, (9.13)
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which makes a positive contribution to (9.11), while the presence of the total deriva-
tive, besides contributing to the value of the positive proportionality factor in (9.13),
introduces an fi component 90° out of phase with Ko which does not contribute
to (9.11).

It is (9.11) that will be used in this chapter whenever the absorbed power density
is needed, with the obvious exception of the cases where conditions are such that the
actual shape of f,(v) is immaterial. Indeed, when the EM—field is not an oscillating
function of space, e.g. when g(t) is a uniform axial field pulsating with w <« w¢; ,
there is no Doppler effect and it is simpler to consider just a single, say thermal, particle

/9.4/. Such situations are investigated in the next section.

0.3 Single—particle Aspects

There are few exact solutions of the equations of motion of a charged particle which are
also directly relevant to the study of wave-particle interactions for the purpose of plasma
heating and current drive in magnetic traps. The most important one, uniform circular
motion orthogonal to B (Larmor gyration) and uniform straight motion parallel to B
in the case of a temporally constant and spatially uniform B —field (in the presence of
a constant & | —field, the above holds in a Galilean E x B —convected frame where E 1
vanishes), plays, of course, a fundamental role in the adiabatic case of EM-fields which
change only a little on the temporal and spatial scales of Larmor motion. The following
is a brief discussion emphasizing some basic aspects of Alfvén’s adiabatic theory on
which usually both elementary and advanced treatments are insufficiently explicit.
While accelerated along B by E| and by the changes of B along B', a charged
particle drifts across B with a velocity vector vp which depends on the changes of B
along a direction orthogonal to both B and #p. In the Galilean frame of reference,
which moves with the instantaneous velocity vector vgc = v”(t)g + vp , the particle

performs a gyratory motion orthogonal to B around a Guiding Centre (GC). There are
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field configurations for which the orbit of such gyratory motion is along a closed path; in
general, however, such an essentially planar orbit is an open spiral [iff;(ﬁ'— vcc)? #0).
The arc of the spiral which is left behind by the particle in performing one complete
rotation, starting from one phase value, can always be ideally closed by joining the
two ends of the arc by means of a (small) segment taken along the radius vector. The
remarkable fact is that on this virtual particle displacement the work of the E —field
(which is solenoidal) is negligible. This is exemplified in the two special cases,
1) B = e:B(t) with E(F,t) = —B(t)ey x 7/2¢ , where 7 refers to the GC
position, and
2) constant, divergent, axisymmetric B(7,t) = (e(2)r, 0, B,(2)) in local cylindrical
coordinates with axis tangential to the B -line of force which carries the particle

GC, and with origin (r=0, z=0) at the GC position. In such a Galilean frame the

Lorentz force, £(7— vgc) X B, is again essentially radial.

As the gyro-phase is a physically ignorable variable in an adiabatic situation, one
can conveniently get rid of it, whenever expressions involving the gyro-components of
position and velocity occur in the equations of motion, by taking their time average
over the gyro-period T along the artificially closed orbit. Such a procedure has a
far—réa,ching consequence owing to the use of Stokes’ theorem. For example, if S is
the surface enclosed by the orbit, and 7 is the unit vector perpendicular to dS, with

Faraday’s law one has

/E-ﬂ'dt:ng-d[:frotE-ﬁ'd.S':——/B-ﬁ'dS. (9.14)
¢

T 5 s
By means of the mean—value theorem the last term on the RHS of (9.14) can be written

essentially as —Wp%,B/c . Considerations of this kind naturally lead to the introduction

of a magnetic moment

Lo o
,u,:Em( — 9gc)?/B, (9.15)



which is thus proportional to the magnetic flux enclosed by the gyration orbit closed
ad hoc (there is no B —flux leakage through the closure) as viewed from the Galilean

frame of reference in which the GC is instantaneously at rest.

The remarkable fact is that since such a magnetic moment is actually an action
integral §p’-dg in the Hamiltonian sense, it is an adiabatic invariant of motion (some-
thing differing from a strict constant by an exponentially small function of the rate of
change of the EM-field). The immediate benefit of the (adiabatic) invariance of p is

that it provides an explicit knowledge of (v — vgc)?.

There are adiabatic situations where what has been said so far can, in principle,
be extended to particle motion in the large. For this purpose we consider a ficti-
tious toroidal trap whose toroidal and poloidal B -field components satisfy condition
g=rBr/RBp <1 (r and R are radii taken along, respectively, the minor and major
radii of the torus). The GC of a passing particle /9.5/ gyrates around the magnetic
axis, only slowly drifting across the B —field lines (almost toroidally in this specific
case). Connecting the ends of the GC trajectory arc after a complete gyration around
the magnetic axis by a short segment along #p results in a virtually closed trajectory,
thus allowing the introduction of a second action integral. This is the so—called longitu-
dinal adiabatic invariant associated with the B —flux through the virtually closed GC
trajectory (being essentially the toroidal B —field flux in the present example). Finally,
because of ¥p , a passing particle also encircles the main (vertical) axis of the toroidal
trap. Connecting the ends of the average GC trajectory arc after a full rotation about
the vertical axis, by a short segment along the B x #ip — direction, again results in a vir-
tually closed trajectory, thus allowing the introduction of a third action integral. This is
the so-called flux adiabatic invariant essentially associated in the present example with

the poloidal B —field flux enclosed by the magnetic axis.
Analogous considerations could be developed for other configurations, including
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tokamaks.

Both 2nd and 3rd adiabatic invariants, because of the implied loss of information
concerning the actual particle position along the relevant trajectories, are of less general
practical interest than u , their usefulness being limited to situations like those evoked
at the end of the previous section, which we shall now consider in some detail.

We first discuss gyrorelaxation /9.4/, which is a direct consequence of the invariance
of u of non—colliding particles in a pulsating magnetic configuration with w < wc.
We consider a pulsating uniform, axial ﬁ(t) (case 1 above). By taking appropriate

moments of Boltzmann’s equation (9.12) we can simply write in this case

d d

t_i;(“B + €||) = MEB’ (9.16)
d d
—(uB —2¢)) = p— B —v(pB — 2¢), (9.17)

dt dt

where pB and ¢ are, respectively, the averages of the perpendicular and parallel
kinetic energies of a thermal particle, and use is made of the fact that the temperature
anisotropy relaxes in a scattering time for the velocity vector pitch—angle of the thermal

particles, which thereby do not appreciably change their kinetic energy. Eliminating

¢ from (9.16) and (9.17) results in the second-order linear differential equation

i 1d_.d v 1d
EM‘F (U+ Ea"E.B)“lL-’r—;L——B:O. (9.18)

For %%B = wAcoswt, with A < 1, (9.18) is of the Hill type and has a solution
proportional to €7 (1+ AM(t)), where M is a periodic function and «, the heating
rate, is approximately equal to v(wA/3)*/(v* + w?), which is maximum for w=v.
In a tokamak, time modulations of By , the vertical component of B , Tesult in
time modulations of the plasma major radius R and, consequently, of puB (propor-
tional to 1/R) and ¢ (proportional to 1/R?%), the latter as a consequence of the

longitudinal adiabatic invariant of non—colliding particles. The possibility of plasma
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heating by collisional relaxation of such oscillations of the temperature anisotropy was
considered by ARTSIMOVICH /9.6/. Paradoxical as it may sound, heating by magne-
tic pumping does not require “fi—‘? # 0. In a tokamak one could imagine modulating
the toroidal magnetic field Br in time to put it 180° out of phase with By so that
the plasma experiences a constant B—value during oscillation of its major axis. Owing
to the longitudinal adiabatic invariant, the pump is now working only on the parallel
motion %e” = —25”%111}% ;

It is left to the reader to convince himself that there are situations (e.g. for ¢ < 1)
where both B and R remain constant but heating by magnetic pumping can still occur
on the drift motion as a result of the third adiabatic invariant.

Before leaving the domain of adiabatic approximations, we shall briefly comment
on the issue of the time average of the component of the Lorentz force, F”, in the
direction of motion of the particle GC, on the assumption that the EM—field amplitude
varies adiabatically along such a direction but not necessarily in the other directions. In
the case of the non—uniform, time-independent B, —field considered so far (a case which
is adiabatic in all directions), F| is the parallel gradient of (—uBo). In the presence
of a time-oscillating irrotational electric field E(s)sinwt, with w not restricted to
much less than the gyrofrequency w. (here s is the distance along a B, -line of force)
a first—order Taylor expansion of the EM—field around the GC that uses the expressions
of the forced oscillations of the particle at s results in a quadratic expression for F”

in the form of the gradient of the so—called ponderomotive potential

e’ E2(s) Ef(s)
_ [E (w2 —J“wf(s) + llﬂ ) + pBo(s

It is interesting to recall that also in this case the gyratory motion is simply de-

(9.19)

scribed by wu = const., because rot E = 0. This ponderomotive effect can be applied

to particle acceleration or confinement /9.7/.
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In general, it is useful to visualize the unperturbed (i.e. in the absence of the
EM-waves) motion of a (non—colliding) particle confined in a toroidal configuration
as the superposition of time averaged (almost uniform) motion of a GC along certain
trajectories and of oscillatory motion about the GC. The former includes average motion
along B, as well as the almost vertical (in the tokamak approximation) Eo —curvature
and grad B, drifts. The latter includes primarily the gyratory motion, but also the
oscillations along B, in the By ~ % well.

In the presence of an EM—field such that E(7,t) - #(t) does not identically vanish
during the particle motion, a resonance occurs when the wave frequency perceived in a
Galilean frame performing the time averaged GC motion with velocity v,, either va-
nishes or is commensurable with the eigenfrequency w. of the corresponding oscillatory

motion:

M(w — k - Tay) = Nw,. (9.20)

Obviously, not all integers M and N are equally important. The harmonics of the
Doppler—shifted applied frequency are unimportant if the particle displacements driven
by the pump are small in relation to the local wavelength of the EM—field, while the
harmonics of the eigenfrequencies are unimportant if the elongation of the unperturbed
single—particle oscillations is small in relation to the wavelength. These statements can

be verified by using the Bessel function identity
et')\ cosz __ Z Jn()\)einz (921)
n

applied to the space dependence of the EM-pump: e%% = e'(k#+k2eac)  Ip the former
case one has z,s. ~ cos(wt — kZ) , in the latter zysc ~ coswet .

For N =0 , (9.20) is the Cerenkov condition, which is exploited in Landau (and
like) damping. With k- Toy 2 k|v)jav the second adiabatic invariant is no longer a

constant, while with k- Ugy & EJ_ U1 gy the third adiabatic invariant is destroyed. If
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we is the gyrofrequency, waves satisfying condition (9.20) can destroy the invariance of
p and are used in cyclotron heating. It should be noted that N can be positive or
negative. The latter case is referred to as the anomalous Doppler effect: the absorption
of a wave by a particle is accompanied by an increase in the longitudinal (parallel to
B, ) energy of the particle and by a decrease in its gyroenergy (nearly elastic scattering).

Considerable insight into the gyroresonant interaction for M=N=1 is provided by
studying the motion of a charged particle in a constant magnetic field and a circularly

polarized, plane EM—-wave propagating along the field:
B = B,&, + nE [, cos(wt — kz) + &, sin(wt — kz)],

E = E (&, sin(wt — k2) — €, cos(wt — k2)],

with k& = wn/c. In such a field, both the non-relativistic and the relativistic equations
of motion can be solved exactly /9.8/. Let us consider, for simplicity, a low—amplitude
wave and a particle initially at rest and in resonance with it: w = ¢Bs/mo.c (q is the

electric charge and m, the rest mass of the particle)
E/(Bon®) <1 (for the non-relativistic equations).

E/(Bo|n* —1]) <1 (for the relativistic equations)

In the former case the ratio of the kinetic energy of the particle to its rest energy
is found to oscillate between 0 and 2(E/(Bo.n?))% with period T so that wT =~
4.86(B,/(nE))? ; in the latter it oscillates between 0 and 2(E/(B.|n? —1[))%, with
wT =~ 4.86(B,/E)% /|n* — 1|5, and when n? =1 the kinetic energy increases indefi-
nitely with time, the Doppler and mass effects just cancelling each other to maintain
resonance throughout the particle motion. In the classical limit there is no mass effect
and so resonance is maintained only when there is no Doppler effect (n = 0). By intro-

ducing the ratio R between the upper bounds of the kinetic energy excursions in the
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two cases, R = |n?—1|/n?, one sees that for any finite n?—value different from 1/2, the
relativistic and the classical results can substantially differ, even though in both cases
the particle speed remains arbitrarily small all the time (for arbitrarily small E-values).
This is due to a secular effect in the phase slip ¥(¢) between the perpendicular particle

velocity vector and E; indeed, in the classical limit one finds

d¥ 5
— =~ —w(nv/2c)? (— — O(cos \IJ)) ; (9.22)
dt 2
while relativistically
5
%‘i_’ ~ w(1 — n?)(v/2¢)? (5 - @(cos\P)) , (9.23)

where ©O(z) is the step function.

Thus, the function |¥|, which can be obtained from (9.22) for n? > 0 and from
(9.23) for n? # 1, monotonically increases with time. This is the secular effect. The
particle gains energy from the wave if 0 < |¥| < n/2, and loses energy to the wave
if 7/2 < |¥| < 7, and so on. The point is that |¥| will always (sooner or later)
go through all these intervals, no matter how small FE/B,, and hence wv/c is. The
difference between the relativistic and the classical results is due to the different factors
which precede (v/c)? in the two equations (9.22) and (9.23) for the time rate of change
of ¥,

This discussion should suffice to correct the current misconception that relativistic

effects need high speeds to become appreciable.
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9.4 Velocity Space Aspects

Energy flows unidirectionally from an EM-wave to a plasma if there are more plasma
particles absorbing energy from the wave than particles giving energy to the wave. We
discuss the case of a travelling monochromatic wave with a E—component parallel to
B, y By = —bB,cos(kz — wt) , which we suppose to be of small but finite amplitude
and of low frequency (w < w, for the considered particle species). As, in the absence
of collisions, one has u = const., the wave traps particles in the low [B, + By|-
regions if |9 — w/k|? < 2b0% , where the tilde indicates values at the points where
|Bo + By))| is minimum. In a coordinate system moving with the wave the trapped
particle trajectories on the phase plane (Fig. 9.1) appear as nested closed orbits, while
the untrapped particle trajectories appear as long wobbly lines. The border between
trapped and untrapped trajectories is called the separatrix. The phase-plane region
enclosed by the separatrix is called island. In the absence of collisions there is a steady—
state f which is constant along particle trajectories. In this case, the distribution
of particles along v is symmetric with respect to each resonant v —value given by
(9.20). There is thus no flow of energy from or to the wave. There is an energy flow when
Coulomb collisions, no matter how few they are, are included. Coulomb collisions tend
to smear out any deviation of f from a Maxwellian. As the dominant contribution
to scattering in velocity space is made by the small-angle distant encounters rather
than by close encounters which completely change the particle velocity vector but are
much less frequent, the collision operator Cy in (9.12) has the Fokker—Planck form

describing diffusion and drag in velocity space /9.3/ as

) A d
Co = divy {Dcau -gradg f — (aﬁ) f} . (9.24)
coll

Here |Deon| = ve(#)v?/2 and (£9) cont ® Ve(V)U, where v (v) is the frequency of a

90° deflection resulting from long-range Coulomb encounters and vZ = 2kT/m. The
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expression in curly brackets is linear in fif f deviates but slightly from a Maxwellian.
From (9.24) one can see that the time scale for restoring a Maxwellian slope over the
velocity range where particles are trapped by the wave, Ay = vt\/(%) , is the reci-
procal of an effective collision frequency v.fs given approximately by u(ut/Av”V e
v/2b, where v = vc(v:).On the other hand, the time scale for plateau formation
in f over Aw) is given by the bounce time 7p of the trapped particles: 7p =
27 [|w — kyjv||maz & 27r/k“vt\/f2b). If one has veffrp < 1, i.e. in our example
v< kilvt(Zb)%/Zw = v*, the average of f over times longer than w™!, f, is distor-
ted with respect to the Maxwellian in a parallel velocity range Av) =~ vt \ﬂ%) and the
difference between the number of particles in this range which are slower than the wave
and the number of particles in this range which are faster than the wave — difference
which determines the flow of energy between wave and particles — is positive and, for
v < v*, proportional to (v/v*). The quantitative treatment of the v < v* case

was carried out by ZAKHAROV and KARPMAN in /9.9/ in the case of an electrostatic

wave (for the present case see /9.10/).

If v > v*,thedistorsionsof f withrespect tothe Maxwellian fas aresmeared
out so that f = far. As the wave amplitude is taken to be small, (f — f) is a small
quantity changing rapidly compared to 1/v (as long as w > v), thus obeying a
formally collisionless linear equation. As a matter of fact, collisions simply replace,
successively, a particle leaving resonance conditions by a new indistinguishable resonant
particle at a rate larger than the oscillation frequency 1/7p, thus leaving unchanged
the number of particles which strongly interact with the wave. Thus, although v # 0,
the plasma heating rate is virtually independent of v when v* < v € w. As
is well known, in this case the quantitative treatment, originally due to Landau (for

electrostatic waves), is based on (9.12).
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We consider a pump wave such that

; =y o . ~
K :efa'o-E—l-uaBl = Kssin(k - 7 — wt), (9.25)

where 7, is the unperturbed GC velocity, which, for simplicity, is assumed to be
independent of time and space, and where it is assumed that either w <« w. or

E x B, =0, so that the gyrophase is not involved. Then, if one writes
f1 = focos(k -7 — wt) + fa sin(k - 7 — wt), (9.26)

equation (9.12) gives

vis — (kT —w)fe = Kafra/kT
vie+ (k-5 —w)fs = 0. (9.27)

Inserting f; from egs.(9.26 and 27) into (9.11) with d®¥' = 27 dv) d(v} /2) results in
an integrand containing the function v/(v? + (k- 75 — w)?). If one has v > w, the
collisional limit is recovered where the Doppler effect is ineffective, this being the situa-
tion briefly discussed in the previous section. If, on the contrary, one has v < w, such
a function is a narrow, bell- shaped function tending to #6(k - 7 — w) for v/w — 0.
In this case power dissipation is called Landau damping. Usually, the literature di-
stinguishes between Landau damping and Transit Time Magnetic Pumping (TTMP),
depending on whether it is the first term or the second term on the RHS of (9.25) which
really matters.

Let us now further discuss ion TTMP. If the parallel wave number of a wave with
w < w,; is chosen so as to satisfy the transit time resonance condition for thermal ions:
kvt ~ w, then in a low—f plasma one has |kjva| > w. Equation (9.8) thus gives
k? = —-kﬁ : the wave is radially evanescent, but with an acceptably long evanescence

length if Im{kra} =~ na/R < 1. Ion TTMP has been proposed as a plasma heating
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method in various versions, depending primarily on the nature of the driving term in

K,- , which for a tokamak reads

. o
Ki = ev) By + e(vﬁ +v2 /2)E1,/Rwei + ,uaBl, (9.28)

where z is along the vertical (symmetry) axis of the tokamak. The last term on the
right-hand side of (9.28) is the driving pump of the original TTMP version — the
compressional version — produced by ordinary m=0 azimuthal coils. The irrotational
E,|| ~component ensures charge neutrality in spite of the preferential action of the pump
on one of the plasma components when w A P kjv|j; . For a report on successful
experiments in a tokamak see /9.11/. TTMP can also occur with a torsional pump
By - B, = 0 characterized by a solenoidal E;, component, essentially constant along
z, sinusoidal in the toroidal coordinate, and weakly dependent on R /9.12/. It can
perform work on the particles owing to the existence of the vertical, unidirectional drift
velocity (again in the presence of an electrostatic Ejy) —component).

The characteristic frequency of these TTMP versions is between a few tens of kHz
and about 200 kHz. Other TTMP versions /9.13/ involve w = kEy -#,1: and ky— o0,
corresponding to operating frequencies from a few kHz to a few tens of kHz.

In the various cases the heating rate is roughly of the form ~gy = IE oi|* | B1/Bo|?
(with @,; takenfor |v| = vy ) so thatin order of magnitude the power density absorbed
is ﬁl% (E? + BZ) /87|. In a low—f plasma this is a small fraction of the available
reactive power density. However, the thermonuclear prospects of ion TTMP (in all its
versions) are poor for an even more practical reason: the first wall of a thermonuclear
device is opaque to EM fields with f > 100H 2. Thus, by the Faraday law, since the line
integral of ﬁl all the way round any closed path on such a conducting shell vanishes,
the instantaneous RF B —flux through any poloidal or equatorial cross— section of the
vacuum vessel has to vanish. As a result, if the instantaneous RF B —flux created by

the RF coils through the poloidal or equatorial plasma cross—section does not vanish,
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as here with waves which do not oscillate in space (see (9.8)), a large fraction of the
B, -field energy has to be between the RF coils and the first wall, where eddy currents
have to flow. Then the heating efficiency is the result of a compromise between two
contradictory requirements: diminishing the image currents in the wall while keeping
the plasma cross—section as large as possible. One realizes that the efficiency of any
ion TTMP version will remain disappointingly low even in large thermonuclear devices.
The conclusion is that the lowest practicable frequencies for efficient RF heating in
toroidal plasmas are the Alfvén frequencies w > IE - U4| at which at least on some

radial extent within the plasma column one has k% > 0 . This is considered in Sect.

9.7.

The general issue of the frequency dependence of the wave—particle resonance in-
teraction is best illustrated by plotting the heating rate ~g , which is proportional to
P (see (9.11)), as a function of v (Fig. 9.2). The upper curve in Fig. 9.2 exhibits the
existence of three different regimes. It is somehow paradoxical that ~y depends on
v when collisions are rare (but we know, as discussed at the beginning of the section,
that dissipation implies at least some collisions), and it is certainly unfortunate that the
intermediate regime, where v , although small compared with w, is sufficiently large
to prevent local distortion of the velocity distribution function f with respect to far,
is generally referred to as collisionless /9.14/. For comparison the case of gyrorelaxation
is also plotted in Fig. 9.2 (lower curve) with its two regimes. The difference, as we have

seen, is brought about by the Doppler effect.

The following proof of the formal similarity of Landau and cyclotron damping in the

*

v > v* collision regimes should suffice to convince the reader that the above qualitative

discussion actually applies to both damping cases /9.10/. The simplest case of cyclotron
damping occurs with a circularly polarized wave propagating along a uniform B, —field:

—

Ey(r,t) = Ei(€; cos(kz — wt) + €,sin(kz — wt)), where we use Cartesian coordinates
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with z taken along B, . By writing v, = vising and vy = vjcos¢, where
%q‘) = w,, for the velocity components, and the corresponding equations for the particle

coordinates x and y, we obtain

K = evy E;sin(kz + ¢ — wt). (9.29)

The calculation then proceeds as in the Landau case with f; = f;cos(...) + fssin(...)

and with

vfs — (kzvz+wc _w) fe= KfM/kT
Vfe+ (kzvz + we —w)fs =0, (9.30)

instead of (9.27).
Harmonic cyclotron damping occurs if the wave vector k has a component along,

say, the x—direction. In this case, the identity (9.21) can be used to write instead of

(9.30)
Ufs— (kzvz + nwe — w)fc = }&|Jn—l(kxvi/wc)|fM/kT|Jo(kmUJ_/wc)|

vie+ (kzvz + nwe —w)fs =0, (9.31)

where K can again be given by (9.29). When inserting f; as given by these equations
into (9.11) one has of course to set d®v’' = d¢ dvj d(v} /2). Notice, in conclusion, that
eqs. (9.25, 28 and 29) give the kinetic energy excursions of a non—colliding single particle,
but that the plasma temperature increase may well be much larger than these excursions:
the latter are just the basic steps of the random walk process in energy space to which
power absorption is ultimately due (even though this process is not explicitly exploited
in the actual calculation of P).

Finally, as an introduction to the quantitative treatment of the next section, we

present qualitative physical reasons why, when wave trapping is negligible, the average
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of f over the wave period evolves according to a diffusion process of the Fokker-Planck
type, where the so—called quasilinear diffusion coefficient, Dgqr , is proportional to
the square of the amplitude of the EM-wave. First of all, the particles experience a
non-vanishing force only on those parts of their unperturbed trajectories where the
wave phase they see slowly varies (or is stationary), the particles with the longest
resonance duration being those whose velocity relative to the wave, Av, is such that
kjAv =~ vess, where vgsy is the effective collision frequency for scattering particles
out of the Awv range, v.f; =~ v(vi/Av)%. Secondly, collisions not only contribute
to controlling the resonance duration (which in a toroidal plasma primarily depends on
the presence of the rotational transform /9.15/) but also ensure that the particles forget

the wave phase when leaving resonance.

If A7 is the range within which 77, the time elapsing between two successive
resonances of a particle, varies as a result of Coulomb scattering, requiring that the
particles forget the wave phase, this just says that w,.sA7 > 1. This randomization
criterion ensures that the particle receives incoherent velocity increments when going
through successive resonances, and this is why the EM-field acts through a diffusion
term. The quadratic dependence of Dgy on the field amplitude has the same origin
as the quadratic dependence on the length of the basic step of the diffusion coefficient

describing any random walk process.

A noteworthy result is that diffusion of the type just discussed also describes ion
heating by a coherent lower-hybrid wave (w > w.;) propagating perpendicularly to
a uniform magnetic field (if the amplitude of the wave exceeds a threshold /9.16/).
On a time scale between the wave period and the cyclotron period, ions behave as in
a virtually vanishing magnetic field so that the wave—particle resonance condition is
essentially w = k-¢. If it is assumed that k = Ey, since 0 < |vy| < vy, , only

ions with v; > w/ky (i.e. with sufficiently high perpendicular energy) pass through
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the resonance v, = w/k, (twice per cyclotron orbit). The kick they receive here
can be approximated by a §—function (the resonance duration is much shorter than
1/we; ). Any mechanism capable of decorrelating the ions and the wave at least once
per cyclotron period causes the wave to be ion-Landau—-damped (note, incidentally, that
here the resonant particles are much more numerous than those satisfying the Landau
condition along y in the absence of ﬁo, because the magnetic field sweeps the vector
¥ through all angles). Collisions are insufficient to destroy phase coherence at these
high frequencies. Instead, it has been found /9.16/ that phase coherence is destroyed
when the electric field is such that the kick received by an ion on one transit through
resonance is sufficient to change the phase that it sees when next in resonance, by at
least 7/2 on the average. This is so because the magnitude of the kicks received at
resonance is a sensitive function of the phase at the beginning of the resonance. If we
look at the phase space, we discover that at such field amplitudes (common in heating
experiments) a particle orbit wanders over most of phase space, spending roughly equal
lengths of time in equal areas (i.e. the particle orbit is approximately ergodic). The
phase space is no longer characterized by a single island centred around one resonant
point, but by the presence of an infinity of higher—order islands centred around the
points defined by (9.20). For fields above threshold, these islands overlap, thus allowing

almost unrestricted motion.
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9.5 Slow—time—scale Plasma Response

We now proceed to prove formally that, under the influence of an EM—field, the average

of f over the wave period, f , evolves according to a Fokker—Planck-like diffusion term
divg {DQL(:E’,'E') -gradgf—l— ;qu—ﬁpcf} g (9.32)

where fJQ L is quadratic in the amplitude of the AC part of the electric field. The DC
term will only be considered when the ponderomotive change of the plasma density is
discussed later in this section. Here a one-dimensional situation in both real and velocity
space is assumed in order to avoid unnecessary complication. This implies integrating
over the perpendicular velocity components under the simplifying assumption that these
are Maxwellian—distributed. In spite of this limitation the following treatment should
be more general and more directly relevant to heating and current drive situations than
the usual (see /9.17/) microinstability—oriented approaches.

As a starting point we consider the electrostatic situation

qE(z,t)/m = a(z,t)e't + Z an(z,t)ei"wt + c.c. (9.33)
n>2
1 twt inwt
flz,0,1) = 5g(:r;,v,t) + h(z,v,t)e™" + Z hu(z,v,t)e + c.c. (9.34)
n>2

where the t—dependence indicated in the parentheses on the RHS of the equations is
slow on the w™! time scale, while the space dependence is unrestricted. The terms
with n > 2 are neglected since, within the plasma, the amplitude a(z,t) used in
heating and current drive experiments is small (in the sense of the discussion following

(9.20)). Then, by indicating complex conjugate (c.c.) by a star, the Boltzmann equation

gives
a 2] 7] i s
EQ"“U%Q‘-}- é;‘(ﬂ,h +a h.) = C(g) (9.35)
(tw + v)h + ah+ 2 0 (9.36)
w 14 v -—g = i
dz “ov?

23



where in (9.36) we have taken C(h) ~ —vh as v < w. By solving (9.36) for ~ and

substituting it in (9.35) one obtains
d d 2 a’(I) (iw—v)z/v /x * —(fw—v)y/v 9 o
ag-l—v%g— 50 _— a”(y)e 557 dy + c.c. p = C(g).
(9.37)

In the special case where a(z) = ae™*** (so that |a(z)|? = const.) there is no reason

to keep the space dependence of g and (9.37) becomes simply

9 d 2v|a|? g
Al v =G :
at? T v { (9); §sE)

(w — kov)? + 12
where the driving term has precisely the form of (9.32) with the diffusion coefficient

v
(w— kov)? + 12 '

Dqr ~ (9.39)

In general, however, the z—dependence of |a(z)|* induces a space dependence of

g . We consider in some detail the case

g (9.40)

where a(z/l) is a real, bell-shaped function, so that the Fourier k-spectrum of a(z)
is centred around k = k, — a situation of obvious relevance to experiments. The
normalization ensures that the amount of electric energy available in the plasma is
| -independent.

In the limit »/w — 0 the expression in brackets in (9.37) can now be written

2(1—(%/—{)- / a((z —y) /1) %g(:{: —y,v) cos(Ay) dy, (9.41)

— 1200
lvl]

where A = (ko —w/v). According to the discussion of the previous section expression

(9.41) should take the form

a
Dgr(z,v)

509 (9.42)
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Let us first derive some consequences of (9.42). We take for C(g) the high-v appro-

ximation /9.3/
)

Clg) ~ —v- [ii + -9—] , (9.43)

Then, by neglecting for a moment the derivatives of g with respect to ¢ and z, one

gets
v
g(v) =goexp { —2 /uDHl(:c,u) du (9.44)
—oo
where ¢, is a constant determined by particle conservation, and D(z,v) = vf +

2v3Dgr(z,v)/v. As long as one has U2%D < D? (Dgp is not yet determined),
solution (9.44) is correct. It is essentially a Maxwellian where v®*Dgr < vv}/2
and has a “plateau”over the v regions where v3Dgr > vv?/2. Expression (9.41)
can be put in the form (9.42), as expected, only if %g(m —y,v) = %g(m,v) ;1.8 1f
min{l,1/A} £ 29 < £g. From (9.44) it can easily be seen that g does not have

this property, but D%g does. Equation (9.41) is thus written in the form

I_ya )

[ T D(z —v, v)zf;g(x —y, v)cos(Ay) dy, (9.45)
T

D% g is expanded around y = 0, and it is concluded that, in order to put expression

(9.45) in a diffusion—like form, one must have

Dgr(z,v) =2——= (z/l /

D cos(A(:z: —y)) dy. (9.46)

When one has v®Dg < vv}?/2 the approximation for Dgr follows directly from

(9.46)
Dgr(z,v) ~ 2——— (I/l) / a(y/l) cos(A(z — y)) dy. (9.47)
I—:,’—Ioo
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In the general case (9.46) can easily be transformed in a second-order differential equa-
tion for Dgr (in the variable z, v being a parameter). Here we write the approxi-

mation valid when v3Dgr > vv?/2:

a 2a A® 9% [1
— == 4+=(=), 0.48
oz (vDQL) a t 3z (04) is)
from which it follows that
20 [[az 9% (1 afzo)
e § 12 2.2 1 2 dy st , 9.49
vDqgr / [ o & dz? (a)} B S vv? (9-49)

z, being the z-value where v®Dgr(z,v) = vv?/2. Note that Dgy is finite (and
positive) because %(l/a) >0.

From this general form (9.39) can easily be recovered by taking the limits [ — oo
and |z, — co.

For future applications it is important to consider the [ —dependence of the lower
end of the velocity region, where v3Dgp = vv?/2, because it gives the dependence
of the width of the plateau in velocity space on the spatial gradient of a(z/l). As it
is required that in this process |a| remain constant, z,/l is considered as (almost)
constant. Then, from (9.47) written for z = z,, it follows that also the product [A
must remain constant, i.e. the lower end of the plateau interval displaces towards lower

v—values as the spatial gradient of |a(z/l)| increases:

zo/l
Do & %a(zo/l) / ofr) cos(1A (52 ~ 7)) dr. (9.50)

— oo
Let us next consider the effect of the driving term on the z-—-dependence of the plasma
density, in the case of field (9.40) with o = a,e~(*/U" and to the first order in |a|?,
the lowest significant order. The expression for the driving term to this order is obtained

simply by taking for ¢ in the curly brackets in (9.37) a (spatially) uniform Maxwell
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distribution. In the present discussion the DC term in (9.32) is the gradient of the
ambipolar potential V(z) which ensures charge neutrality (see below). Dividing both
sides of (9.37) by v/v: and integrating over v/v; from —oco to oo, one gets

dn  2n, ¢ dV  4n.l|al?

E—l_ v mdz L%

z/%% {ue_u2 (wl — (kol + Zim/l)uvt)_l — c.c.} du = 0, (9.51)
0

where the v/w — 0 limit is taken and both the time derivative and the collisional
terms are neglected on the ground that, even to order |a|*, g(v) differs only slightly

from far. If one has |w/kovs(1l + 2iz/kol%)| > 1, one finds

dn  2n, (q dV  4|al|? E) 5

= e e

dz v \mdz we 4

(9.52)

where the last term in parentheses can also be written - (|a(z)|?/w?). Considering
(9.52) for both ions and electrons, under the assumption that they move along B, only
(Wpe/wee — 0, wpi/w — 0), and imposing charge neutrality determines both V()
and the density, n(z) = no(1 — v|a(z)|?), where ~|a|? is the ponderomotive effect
(see later on for the actual ~-value in the case of lower hybrid waves; for a general
review of ponderomotive effects see /9.18/).

Finally, let us consider one of the most important applications of the quasilinear
(QL) theory of the EM—field plasma interaction: the treatment of current drive.

The Fokker—Planck collision term for the electrons has a noteworthy property: the
collisional rate of change of the component of the electron free path along a given

direction is equal to the electric current density along this same direction

& Y| 3 o
5B+ Z -/Ve(vte/lvl)3ce(g)d v = —e]v”gdv =) (9.53)

where —e is the electric charge and Z specifies the ion charge state. Since, on the

other hand, one has %g + divg (f) = C,,where T is the flux of electrons in velocity
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space due to any process (QL-diffusion, DC-electric field acceleration, etc.), it follows
that
. e -~ 0 V)| 3
=——— T —=|——F—x ) d 9.54).
=6+ 2) f 99 (ve(vtcnvns) ’ S
This is a special case of a more general result derived by ANTONSEN and CHU /9.19/.

On the other hand, the time average of the power density absorbed by the electrons is

[l 9. s _ [z 01 o2 3
Pe—/(zmev )atfed v —[I‘ BE(ZmeU ) d®v. (9.55)

Thus, in the case where T is very localized in velocity space we can write for the figure
of merit —jj;/Pe:

e [m a1 0T o ay v
fj”/Pe = m \i(r aﬁ)(zme’t) )} (P a?},) ye(vte/l‘uns, (956)

an interesting result, independent of the form of the distribution function, first deri-
ved (in a different way) by FISCH and BOOZER (see the extensive review of current
drive theory /9.20/). The surprise in (9.53) to (9.56) is that j; can be generated
even by inducing a purely perpendicular electron flux. According to OHKAWA /9.20/
a cyclotron wave travelling in one direction along the toroidal coordinate can be used
to increase the perpendicular energy of the resonant circulating electron population se-
lectively, so that such a population becomes trapped. The result would be a deficit of
current—carrying circulating electrons. At the same time, trapped particles are sym-
metrically detrapped by Coulomb collisions. As a result, there is a net increase in the
electron toroidal angular momentum in the direction opposite to the propagation of the
wave. The momentum is dissipated by the ions to generate a toroidal current. The fact
that a net momentum is produced counter to the wave momentum is not surprising; for
instance, in axisymmetric geometry it is the canonical momentum of a particle which
is conserved; thus, if there is radial displacement of the particle orbit or a driven radial

flow, toroidal angular momentum mRvy is indeed produced /9.5/

d
RA¢,) = evd,RBg, (9.57)

< (mRug) = —e2(

dt
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where Ay is the toroidal component of the EM vector potential and wg, is the elec-
tron drift velocity along the minor radius of a plasma embedded in concentric magnetic

surfaces.

9.6 Waves in Collisionless Plasmas

This brief review of wave propagation in hot plasmas uses the customary terms a) cold
and b) warm plasma to designate the following situations:

a) the width of the particle distribution functions in velocity space is immaterial be-
cause the relevant wave velocities greatly exceed the thermal speeds;

b) the global width of the velocity distribution functions does matter, but not their
actual shape, as in the case where the kinetic effects are sufficiently well described by
pressure gradients and where the wave characteristics are such that the preferential
interactions with particles in selected regions of velocity space (Landau damping
and the like) are negligible.

For a general view of RF heating and current drive in toroidal, maxwellian plasmas
one can assume the following somewhat restrictive picture, although not always neces-
sary, as a representative reference situation: a small-amplitude EM—wave with a single,
fixed frequency and a given spectrum of the wave number components in the toroi-
dal and poloidal directions, essentially determined by the external launching structure,
propagates in a radially stratified plasma. For the present discussion we also neglect
non-local effects, which are due to the fact that, strictly speaking, the current density
at a given point depends on the E —fields throughout the plasma (see below).

Wave propagation is then described by an ordinary linear differential equation of
order 2N, where the integer N gives the number of different kinds of waves present
in the plasma (there are two waves of each kind differing only in their directions of
propagation, which are opposite). In a uniform plasma the solubility condition for

such an equation — the dispersion relation (DR) — contains the N-th power of the wave
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number squared.

The number of possible wave types in a cold plasma is 2, and in a warm plasma
(241+i) if the plasma contains (besides electrons) i species of ions of different charge—
to-mass ratios, these numbers corresponding to the different kinds of forces acting per
unit plasma volume. A hot plasma in the same situation has 2 plus an infinite number

of waves (see below).

The two forces acting in a cold plasma are the divergences of the electric and
the magnetic components, each involving tension along and pressure across the field,
of Maxwell’s stress tensor (after subtraction of the rate of change of the EM-field
momentum per unit volume). As is well known, the former component stems from
the displacement current term and the latter from the rot B term in the equation
4srrj—"/c = —E/c + rot B. In a vacuum as well as in an isotropic, cold plasma (; ~ ]f) "

the two forces coincide and, thus, the two kinds of wave degenerate into a single one.

In a warm plasma the remaining forces are of course the partial pressure gradients.
If w is so high that we = (ZeBo)/(mic) and wp; = v/(47Z%e*no/m;) can be
neglected (infinitely heavy ions), there will be 3 waves. If w is so low that it can
be neglected in comparison with w.. = —(eBs)/(mec) and wp. (negligible electron
inertia), there will be (2+i) waves.

In a hot, collisionless, uniform plasma there is an infinity of waves because the
dispersion relation involves transcendental functions of the components of the wave
number vector k , instead of only the first three powers of k? as in the warm plasma
case; only some of them will be observable and even fewer will be relevant in practice,
e.g. the so—called Bernstein modes, which are very slow, electrostatic waves propagating

almost across B /9.21/. Transcendental functions enter for two reasons:

1) only particles whose velocity along B, is sufficiently close to a resonant value (see

(9.20)) are noticeably affected by a low-amplitude wave with given w and k.
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Since the strength of such an interaction is controlled by the slope of the equilibrium
distribution function (a Maxwellian) at the resonant velocity, the plasma dispersion
function is introduced.
2) Because of the Larmor excursions of the particles across B, , the identity (9.21)
introduces series of Bessel functions of argument %(klvta/wca)g.
If a hot, collisionless plasma is spatially non—uniform, a Fourier analysis in space
and time doesn’t lead to a dispersion relation but, rather, to an integral equation. For
example, in the case of a Cartesian slab where the z-coordinate is along Eo, the

equilibrium particle distribution functions depend on z and ¢ according to
iy 2/02 : .
Nae Ve with a=1,e (9.58)

N« being a function of the constants of motion (z + vy/wea) /9.22/. Then, if it is

assumed for simplicity that ute|%ne| < |wee|ne and that ions are infinitely heavy,

one finds
drj(k,w) ~ iw | E(k,w) — é(k,w) / n(kz — kL) E(k',w) dkL. | , (9.59)
—oo

where € isthe dielectric tensor for the corresponding hot, collisionless, uniform plasma.
In the case of waves in the electrostatic approximation (E = —grad ®) the final result

is remarkably simple
(e 0]
o (k,w) = (A(ié,w) . 1) / (ks — kD)K., ky, ks, w) dk, (9.60)

where, for & = (kz,0, k),

Ak, w) = k2e11(k,w) + 2kzk.€13(k,w) + k2eas(k,w). (9.61)
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An important consequence of (9.60) is that the “polarization ”i.e. theratio E./E.,
is no longer given by the k./k,-ratio (as in the uniform case). Such a non-uniformity
effect can have far reaching consequences, especially on linear wave mode conversion,
as it will be mentioned later on in relation to Bernstein waves and their coupling to
vacuum radiation.

In the geometric—optics limit k~' < L, the scale length of the plasma inhomo-
geneity, a successful method of dealing with wave propagation problems in realistic hot
plasma configurations is to evaluate the wave group—velocity vector field (ray tracing) by
integrating (in general numerically) the equations: df/dt = —(9D/dk)/(dD/dw) = vy ,
dE/dt = (0D/o7) /(0D /dw) , where D(w(l;, ), k, r) = 0 is the local dispersion rela-
tion /9.23/.

The cold (inhomogeneous) plasma case is now considered in some detail. Taking

wave amplitudes proportional to e~ ! and normalizing lengths to c¢/w yields
rot B = iB, (9.62)
rotB=—i¢FE. (9.63)

With orthogonal coordinates (z1,z2,z3) having z3 along Eo , the non—vanishing com-

ponents of the dielectric tensor € are /9.24/
€11 = €2 =€; =1— nga/(wz —w?),
[

€lg = —€g] ='€g — _iZwa:«wga/w(wz - wc?a)!
o

€33 = €3 =1 — Zwﬁa/wz. (9.64)
[0
(neglecting unity in €; and €3 is equivalent to neglecting the displacement current).

In a uniform plasma with assumed wave amplitude proportional to e+ +inzs

the DR is
eind — [(61 + €3)(€1 — nﬁ) 4 eg] n% + €3 [(61 - nﬁ)2 - eg] = 0. (9.65)
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Solutions of (9.65) not involving square roots exist for purely perpendicular and
purely parallel propagation as well as in the B, = 0 case (€; = €3, €2 = 0). Useful
approximate solutions, which hold strictly if n =0, 0r €3 — —o0 (which is the case

when electron inertia is negligible, i.e. when w < wrp , see (9.78)), are
(e1 — nﬁ) n? .= |(e1 — nﬁ) -+ iez} [(51 - nﬁ) - iez] (9.66)

(extraordinary waves), and

ein’, ~ ea(es — nﬁ), (9.67)

(ordinary waves).

When €3 — —oo, (9.67) reduces to nﬁ = €; . Approximations (9.66) and (9.67)
hold as long as n% > n®_; in particular, propagation is parallel when the RHS of
(9.66) vanishes and when €3 =0 (see (9.65)). From egs. (9.62 to 64) one can deduce
the following polarization properties:

for X-waves: E/E) ~ —nyny/(e1 — nﬁ + €2 /(€1 —n?)) — 0,

for O-waves: By/B| =~ n||62/nJ_(nﬁ — €1+ €1n? [e3) — 0.

As far as the polarization of the transverse electric field is concerned, one has in all

E1/E, = [51 — (n? + nﬁ)] fieg (9.68)

If besides electron inertia also the displacement current can be neglected (v4 < ¢),
then both equations (9.66) and (9.67) take a particularly simple form in a single ion

species plasma: n? =¢; becomes
[ 1

(kjjva/w)® = we;/ (wg; —w?) = 4, (9-69)

and (9.66) becomes /9.25/

(M

(krva/w)? (A — (kjva/w)?) = (A — (kjva/w)® + (A* — A)

) :
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=

-(A:—(MWA/wVA-(Az—Jﬂ ). (9.70)

A plot of (kjva/w)? versus (ki|vA/w)2 for the two cases w < w¢ (A > 1) and
w > wei (A <0) isshown in Fig. 9.3.

The MHD limit, w < w¢; , corresponds to A — 1. From egs.(9.67 and 70) it is
seen that only one kind of wave can propagate across B,. This is a consequence of
the fact that in the e3 — —oo limit, since the parallel component of the displacement
current is negligible, the radial components of the electric part of Maxwell’s tensor do
not depend on the radius.

The fact that, under the specified conditions, X-waves have E) =~ 0 while O-waves
have B) = 0 can be exploited to derive decoupled differential equations for the X and
O-waves in a moderately inhomogeneous plasma, when the WKB approximation can
be used along B, :

—

B, - grad f = inB.f. (9.71)

From E| =0 and the z; and zz —components of (9.62) for the X-wave we obtain
By = ——n”E2; B, = n||E1. (9.72)

The z; and z; —components of (9.63) then give

a 9
212 2 o 2
[(61 —TL”) +€2] El =1 [—Ezé;']-'+(fl “nli)a—m_ B“:
(e =) + &) B2 = =i | (1 - n9 . 9]0p 9.73
1)t e b2 =—tila —nj)gm —ag| by (9.73)

By disregarding the space derivatives of & except for those of (e; — nﬁ) which can
vanish, expressions (9.73) inserted into the z3-component of (9.62) yield an equation

which we put into the intrinsic form

divy [(61 — nﬁ) gra,d,J_B“] + [(51 - nﬁ)2 + e%] B =0, (9.74)
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since in a uniform isotropic plasma (e2 = 0) the equation has to be of the Helmoltz
type.
From B = 0, from the z; and zz-components of (9.63) and from the z; and

z2 —components of (9.62) we obtain for the O-wave

R

(61 — nﬁ)El = 2n”a—x1E” — €2 Fo, (9.75)
.3

(€1 — nﬁ)E2 = zn“é?zE“ + €2 E;. (9.76)

When inserted into the z3—component of (9.63) these expressions by disregarding
the ;2 derivatives of e; and (e; — nﬁ) and again using B) = 0, yield an equation

that we put into the intrinsic form
divy (e1grad) E)) + e3(eg — nﬁ)E” =0, (9.77)

since for nﬁ > |e1| the equation has to be the equation for an electrostatic wave.
According to a previous remark, (9.77) holds when nﬁ — €1 only if €3 = —oo.

When the WKB approximation is also made along the other coordinate — say z, —
on the magnetic surface, éqs. (9.74 and 77) become ordinary differential equations in the
radial direction. They can always be put into the canonical form d%*y/dz%+k?*(z)y = 0,
where y(z) is the product of an appropriately chosen function of x and of the field
component under consideration.

Points where one has k?(z) =0 separate a region of wave propagation (k% > 0)
from a region of evanescence (k? < 0). They are called cut-offs (C—points) since they
produce at least partial reflection of the wave energy flux. In a nonuniform plasma no
general simple statement can be made about the number and position of the C—points,
since they depend upon the behaviour of the €’s as functions of z. In a uniform plasma
the C—points are immediately found by setting n, =0 in (9.65). Energy transmission

through an evanescence region of finite width is called tunnelling /9.26/.
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The physical significance of the points where the coefficient in front of the Bj-
and E) —derivatives in egs.(9.74 and 77) goes to infinity is simply a statement of wave
polarization: in space such points are usually quite close to C—points.

Points where one has k% — oo are called resonances (R-points): they are the
only places where energy can be absorbed in the limit of zero collision frequency (see
next section). In the case of perpendicular propagation only the X-wave has R-points,
these being given by €; = 0. When n)| # 0, it is the O-wave which has R—points when
e; = 0, while (9.74) now has R-points when €; = nﬁ # 0. However, (9.74) is correct
when ¢; — nﬁ # 0 only in the limit e3 — —oo, and it is only in this limit, i.e. when
w is so low as to make electron inertia negligible, that we can speak of a resonance at
g = nﬁ # 0. In all other cases, the points where one has ¢; = nﬁ are close to the
points where €¢; = 0, and there are no longer two decoupled waves, because the two
phase velocities have comparable values. These physically significant points are called
linear mode conversion or turning points (T—points) since the RF energy can pass from
one wave to the other. Discussion of the T—points is held over till the next section.

The resonances occuring for €; = 0 are generally called hybrid resonances. There
is one hybrid resonance frequency above w. and one between every two consecutive
gyrofrequencies of the various particle species of the plasma. Thus, in the important case
of a two-ion plasma (e.g. D-T or H-D) there are three hybrid resonance frequencies:

1) the upper hybrid (UH) resonance frequency

2 2 2

m
W =Wyg = wpe + w?& + O(;;_L"E)? (978)
1
2) the lower hybrid (LH) resonance frequency
m
W=l =D wh/(L+wh/wl) + O(7F), (9.79)

1

2

where it is assumed that wfi <L Wy,

and, with the same assumption,
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3) the ion—ion hybrid (IIH) resonance frequency

nymy + noMms m
w? = WIIH = WeiWes + 0(—=), (9.80)
nimseg + ngmi m;

where n; (m;) is the number density (mass) of the ion of species i=1,2. Equation
(9.80) depends on the ratio nj/ng, but is independent of the plasma density.
In a single—ion—species plasma the ¢; = nﬁ # 0 resonance of the X—wave occurs,

in the limit of (9.70), at the frequency
w? = wk/(1+ (wpi/cky)?). (9.81)

This is called (rather improperly) either the shear Alfvén resonance or the perpendicular
ion—cyclotron resonance /9.21/. In a two—ion-species plasma there are two solutions to
the equation €; = nﬁ # 0 in the ionic frequency domain. If [wfl,wfz] <Y, ng <
(ckj)?, they are close to w? and w?,. If 3, “3{ > [(ck“)z,wfl,wfz] , one solution

corresponds to a resonance at the frequency
(A)2 i (k 2 2 2
~ (kjeweiwes) /(wclwpz + wcgwpl), (9.82)

which is related to (9.81). The other, very close to w?,,, corresponds to a T—point.
We conclude this section by considering wave propagation in a warm plasma in the

MHD limit (w < w¢;) in the case of a diffuse pinch. In a Cartesian case one has for

the equilibrium configuration
— d -
Bo = (0,Bey(2), Bex(0); - (pe(e) + | Bulz)/8m) =0.  (0.89)

By introducing the radial plasma displacement £(7,t) = £(z)e!(kvyTkez—wt) with Le=

vz, and a similar dependence for the perturbation of the total pressure so that

Pi(z) = p1(z) + Bo(z) - By(z) /4, (9.84)
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one finds

Pi(x) = [A@)R(=)/C(2)) 1-£() (9.85)

where

C(z) = (kX + k2)R(z) — w?. (9.86)

These equations show that, while there are now 3 kinds of waves propagating along B, ,
there is still only one type of wave propagating across B, . This is because the kinetic
pressure only appears in the combination (9.84). Notice that R(z) =0 gives R—points
for &(z), while C(z) =0 gives C-points for £(z). The equation A(z) =0 gives
resonances for £(z). These would not appear, however, in a WKB treatment, while
the R(z) = O resonance would. Notice that equation A(z) = 0 gives the cut-offs
for P;(z). Notice also that the incompressible limit of egs.(9.85 and 86) is obtained
by setting (R(z)/C(z)) =1 (from k?(v% + c%) > w?).

The cylindrical equivalent of egs.(9.83-86) has been derived in /9.27/.

38




9.7 Resonances and RF Energy Flow

By definition, the wave resonance frequencies are the frequencies at which one has
k = |i;| — oo. From the Maxwell equations it follows that k tends to infinity as
k-(Box 1)k (B, - By) does. At the resonances (9.78) to (9.82) (at which k; — oo )
it is (Eo . B;) which tends to zero, while for k x B, = 0 the dispersion relation
(e1 — 'nﬁ)2 + €2 = 0 (which is the condition for having B, # 0) gives |kj| — oo as
a result of |31| — oco. This is the only case of non vanishing plasma density where the
cold-plasma wave resonance frequencies coincide with the particle gyro—frequencies. If
one has k X B, # 0, the preferential action of the wave on one of the particle species
— depending on the (w — wcq) values — gives rise to an ambipolar E"~ﬁeld, which
minimizes charge separation by coupling the collective motion of the various particle
species. That the |k;/k|| — co resonance frequencies have to differ from the particle
gyro—frequencies is seen by comparing the limit j; — iwE;/47 given by the Maxwell
equations for (kz/kj) — co with the limit j; — eanoava: valid in a cold plasma (to
first order in E) when w — wes. Asin this case |vgzz/FEz| — oo (nonrelativistically),
the two limiting j, values are incompatible.

Further insight in the nature of the various kind of resonances is gained by consi-
dering the ratio of E* = E, +1¢E,, (the E-'_]_ — component rotating in the sense of the
ion gyromotion), to E~ = E; —iE, (the E 1| —component rotating in the sense of the

electron gyromotion). In a cold plasma one has, from (9.62 and 63)
EY/E™ = (n® — 1 +ie3)/(n? — €1 — ie3). (9.87)

This condition shows that, when n? — co,onehas Ey,/E, — 0 (linear polarization),
while when w — w¢; onehas EV/E~ « (wei—w) — 0 (i.e. EJ_ rotates in the sense
of the electron gyromotion), and when w — w;; one has ET/E~ o (wee —w)™! —

oo (i.e. Eﬂ_ rotates in the sense of the ion gyromotion). The two last results play
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a fundamental role in the mechanism underlying ion and electron cyclotron heating
in toroidal devices (see below). The frequencies given by egs. (9.78 to 82) are the
eigenfrequencies of the collective oscillations of the cold plasma that do not propagate
energy in the x—direction (at resonance, either the group velocity of these oscillations is
parallel to the resonance surface or it vanishes). For instance, when one has w < w,;,
the group velocity is equal to the Alfvén velocity vector Eo/\/(4wmino) : in this
limit the collective oscillations of the plasma are essentially those of a collection of

elastic strings stretched along B,.

At the LH resonance (9.79) the control of charge separation is a subtle process
which does not involve the main part of the electron motion — the E x B, drift,
which is divergence—free when Exk=0— but, rather, the meczﬁ/eBg correction

term.

We now consider the problem of power absorption in the case of a wave incident
on a plasma profile where it encounters an R—point. The fact that for real w eqgs. (9.74
and 77) are singular at the R—points is due to the fact that no dissipation mechanism
is included in the equations. However, absorption is formally obtained from their sin-
gular solutions if, when integrating over real space, these are interpreted as generalized
functions of (wg(z) — w)_l . The power absorbed is thus independent of v, as in the
Landau damping case. The underlying physical picture is the following. If we examine
the group velocity, we discover that tr, the time it takes the wave energy to approach
the R-point when starting from any point at a finite distance from it, is infinitely long
/9.24/ in the sense that tr = lim(,—0)6/v, where 6§ < 1 is a constant. The RF
power density would therefore become infinite at the R—point ( |E| tending to infinity)
unless energy is dissipated by some mechanism. If one has é =~ 1, Coulomb collisions
in the immediate neighbourhood of the R—point provide the required mechanism. If one

has & <« 1, a different effect must be looked for. This is provided by linear mode con-
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version to a warm (or hot) plasma wave since an R-point of a cold plasma is always the
point toward which the T—point of a warm (or hot) plasma tends when the temperature
goes to zero. This is illustrated in Fig. 9.4, which is a plot of k2 = k2(kZ, k2, w; z)
as derived by a local dispersion relation. The important point here is that the square of
the phase velocity of the warm (or hot) plasma wave steadily decreases as the distance
from the T—point increases. Thus, if the phase velocity at the T—point is still too high
to allow substantial wave energy dissipation there, the RF energy is diverted away from
the T—point until the wave reaches a plasma region where the conditions for efficient
damping are met. There is no reflection when the wave encounters the R (or T) —point
but there can be some transmission beyond such a point, in the evanescence region.
ZASLAVSKII et al. in /9.28/ used the theory of the solutions of differential equati-
ons of the type a% - ﬂ(m)% + 4(z)y = 0 with a small parameter o preceding
the highest—order derivative, in order to handle quantitatively the wave transformation
which takes place at the T—point, (% = 4ay. A direct application of these techniques

to the hybrid resonances is due to STIX /9.29/.

Let us now briefly discuss power flow and absorption when two C—points are present
on a plasma profile at some distance from an R—point. Figure 9.5a is an example of a
Ciy— R—C4y triplet where the R—point separates propagation from evanescent regions.
This situation is encountered at low frequency (w? < w?, see (9.70) and Fig. 9.3,
and egs.(9.74 and 85)) when one has nj < |e; —nf|. The energy flow in the case
of a wave incident from the right is calculated in /9.30/, where the power absorption
is found to vanish with the distance C; — C; ~ (w/w.i). A wave first encountering
the Cy —point is to a large extent reflected there. As a result of tunnelling through the
evanescent region some energy reaches the R—point and is absorbed there, and the rest
is transmitted beyond this point. If nZ > |e; — nﬁ] , the R—point is located inside the

propagation region (Fig. 9.5b and /9.13/).
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Let us consider the consequences of (9.70) (Fig. 9.3) for n small in some detail,

in relation to plasma heating. The existence of kﬁ —intervals where ki > 0 makes
eigenmodes within the plasma torus possible (see /9.31/ for experimental results in the
ion cyclotron range of frequencies). They occur when the toroidal wave number is such
that

k4R=n=0,1,2,.., and Jmn(kra)=0 (9.88)

where R and a are the major and minor radius of the plasma, respectively, and J,,
is a Bessel function.

If w < we there are two C—points, and one R—point given by (9.81); if w > w;
there is one C—point and no R—point.

In a toroidal plasma the quantity kjva , which is proportional to
k-B, = (nBy/R+mBg/r) = (ng+m)Bg/r (9.89)

(q is the usual safety factor or inverse rotational transform) is a function of r which
vanishes at the MHD singular surfaces ¢(r) = —m/n. Thus it may happen that the
R-point (A = (k||vA/w)2) for w < we, occurs within the plasma even if at the
plasma periphery one has kj(a)va(a) > w. Of course the R-point may occur within
the plasma even if &k never vanishes as in the original proposal of plasma heating by
a resonant Alfvén wave at w < w¢; /9.32/. The theory, which includes finite Larmor
radius effects, indicates that the R—point becomes a T—point of mode conversion to a
“kinetic ” Alfvén wave, w? ~ (kjva)?(1+2(kzvii/wei)?) for T, ~ T, which is cut—off
on the lower density side of the T—point, but propagates on the higher density side. The
theoretical prediction is that as long as there is one R-surface or two R—surfaces well
separated in space the fraction of the available reactive power which can be absorbed
(mainly via electron Landau damping) should be substantial. Experimental and theore-
tical results are reviewed in /9.33/, where both w/w.; and equilibrium plasma current

effects are retained to reproduce the structure of the observed eigenmodes spectra.
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Plasma heating in the ion cyclotron range of frequencies (ICRH) (egs.(9.66, 70
and 80)) requires antenna par-allel wave numbers such that |kjlc < wpi, the larger
wave numbers being strongly evanescent between the antenna and the C-surface at the
periphery of the plasma for the waves under consideration (see Fig. 9.6). As in the cold
plasma limit heating can only occur at a R-surface, cold plasma heating is only possible
if there are 2 (or more) ion species, at the ion—ion hybrid R-surface (9.80). As shown in
Fig. 9.6, such a R-surface is only accessible to waves launched from the high B, —field
side of the torus. This overall picture remains true also in arbitrary axissymmetric
configurations, although the location of resonances (9.80 to 82) is shown in /9.34/ to
differ from the one in the one—dimensional model. In a finite temperature plasma there is
a multifarious ICRH scenario: not only ET is no longer strictly zero at gyroresonance,
but also harmonic cyclotron heating and selective minority species cyclotron heating
become possible which, as they do not rely upon the presence of the R—surface (9.80),
can be more conveniently produced by waves launched from the low B, —field side of the
torus. Moreover, as the parameter space of interest (especially in fusion devices) involves
relatively high temperatures and densities, low k| and w =~ Nw.i, mode conversion to
ion Bernstein waves becomes an ingredient of ICRH. The various possibilities, reviewed

by J. ADAM together with the experimental results /9.35/, are:

a) fundamental ICRH: in the parameter space of interest, E*/E~ , although increased
in comparison with the one-dimensional model when the presence of the rotational

transform is accounted for /9.15/, is too small to give appreciable heating.

b) Second harmonic ICRH: in spite of the usually very small value of the kzvii/wei

ratio, the fraction of the field polarized in the ion gyration direction is large enough

2 .
to allow significant heating (in a preheated plasma). If (%ﬁ) (%h) <1 one

has ET/E~ ~ 1/3 [9.36/, while in the opposite case Bernstein waves play a domi-

nant role, owing to the presence of a T—point. Harmonic ICRH has the distinctive
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advantage that the RF power is directly deposited, in a fusion device, to a reacting
ion species, thus leading to enhanced reactivity.

c¢) Minority ICRH: as first indicated by TAKAHASHI /9.37/ in the case of a D-H
plasma, if the density ratio is such that

kjvia

ng/np < (1 = Wen/w)*)™* + (kje/wpp)?)

E"'”/E‘ at w = wey is large enough for the main part of the RF power to be
absorbed before reaching the C-layer where it would be partially reflected; the ab-
sorption is due to ion cyclotron damping of the minority component, rather than
due to electron Landau damping of mode—converted Bernstein waves. These con-
ditions lead /9.25/ to a strong distortion of fy(¥) with respect to the Maxwellian
with consequent heating of electrons and majority ions by collisional equipartition.
In the electron cyclotron range of frequencies (w2 > weiwee ) the location of the C
and R points of perpendicularly propagating O and X waves on the {(wpe/w)z, (. /w)}
plane is shown in Fig. 9.7. When 0 < nﬁ <1 (we do not consider slowed down wa-
ves as, to have substantial tunnelling in this frequency range, the launching structure
would have to be placed only some mm apart from the plasma), and n; = 0 both
the C-surface of the O-wave and the C—surface of the X—wave remain the same as
for n) = 0, while the R-surface of the X-wave remains the same provided that the
abscissa wg be substituted by wge (1-— nﬁ) As previously shown, in the cold plasma
limit heating can only occur at a R-surface. Because of the 1/R dependence of B.,
the UH-R surface (see (9.78)) is accessible only to X-waves launched from the high
field side. The X-wave is deflected towards regions of weaker B, —amplitude up to a
T-surface, where it mode—converts to an electron Bernstein wave which is eventually
cyclotron damped /9.29/. However, heating tokamaks in thermonuclear regimes at
W = wyg > wWe Is severely demanding in terms of frequency of the (high power) RF

source, as (wee/2m) measured in unity of 100 GHz is approximately 0.28B,, when
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B, is measured in Tesla. For this same reason heating at harmonics of w,. is unrealistic
in fusion devices. On the other hand, in a hot plasma the E~ components of O and
X—waves with nﬁ # 0 are not fully screened at the w = w.. surface, so that substan-
tial electron cyclotron absorption is possible. While the O-waves can only penetrate

ge = w? — a condition again severely demanding in terms

up to the density where w
of frequency in fusion devices: the frequency measured in 100 GHz should be larger
than 0.9 nz , the density being measured in 104 ¢m~3 — the X-waves, launched from
the low B, —field side in the equatorial plane with w > min {w..}, can penetrate (see
Fig. 9.7) up to the density where wge = (1 - nﬁ)(w2 + wwee) , which is higher than
the cutoff density of the O—wave if (1 + w/wce)nﬁ < 1. However, as in the correspon-
ding ICRH case, the damping of a X-wave at w = w.. scales unfavourably with the
density and becomes negligible in regimes of thermonuclear interest. Fortunately, as
FIDONE et al. have pointed out /9.38/, already in plasmas with electron temperatures
of a few keV there are enough electrons obeying the relativistic resonance condition,
w(l = nu)/c) = wee(l — (v/¢)?)% , to produce strong absorption at the substantially
down-shifted frequency w < (w2, — wge)% (e.g. w/wee ~ 0.75 — 0.85); moreover,
under this condition the wave damping is relatively density independent. For a number

of electron cyclotron resonance heating (ECRH) experiments see /9.39/.

Of fundamental if not of thermonuclear interest (except for possible diagnostic pur-
poses) is the emission of high harmonics of w,, . First observed from a Penning discharge
(up to about the 25th harmonics /9.40/) such an emission has been related /9.41/ (on an
indication by D. PFIRSCH) to the excitation of electron Bernstein waves propagating
iﬁ proximity of w = Nwe, , almost perpendicular to B, with a very short wavelength:
kivie > Nwee . The energy of such electrostatic waves can be efficiently radiated into a
vacuum because of the existence, in the very neighbourhood of each of the harmonics,

of a T—point of k2. The result, even in a moderately non uniform plasma, is an abrupt
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radial dependence of k2 (for w ~ Nuw. ) which is the requirement for substantial
coupling to vacuum waves. Note that, as a relevant approximation of the dispersion
relation would have to involve terms of the kind k2"/(k} + kﬁ) [const. + kiﬂ/z , 2
quantitative treatment of such a linear mode conversion problem, based on approxima-
ting differential equations (obtained by substitution of d/dz for ik) ) would involve
derivatives of a correspondingly high order and, thus, would be less appropriate than
the correct integral equation introduced at the beginning of Sect. 6.

It remains to consider the case of the lower hybrid resonance (9.79). Although both
the X- and the O—waves are resonant at this frequency — the former in the limit of
strictly perpendicular propagation — only the O-wave has practical applications, since
resonance (9.79) is inaccessible to an X—wave from the low—-density side (Fig. 9.5c and

5d for a wave incident from the left). As a matter of fact, for the frequencies under

consideration the C—point of the O-wave is at the very edge of the plasma:

(wp(z)/w)? ~ 1+ K2/ (f = (w/e)?) (9.90)

from here inward k2 is real and positive up to the point where condition

il > Wpe/wee + /{1 + (Wpe /wee)? — (wpifw)2} (9.91)

is no longer satisfied ( €; , the expression in the curly brackets, is assumed to be non-
negative). The condition for the accessibility of the LH-R—-point is /9.42/ nﬁ = 1
(wpe/wee)? for wrm = w. When the accessibility condition is violated, there is an
interval T7 < z < Ty, Ti2 being T —points (see Fig. 9.8), in which the two roots
k2 of the dispersion relation (9.65) are complex conjugate and the wave is (strongly)
evanescent. Although a positive k2 on the high-density side of the C-point (9.90)
implies radial wave evanescence on the other side, this happens on an interval which can

in practice be kept optically thin enough to allow efficient tunnelling from the antenna.
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The moét succesful LH wave antenna is the grill /9.43/, a phased array of waveguides
(mounted flush on the liner) with their small side in the B, —direction and excited in
the fundamental T Ey; mode so as to create an electric field essentially parallel to E‘o
and to concentrate most of the RF—power in the part of the k| —spectrum satisfying the
accessibility condition (the other part of the spectrum being trapped near the vacuum
wall and eventually absorbed, resulting at best in low—grade heating). For a complete
theory of the linear radiation properties of the grill see /9.44/. To a first approximation,
within the plasma the waves (slowed down along Eo) are electrostatic and obey the
simple dispersion relation w? = w} 5 (1+(k/kL)?*mi/m.). Asone has I_c'-—aa—’;w =0, the
group velocity trajectories of these waves (which, by the way, are backward waves) are
independent of the wave numbers, so that the field radiated by a finite-length antenna
tends to concentrate around patterns of constructive interference, called resonance cones

/9.45/.

These are the main ingredients which, together with the linear mode conversion
process previously introduced (when the LH-R-point is present), were the theoretical
basis for the LH wave experiments and for the expectations. In particular, with the ad-
ditional assumption that D¢, and DézL are large (in the sense of the discussion in
Sect. 5; in this section and the following one the usual approximation of Dg, is used,
i.e. the D4, for an single wave, given by (9.39), are superposed in accordance with a
given kj —spectrum of waves) in the respective velocity ranges (w/kl‘l‘) < v < (w/kfl)
and (w/k%) < wv;1 < (w/k'), where the upper and lower ends are those corresponding
to the extension of the Jaunched k| —spectrum, the expectation was that P, is control-
led by the e~(w/kFivee)® factor (with a figure of merit for current drive proportional

to In( ﬁ‘/kfl) [(!clll)_2 - (le)_z] ,see (9.56)) and P; by the e~ («/kive)® factor.

The experiments /9.46/, with a variety of wave launchers and under different

plasma conditions, have consistently shown, however, that the most substantial effects
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are produced in current drive and bulk electron heating scenarios by injecting waves
with considerably lower le —values than expected, and that bulk ion heating occurs
also at considerably lower plasma densities than expected (especially in deuterium plas-
mas). There is, in addition, strong experimental evidence of an unexpected density
effect: above a certain density limit, which depends on frequency, the LH wave effects

within the plasma vanish. The whole issue is briefly considered in the next section.

9.8 The Lower Hybrid Wave Problem

A most unexpected and exemplary result of the LH wave experiments is that a substan-
tial fraction of the tokamak current can be driven with high efficiency (see (9.56)) by
launching LH waves which are inadequate to interact strongly with enough particles to
be fully absorbed since they are within a narrow, high phase velocity range. Apparently,
as the LH waves progress towards the plasma core there is a physical mechanism which
more than compensates for the progressive linear depletion of the low phase velocity
part of the launched spectrum (if any) by producing out of the narrow high phase ve-
locity range a new kj — spectrum which extends to the required higher |[k| values.
In the following a brief account is given of a plausible mechanism, which is described in
detail in /9.47/.

In a Cartesian uniform plasma slab of period 27R in the z-direction (which is
along B ), and in the linear electrostatic approximation, the wave pattern consists of
parallel straight rays which project the boundary values of the RF field amplitude into
the plasma (resonance cone; see previous section). As the amplitude, although small, is
finite, the ponderomotive effect modifies the density as n = n, (1—+yM) where, in this
case, one has v = w2/4nnqe) (T; + T.)w? and M = |E.|*, with yM being typically
of the order of 1072 — 1072. The dependence of ¢ and k; on the density entails a

dependence on M , so that one gets the following non linear differential equation for
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ki(3M) o 3]

M) — —M 3M) —M =0. 9.92
i(3M) 2 M e (3M) (992)
The ponderomotive effect changes the slope of the rays, which are thereby focused or

defocused, depending on the sign of %M, according to the implicit equation
M=M°(Z+$kl(3M)/k”), (9.93)

which is the formal solution of (9.92). Here M°(z) = M(z=0, z) is the given value of
|E:|* at z=0 and k% (M)/k is given by —e3(M)/ex(M) (Ey is assumed to be
zero at the grill mouth). Equation (9.93) immediately reveals the nonperiodicity of wave
propagation in the (radial) z-direction, due to the existence of a secular effect which
was discovered in a somewhat different context by KARNEY /9.48/. Eventually the
convergent rays build up a caustic surface, i.e. the surface (z = z(7), z = 2.(7); —o0 <

7 < c0) where |grad M| — oo:

d o z 0 B
Lt g (M) 3y gk =0,
2+ ‘.’E}C_]_(?)MO (T))/k” —7=0. (994)

Only the rays corresponding to 7 < 0 (in the case of right-going rays) build up a
caustic surface within the plasma; this surface consists of two branches which merge in a
cusp line; they correspond to the intervals 7 <7, and 7, < 7 < 0 respectively, where
7o is the negative value of 7 such that 8*M°(r)/8r* = 0. For a single-humped
M?° | a reasonable assumption, the caustic has the form sketched in Fig. 9.9. To within
a form factor the distance of the cusp frorﬁ the plasma surface, T,in, coincides with
the self-focusing distance derived in /9.48/. With realistic M°, zin is found to
be a small fraction of the plasma minor radius. Figure 9.9 also shows the existence
of a downstream” region where the solution of (9.92) is multi-valued; this happens

because wave absorption has been disregarded. However, when convergent rays start
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building up a caustic surface, the increased gradient of |E.|* displaces the lower
velocity end of the quasilinear diffusion coefficient towards still lower velocities (see
(9.50)). Although Dgr decreases at the same time, an increase of 2 |E,|?/|E|?
by a factor of 2-3 is enough for total absorption because of the exponential increase
in electron Landau and/or ion Karney damping. The multi-valuedness of the solution
of (9.92) is then consistently removed by including a & -like energy sink (resulting
from an anti-Hermitian part of the otherwise Hermitian dielectric tensor, which is 6 —
like as a result of the explosive growth of P when |grad M| — oo ) centred on the
surface = = z,(z) determined by the condition |grad M| — oco. This energy sink
ensures that when the rays pass through it, they bend, thus being focused, and fade as
the transported energy concomitantly undergoes total absorption. The =z, surface is
found from the jump conditions that the Maxwell equations imply for such a case; again
it consists of two branches which extend radially to infinity and merge in a cusp line.
One of the branches obeys the same differential equation as the Hermitian caustic, while
the other branch is a new surface. With a proper choice of the integration constant the
first branch is made to coincide with the 7 < 7, branch of the Hermitian caustic. The
second branch is described by the values 7, < 7 < co, and joins the first branch at the
same cusp line as in the Hermitian problem: it is a bow—wave-like surface induced by the
first branch (Fig. 9.9). All the rays entering the plasma from the RF source intercept
the z, discontinuity surface because, at variance with the Hermitian situation, z.(7)
is within the plasma also for 7 > 0 (extending radially to infinity for 7 — oo).
As a result, the whole RF power available is deposited along the discontinuity surface,

typically on the first passage of the wave rays through the plasma.

The question of the distribution of the absorbed power between ions and electrons
requires cumbersome evaluation of the quasilinear diffusion coefficients. The following

is simply a general remark on the expected effect of the form of the kj —spectrum on the
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heating of ions and electrons with reference to a frequently used argument /9.49/. In the
expressions for the power densities absorbed by ions and electrons, P; and P, , there is
an exponential dependence only on (w/k%v:)? and (w/l’cl‘l"u,a,e)2 . The equipartition

equation P; = P, , once written as
(kvei/kjvee)® =1+ InF, (9.95)

can thus be directly used to determine with logarithmic accuracy the density for “switch—
over” from electron to ion heating. The point is that the function F depends on the
various wave and plasma parameters but is such that for most experimental conditions
the value of the RHS of (9.95) is between 1 and 2; moreover, the dispersion relation is
approximately electrostatic, so that the LHS of (9.95) contains the equilibrium quanti-
ties and the wave frequency but not the wave numbers. Equation (9.95) can therefore
provide the value of the “switch—over” density even if the actual k|| —spectrum in the
plasma has to be different (so to speak, “upshifted”) from the antenna spectrum to give
substantial absorption. However, the validity of this density determination rests on the
tacit assumption that the k) —spectrum of the LH wave within the plasma is such as to
produce virtually single-humped diffusion coefficients Dég r and Dg . The point here
is that the diffusion coefficients D&L and Dg,, corresponding to a LH pump with a
given range of k) ’s have different extents along the relevant velocity component. A
rectangular k) —spectrum line gives a rectangular Dgp in vg , but results in a rectan-
gular D}'QL in v;; with an additional high-velocity part which decreases as slowly as
”;‘12 down to the value DE}L ~ Vz—‘:::* (see (9.44)), and hence appreciably enlarges the
plateau of the distribution function. Thus, if the actual k| —spectrum has separate lines,
as expectéd from the narrow-line spectra of antennae with many waveguides /9.44/, ion
heating should be favoured with respect to the prediction of (9.95) because the ion dis-

tribution function would have a plateau-like enhancement over a broad velocity range,

while over the corresponding velocity range the electron distribution function would
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only have a stair-Ilike enhancement.

In many experiments (see /9.46/) density limits have been observed (a few times
103 em~—2 for f ~ 1GHz) above which it was not possible to achieve efficient plasma
heating and/or current drive. Their existence is explained in the framework of the
theoretical model described in /9.47/ as being due to the destruction of the discontinuous
wave pattern at the z, surface by wave interference when the extent of that surface
along the toroidal direction becomes sufficient to allow rays with different slopes (e.g.
fast EM— waves) to cross. The density at which the slow and fast rays cross at some

point r =r. is given by

d
iy

d

- N 9.96
ak; 2nR/r ( )

slow l fast

When (9.96) has no positive solutions for (wf,/wz) at the plasma centre (7, = rp),
there is no density limit. A tabular comparison with many experiments supports the
suggested theoretical model, particularly in respect of the weak m;—scaling of the

density limit, which cannot be recovered with (9.95).
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FIGURE CAPTIONS

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Phase-space trajectories in a coordinate system moving with a low—frequency wave
with By = —bB cos(kz —wt).

Schematic plot of the heating rate gy versus the collision frequency v in a wave-
particle resonance case (upper curve) and in gyrorelaxation (lower curve).
Schematic plot of (kJ_'UA/UJ)z versus (kHvA/w)z in a single ion species plasma for
w > we; (lower curve) and w < we; (upper curve).

Schematic plot of kf: Versus T = (wpe/w)z in the lower hybrid resonance range of
frequencies for ordinary (O) and extraordinary (X)-waves with a sufficiently large

(kjj ¢/w)? —value (see (9.91)). As the plasma temperature tends to zero the broken

line, which is a warm plasma asymptote, approches the vertical z =z .

Profiles of the square of the radial wave—number when there is an R—point together
with two C—points (cases a and b), with one C—point (case ¢) and with no C-
points (case d).

Geometrical-optics plot of the C and R—curves of the extraordinary wave (9.67) in
the ion—ion hybrid resonance range of frequency in a tokamak minor cross—section.

The tokamak major axis is to the left of the figure. The wave is evanescent in the

shaded region.

The Clemmow—-Mullaly—Allis (CMA) diagram /9.24/ for exact perpendicular wave
propagation in the upper hybrid resonance range of frequencies. The O-wave is
evanescent to the right of (wpe/w)? = 1. The X-wave is evanescent in the shaded
region.

Schematic plot of k2 versus z = (wp./w)? for a cold plasma in the lower hybrid

resonance range of frequencies when the accessibility condition (9.91) is not fulfilled

(for the accessible case see Fig. 9.4).




9.9 Schematic plot of 1) the Hermitian caustic branches z = z.(7) merging in a cusp
at 7 = 7, where T, = Tmin, and 2) the anti-Hermitian bow-wave-like branch
z = z,(r) stemming from the cusp, for a single-humped M) (r) which vanishes
at 71 and 72, and has an inflection point at 7 = 7. The heavy straight lines are
the characteristics of (9.92) for v = 0 (limits of the resonance cone), and the light
straight lines are the characteristics of (9.92) for v # 0. In the shaded region the

solution of (9.92) is multi-valued. In the hatched region M vanishes.
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