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Abstract

For a system of van der Pol-like oscillators, Lyapunov functions valid
in the greater part of phase space are given. They allow a finite region
of attraction to be defined. Any attractor has to be within the rigor-
ously estimated bounds. Under a special choice of the interaction
matrices the attractive region can be squeezed to zero. In this case

the asymptotic behaviour is given by.a conservative system of nonlinear

oscillators which acts as attractor.

Though this system does not possess in general a Hamiltonian formulation,
Gibbs statistics is possible due to the proof of a Liouville theorem and
the existence of a positive invariant or "shell" condition. The
"canonical" distribution of the attractor is remarkably simple despite
nonlinearities. Finally the connection of the van der Pol-like system
and of the attractive region with turbulence problems in fluids and

plasmas is discussed.



I. Introduction

The purpose of the van der Pol equation [:il was to study the non-
linear oscillations of a L-C circuit driven by a triode. The tension

at the grid was taken as a solution of the equation []:I
. 5 . ~
y+ -1 y+y=0

The term —§ represents the amplification of the triode while v’y

is due to its nonlinear characteristic curve (see for example [?]).

Due to standard theorems [?:I of Poincaré, Bendixson, Levinson and
Smith the existence of an attracting limit cycle to eq. (1) is
known. Practical calculations of the limit cycle are done by means
of series expansions and numerical calculations. A typical phase

plot is given in Fig. 1.
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Let us introduce here a modified van der Pol equation [}:I for which
the Lyapunov function and the limit cycle can be constructed easily.

The modified equation is

Y+ (33 y2-1) y+y =0

(1

(2)



Multiplying eq. (2) by y one obtains

19 ; ; :
5 o %) = =R % D (3)

Due to Lyapunov stability theorems one obtains
Stability if y2+ y2>1
Instability if §2+ y2<1,

g2+ §2= 1 being the equation of the limit cycle.

IT. Stability of a System of van der Pol-like Oscillators

The existence theorems [?:I for limit cycles are restricted to the
case of a single oscillator. They cannot be extended to general
systems of oscillators, in particular due to the possibility of
. " " E‘si[
more complex attractors like "'strange attractors . Systems of
oscillators of the kind given by eq. (2) turns out to be more
' [3] .
tractable as shown by author's work and as explained below.

Consider the following system
Y + EY,AY)m(?,B&'{)N—P—[Y +CY =0 (%)

where Y is a real vector of arbitrary length r. A,B,C,M,N,P are
real r x r matrices and (...,...) is the scalar product. These
matrices can be split in symmetric AS, BS... and antisymmetric
parts Aa’ Ba...
Assume Ca = 0 and AS,BS,MS,NS,PS and C be positive definite with

largest eigenvalues a1,81,H1,V1,71,Y1 and lowest eigenvalues



aO’BO’UO’VO’ﬂo’Yo respectively. Take the scalar product of eq. (4)

by Y
% j—t [(é,ifh(Y,CY)] = —I:(Y,ASY) (¥,M 1)+(¥,B 1) ({{,Nss})-(%,psx';)] )

The bracket on the left-hand side of eq. (5)is positive definite
and is a candidate for a Lyapunov function if the right-hand side

can be made to have a definite sign. This is possible if one assumes
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The proof (see [}:I) is done by extracting two inequalities from
eq. (5) which allow the use of Lyapunov's theorems if conditions (6)
are satisfied. This result leads to the definition of an attractive

region in the (i,é), (Y,CY) plane (see Fig. 2).
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Under conditions (6) any solution of system (4) will be '"trapped"

after some time in the attractive region defined by the bounds

m
<o o
Y, Y¥) % 2
(¥, ¥) (%00 Bivi
. . m1
and (Y,y) + (y,Ccy) = 5
oo

The detailed asymptotic behaviour is very difficult to study, and

one should expect,in general, a kind of high dimensional "strange"

attractor.

If, however, the attractive region is made to shrink to zero in

the (Y,Y),(Y,CY) plane, then the attractor of system (4) obeys

. ; : - (6]

itself a system of conservative nonlinear oscillators together

with a "shell" condition as will be shown below.

III. Special Cases of Attracting Systems

Under a special choice of the matrices A ,B ,C ,M ,N ,P the
s’ s’ '8’ s’ s’ s
attracting region of Fig. 2 can be made to shrink to zero. This

choice is

= 4 =ﬂ
B = als B = pl; 6 = =T

MS = ul, NS = vI, PS =71 5

where I is the identity matrix and o,B,u,v and 7 are any real

positive numbers. Relations (9) leave Ma’Pa and Na undetermined so

(7)

(8)

(9)



that we are led to distinguish between two cases

(A) M =P =N =0.

In this case the attracting system is given by

¥ o+ % Y =0 (10)
and (Y,Y) + %‘% (Y,Y) = % . (11)

Egs. (10) and (11) represent a system of r linear oscillators

with a "shell" condition on their "amplitudes".
(B) Ma’Pa and Na are any real antisymmetric matrices.

In this case the attracting system in reduced form is given by
Y + l:(Y,Y)M , (Y, YN -P:lﬁ'( +Y=0 (12)
a a a

and the shell condition is

. - 'T[

(Y,Y) + (Y,Y) = ¢ = By (13)
Apart from the case of r = 2 oscillators which is completely in-
tegrable (see [7:1), system (12) is not expected to be, in
general, integrable (see [B]). It is shown in [ﬁj that system
(12) does not possess,in general,a Lagrangian formulation in

terms of Y and that (13), the only known constant of motion,

cannot play the role of a noncanonical Hamiltonian. In the next




section it will be shown, however, that Y and Y constitute a
convenient phase space to describe statistics of system (12) on

the "ergodic" shell (13).

IV. Statistics of the Attracting System (12)

A conventional Gibbs statistics is not-possible because of the

lack of a Hamiltonian (see [}:1). If we introduce

)

the components X, of X obey

2r

E x2 = ¢ (14)
- 1

1=1

which is identical to the shell relation (13).

It can be shown [}il that system (12) represents an incompressible

flow in the phase space X that is

%r aki %r
= 2 Xx.n..x. =0 ., (15)
Tt 9%y i,5=r+1 113

Liouville's theorem (15) and the shell condition (14) allow us to
define a microcanonical distribution if an assumption of 'physical"
ergodicity is introduced. A canonical distribution could also be

derived if the system were in contact with an "amplitude" bath.



This statistics leads to an equipartition in the amplitude
expectations of the oscillators. It may be able to model some
situations in which noise is observed but not turbulence in
hydrodynamics where strongly decaying wave vector spectra are

usually observed.

V. Connection with Turbulence and Outlook

System (12) reflects the asymptotic behaviour of system (4)
under the choice (9). Choicer(9) means that the oscillators

are equally excited and damped. In that respect the statistics
of system (12) (see section IV), in particular the equipartition
of amplitudes is not surprising. If one likes to model turbu-
lence spectra, one should give up choice (9). The oscillators

should not be equally excited and not equally damped.

Unfortunately in such a case system (4) would not behave asymp-
totically as a system having a shell relation like (13) or (14)
and a Liouville theorem would not be possible to prove, thus
preventing the use of Gibbs distributions. Even the "stationary"

statistical problem becomes very tough.

The existence of an attractive region (see section II) is, how-
ever, certainly useful especially if one is interested in upper
bounds for the amplitude excursions of the oscillators. But a

better estimate of the attractive region would be desirable.



The bounds given by (7) and (8) fall far apart according to the

difference in eigenvalues like the lowest T and the largest mj.

Since dissipative fluid systems are expected to have asymptoti-
cally a large but finite number of determining '"modes" (see for
example [}il), the existence of attractive regions for large ODE
systems and the refinement of their bounds may become a powerful

tool in fluid and plasma turbulence.
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