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Abstract

Nonlinear numerical studies of the MHD turbulence generated in an RFP configu-
ration are presented. In these computations the resistive MHD equations are solved
by using a three-dimensional semi-implicit spectral code. While a qualitative picture
of the global RFP behaviour is readily obtained, the possibility of obtaining reliable
results for Reynolds numbers of practical interest is a major problem. For this reason
particular attention is placed on the convergence properties of the spectral meth-
ods. Furthermore, preliminary results on the dependence of the fluctuations on the

Reynolds numbers are given.




1. Introduction

The reversed field pinch (RFP) is an axisymmetric magnetic configuration in which
the toroidal and poloidal magnetic fields are of the same order and the toroidal field
at the boundary reverses its direction relatively to the field on axis. The safety factor
is less than 1 everywhere in the plasma and becomes negative in the outer region.
The main feature of the RFP is that this magnetic configuration is able to maintain
itself for times much longer than the resistive diffusion time.

The formation and sustainment of an RFP discharge have been under close the-
oretical scrutiny, both analytical and numerical, for many years, starting from the
historic paper of Taylor /1/, but a complete elucidation of these phenomena is still
missing. Taylor’s theory shows that a dissipative system, subject to the constraints of
constant magnetic helicity and constant toroidal flux, can relax to a minimum energy
state, the field being described by the Bessel function model. But this theory does not
explain the mechanism by which the reversed state is maintained. The mechanism
responsible for this sustainment is generally referred to as the dynamo effect /2,3/.

On the other hand, it now appears quite clear from an increasing number of the-
oretical papers that this mechanism is closely related to the turbulent nature of the
RFP. Present RFP experiments are characterized by magnetic Reynolds numbers of
104 to 10° and a magnetic fluctuation level of 1% for typical currents of a few hundred
kA. The confinement times are shorter and in general the transport properties are
even more anomalous than in a tokamak with the same parameters, while the plasma
beta is typically higher.

Since new RFP experiments in the MA current range and with magnetic Reynolds
numbers of 10% to 107 are under development /4/, it is very important to obtain a
clear understanding of the dynamo effect, its behaviour at high Reynolds numbers,
and its relation to transport.

In this respect, numerical solution of the resistive MHD equations represents an im-
portant tool in the study of the RFP configuration. In fact, significant numerical work
has been done since the early eighties /5,6,7/ in order to clarify the strong relation in
the RFP between plasma instabilities and the dynamo mechanism. Present-day su-
percomputers allow one to solve the primitive set of resistive MHD equations, and in
particular three-dimensional simulations of the long-time behaviour of RFP dynamics
are now possible.

The present work aims primarily at understanding the limits, in terms of Reynolds
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numbers, on full simulation of the MHD equations that are imposed by computer
limitations. Attention is also focused on analysis of the turbulent magnetic and kinetic
energies for different values of the Reynolds number. In particular, preliminary results
on the scaling of the magnetic fluctuations are obtained. In Section 2 the physical
model is presented, in Section 3 the numerical algorithm is illustrated, Section 4 shows

the results, and some conclusions are drawn in Section 5.

2. The Physical Model

This work is based on numerical solution of the resistive MHD equations. These

equations can be written, in dimensionless form, as

8B .
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The equation for the density p is not included in the present formulation, since it is
assumed to be constant in space and time in accordance with previous convention
/8/. In these equations lengths are normalized to the characteristic scale a of the
system (since cylindrical geometry is used, a is assumed to be the plasma radius),
and magnetic fields, velocities, and times are normalized to the initial toroidal field
on axis By, to the Alfvén velocity (v4 = Bo/p'/?) and the Alfvén time (74 = a/v4),
respectively. Three dissipative effects are considered: an electric resistivity n , a
kinetic viscosity v and a thermal conductivity x, all defined as scalar quantities with
a possible dependence on the minor radius.

These equations describe various phenomena, such as ideal and resistive instabilities
as well as resistive, viscous, and thermal diffusion, characterized by highly different
spatial and time scales when R™ and R¥ are large. Here RM and R¥ indicate the
magnetic and kinetic Reynolds numbers, respectively, defined as RM = v4a/n and
R¥ =y a/v. The normalization introduced yields RM = n~! and RX =1,

In this work a zero-pressure plasma is assumed and therefore the results obtained

are strictly valid only in the zero beta limit. Since it is known /4/ that RFP configu-
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rations are nearly force-free, J /J) = § = 0.1, this approximation can be considered

to be adequate.
3. The Numerical Algorithm

3.1. The Spectral Formulation

The system of equations (1,2,4) is solved in cylindrical coordinates (r,f,z). The
plasma is considered to be in contact with a conducting wall. Since the lengths are
normalized to the plasma minor radius, the domain of integration is 0 < r < 1,
0< 6 <2m and 0 < z < 27R, where R is the major radius of the rectified torus.
The spatial discretization of the various quantities and operators is assumed to be of
the finite-difference type in the radial direction and spectral in the poloidal and axial
directions. Two staggered uniform radial meshes of N, points are used, together with
Nj poloidal and N, axial Fourier components. In this approximation any physical

quantity is written as a finite Fourier series:

Ns/2—1 N,/2-1

e 820t = Z Z Fmn(ri;t)ezp [i (mﬂ-}; %z)] . (5)

m=—N9/2 n=—N,/2

The discrete Fourier transform fy, n of f is given by the complex coefficients:

Ng—1N,—1
1 . y n
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are the collocation points of the spectral expansion /9/. The imposition of the reality

of f(r,0,z;t) implies

fem—n = fomn- (7)
Inserting eq. (5) into egs. (1,2,4) yields a system of Ng X N, sets of equations like
8B =
R = [V X (7 X Bl = [V X (1) myn Q
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fm,n = [V X g]m,n y (10)
where [ |n,n denotes the (m,n) Fourier component of the term inside the brackets.

As is clear, these equations are defined in the Fourier space: they represent the
spectral formulation of the problem.

The convolution sums of the nonlinear terms are computed through a pseudospec-
tral algorithm /9/. Fast Fourier transforms are used to communicate between the
configuration (real) space and the Fourier space. The pseudospectral formulation in-
volves the inconvenience of aliasing errors generated by the nonlinearities. The most
practical way to eliminate such errors, as adopted here, is to use only 2/3 of the
available Fourier space for each dimension, discarding the highest-mode-number part
of the spectrum of all field quantities. In the present case this corresponds to the use

of only 4/9 of the two-dimensional Fourier space.
3.2. Time Advance and Semi-implicit Term

When numerically solving egs. (1,2,4) for the RFP, one is generally interested in
the long-time behaviour, which is characterized by the appearance of relaxation and
dynamo phenomena. But numerical stability restrictions on the time step for the
standard explicit schemes or, on the other hand, the fundamental problems arising
from the nonlinear terms using implicit schemes would make any study of long-time,
low-frequency phenomena very difficult and expensive, even with the most advanced
supercomputers.

Recently, the situation has been improved by introducing in plasma physics
/8,10,11/ the semi-implicit method currently used in numerical weather predictions
/12/. The main feature of this algorithm is that it eliminates the most severe time
step restrictions associated with the fastest modes of the system (compressional and
shear Alfvén) while essentially retaining the simplicity and flexibility of an explicit
scheme.

To advance the equations in time, the following scheme is adopted (the mode num-

ber indices are omitted):

=V x (" x B"), (11)

J*=V x B*, (12)



y At’ — g™ . V" — B* x J* + vVt (13)
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Equations (11,12) correspond to a predictor step (but without taking into account
the dissipative terms) to evaluate the magnetic field and the current density at the
time t" 4+ At/2. These values are then used in eq. (13) to advance the velocity to the
time t"*t!. Note in this equation that the advective term v - V7 is evaluated at the
time t". Once the new velocity is known, eq. (14) is used to calculate B at the time
t"t1. In egs. (13,14) the dissipative terms are implicit.

The algorithm described by egs. (11-14) is linearly stable only if the Courant-
Friedrichs-Lewy condition on the time step is satisfied. In particular, the most severe
time step restrictions are imposed by fast compressional and shear Alfvén modes.

The semi-implicit method eliminates these restrictions, so that the time step is no
longer determined by stability constraints but rather by numerical accuracy. The
method amounts to adding new terms in the equations that do not affect the solu-
tion as At — 0 and make the algorithm unconditionally linearly stable (time step
limitations may occasionally arise owing to the nonlinear terms). In particular, for
the present case, it has proved /8/ particularly convenient to modify the momentum

equation (2) by adding a linear term

97 , 07

where F represents the right-hand side of eq. (2) and « is a numerical constant.
Discretizing eq. (15),

T =F+aVi@H =),

it is clear that the semi-implicit term can be considered as a sort of artificial viscosity.
In this case, in which the viscosity term is implicit, this semi-implicit operator can
very easily be implemented. From eq. (15) note also that in the limit 99/t — 0 the
original system is unaffected: this means that steady-state solutions are solutions of

the original equations.
3.3. Boundary Conditions

At the origin r = 0 analytic conditions based on regularity and single-valuedness

considerations must be imposed for the various m. In particular, for B and ¥ the
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following conditions are applied at r = 0 (* denotes the radial derivative):

m =0 m #0 m| =1 |m| # 1
B, =0 B, =0 B, =0 B, =0
v, =0 v =0 By = imB, By =0
v',:O vy =0
vy = 1muy vg =0

The plasma is assumed to be surrounded by a conducting wall, with no vacuum region
between the plasma and the wall. This wall is assumed to be perfectly conducting for
all but the (0,0) mode. For this mode constant axial current (i.e. By(1) = const.)
and constant axial flux (®, = const.) or, alternatively, constant axial field (B.(1) =
const.) boundary conditions are applied. Furthermore, owing to the presence of the
viscosity, one is free to specify the boundary conditions for the poloidal and axial
components of the velocity. To summarize, the following conditions are applied at

r=1:

all  modes (m,n) = (0,0) (m,n) # (0,0)
By =0 By = const. (rBg) =0

vy, =0 ®, = const. or B; =0

vg =0 B, = const.

vy =20

4. Applications

To characterize the RFP configuration, it is useful to introduce two quantities
referring to the mean field ((0,0) mode):

the pinch parameter

Bg(].)
0=_—
< By
and the field reversal parameter
B.(1)
P =0
£ b5
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where < B, > is the average of the axial field over the plasma cross-section.

As stated in the previous section, the boundary condition adopted here for the
mean poloidal magnetic field is Bg(1) = const., corresponding to the constancy of the
total toroidal current. Furthermore, for the axial component of the mean magnetic
field, the condition of vanishing derivative at the boundary is chosen, which can easily
be seen to correspond to the conservation of the axial flux, i.e. of < Bz >. Therefore
© must remain constant in time, while in general F will show a temporal dependence.

These boundary conditions for the mean field make the system strongly driven
from the outside since there is continuous input of electromagnetic energy. In fact,
the Poynting vector at r = 1 can be written as

Bx B = —fE,By = 202 (rBy). (16)

r Or

It is generally said that the dynamo action is “demonstrated”, under these or similar
boundary conditions, if the reversal of the axial field (F < 0) is maintained. This
cannot be obtained in a purely axisymmetric way but requires the presence of modes
(m,n) # (0,0) in the spectrum. An example of the temporal evolution keeping only
the mean field is shown in Fig. 1: the initial state, which is slightly reversed, is
immediately lost and eventually a steady state, not reversed, is produced by the

action of inward convection and diffusion.
4.1. Results for Low Reynolds Numbers

The resistivity profiles used in this work are flat in the central region and sharply

increasing at the outer boundary, according to the simple analytic expression
n(r) =n(0) [t + (a —1)r7] .

Here o directly gives the value of the resistivity at the outer boundary with respect
to the on-axis value. Typical values for @ and  are 20 and 10, respectively.

The code is first applied to a case previously studied /8/. The initial-equilibrium
magnetic profiles are described by the safety factor:

g(r) = 0.4(1 — 1.8748r% + 0.83232r%)

with an aspect ratio of 1. The value of the pinch parameter associated with this

g profile is ® = 1.7, which will be maintained in time. This equilibrium, which
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is strongly unstable with respect to the (m = 1,n = —2) mode, is perturbed by
introducing the linear eigenfunctions of the (m = 1,n = —1) and (m = 1,n = —2)
modes, at an amplitude of 1075 with respect to the mean field. The on-axis resistivity
is set at 10™3, while for the viscosity a value of 10™* is chosen. The magnetic and
kinetic Reynolds numbers therefore assume the values 102 and 104, respectively. The
numerical resolution is given by N, = 100 radial points, Ny = 8 poloidal modes, and
N, = 16 axial modes. The evolution from the initial state is computed for 500 Alfvén
times.

In Fig. 2 the time evolution of the term E, By of eq. (16) is shown. As can be seen,
the boundary conditions used imply the presence of a non-vanishing axial electric
field E, at the wall. In Fig. 3 the temporal behaviour of the field reversal parameter
F is shown: initially the configuration loses the reversal immediately but, owing to
the action of the unstable modes, it is regained after ~ 5074 and maintained at a
quasi-steady level. The dynamics of this process can be illustrated by the evolution

of the magnetic energy of the individual modes:
1 =
£, =5 [ Bmalid®s. (17)

In Fig. 4a the magnetic energy of the modes characterized by a negative value of
n is shown. These modes can only be resonant between the axis and the reversal
surface. Hence they are often called internal. Analogously, the energies of the other
modes are shown in Figs. 4b,c. Modes with positive n value, also called external, can
only be resonant between the reversal and the outer boundary, while the m = 0 are
always resonant on the reversal surface. From these figures it is clear that the internal
modes play the key role in the phenomenon under examination, their energies being
substantially greater than those of the other modes. The external modes, at least in
this case with a perfectly conducting wall, do not play any significant role, while the
m = 0 modes are directly excited by the nonlinear coupling of the m = 1 modes.

In Fig. 4a, the initial phase following the initial rapid loss of the field reversal is
dominated by the exponential growth of the unstable mode (1, —2) and its harmonic
(2,—4). The interaction of these modes with the mean field is such that the mean
toroidal field reverses and the modes saturate, giving rise to a stationary phase, be-
tween ¢ ~ 50 and ¢ ~ 200, dominated by a single helicity. But this state turns out to
be unstable with respect to the (1,—3) mode, which in fact grows exponentially. At
t ~ 200 the two modes (1,—2) and (1,—3) interact, giving rise to a quasi-stationary
state characterized by the presence of these two dominant modes and a field rever-

sal ratio F' ~ 0.03. This result is quite similar to that obtained in /8/, a steady

9



state finally dominated by (1,—2) and (1, —4) modes, but differences in the boundary
conditions and in the diffusion coefficients may account for the difference.

An aspect ratio of 1, as considered in the previous case, is of course unrealistic.
Typical values of the aspect ratio for the RFP configuration are 4 to 5. On the
other hand, working with such high values of R/a implies the necessity to use a
correspondingly larger axial wave number spectrum since the characteristic axial wave
numbers for the dominant m = 1 modes are proportional to R/a: the (1,—2) mode
for R/a = 1 is transposed into the (1,—10) mode for R/a = 5. Of course, as the
aspect ratio increases, the dynamics can also change since more modes are present.
Because of the memory limitations of the computer, an aspect ratio of 2 is adopted
as a “compromise” in the rest of this work.

Having an aspect ratio of 2 and including more modes does not basically change
the results of the previous case. Using a mesh of 100 x 8 x 32 points, a ¢ on
axis of 0.2 instead of 0.4, and an initial perturbation composed of the modes
(m =1,n = —1,—2,—3,—4), each at an amplitude of 10~°, one finds that the results
are in agreement with the previous ones. Now the dominant modes are (1, —4) and
(1,—6), and they show exactly the same behaviour as the (1,—2) and (1, —3) modes
of Fig. 4a.

Decreasing the on-axis resistivity to 3-10~4, while maintaining the viscosity at 104,
one obtains a more turbulent situation than in the previous case. The resolution,
the initial, equilibrium and the initial perturbation are not changed. In Fig. 5 the
temporal evolution of the field reversal F is shown. The main temporal variations in
F can be connected with the continuous excitation, saturation, and decay of different
internal modes. This mechanism appears clear in the evolution of the internal modes,
as shown in Fig. 6. In this process an important role is also played by the convection
and diffusion of the mean field. At the end of this run, at ¢ = 500, the dominant
modes are again (1,—4) and (1, —6).

Considering Ohm’s law

E4+9xB= nf
and taking the poloidal component for the mean field (o denotes mean quantities,
and § fluctuating quantities, where the average is made over the poloidal and axial

directions) one obtains
Ego — vyoBao+ < 67 X 6B >¢= nJgo. (18)

Owing to the boundary condition Ego(1l) = 0, the steady state is characterized by

Ego = 0 over the whole radius. On the reversal surface the poloidal current cannot
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be due to the term v,oB,0, which vanishes. The only term which can sustain Jjo
at this point is the nonlinear term due to the fluctuations. These considerations are
illustrated in Fig. 7, where the terms of eq. (18) are shown, for the final state of
Fig. 5: curves 1, 2, and 3 denote the poloidal voltage nJyo, the v,0B,0 term, and
the contribution of the fluctuations, respectively, while the dotted line denotes the
poloidal electric field. Eyp is very close to zero throughout the radius, indicating that
the whole system has reached a quasi-stationary state. It is clear from Fig. 7 that
in general the poloidal current is sustained by both the v,oB.o contribution and the
fluctuating term — < év' x 6B >g, while at the reversal only the latter contributes.
This is the reason why this fluctuating term is often referred to as the dynamo term
and the dominant modes in it, typically internal resonant modes, are called dynamo

modes.

The final state of Fig. 5 is taken as the initial state in most of the runs which will
be subsequently considered, since here attention is focused on analysis of the fully
developed turbulent states rather than on situations which are strongly dependent on

the initial conditions.
4.2. Convergence Studies

An important characteristic of spectral methods is their self-diagnosing property:
insufficient grid resolution manifests itself in excessive values of high-mode-number
expansion coefficients. For the present problem a careful analysis of the magnetic and
kinetic energy spectra allows one to decide whether or not a particular result can be

considered reliable.

In this section attention is focused on a convergence analysis of the solutions ob-
tained by the spectral code, for the case in which the resistivity and the viscosity
both have the value 3 - 107%. The initial state is that discussed at the end of the

previous section. Three cases, characterized by different spectral resolutions, are first

considered:
case Ne % Ny x N, Mmaz X Nmaz
100 x 8 x 64 2% 21
b 100 x 12 x 96 3 x 32
c 100 x 16 x 96 5 X 32
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The third column lists the maximum absolute values of the poloidal and axial mode
numbers (—Mmaz < M < Mpmaz, —Nmaz < N < Nmaz)-

The three cases are computed up to ¢ = 410. The typical mean magnetic field
profiles, averaged in time, obtained in these runs are given in Fig. 8, which refers to
case c¢. In Fig. 9 the behaviour of the field reversal parameter is given: it can be seen
how the mean value depends on the mesh. Cases b and ¢ do not differ from each other
in any significant way. Of course, case ¢ should be considered as the one closest to the
exact solution, but the dynamics of the system is also sufficiently well described in case
b. In case a the spectral resolution is too poor, even at these relatively low Reynolds
numbers, to give a reliable solution, and the reversal parameter clearly differs from
the other two cases.

The differences observed in the field reversal behaviour are, of course, a consequence
of the different behaviour of the modes. In Fig. 10 the time evolutions of the total
magnetic and kinetic energies of the perturbation are given. The main part of the
perturbed energy is magnetic but the kinetic contribution is non-negligible: roughly
speaking, there is an order of magnitude between the two. On average the magnetic
energies for cases b and ¢ are quite similar, while that for case a is somewhat lower. On
the other hand, the kinetic energy shows the opposite behaviour: it tends to decrease
as the number of modes increases and there is also a non-negligible difference between
cases b and c. It should be noted that the difference in the behaviour of the system
is due to the inclusion of small-scale modes, whose energies are orders of magnitude
(at least two) less than those of the dominant modes!

Another point that should be noted, when comparing Fig. 9 and Fig. 10 is the
direct relation, which is present in all three cases, between the value of the reversal
and the total fluctuation energy: a deeper reversal is connected with an increased
value of the energy, as one can expect since the dynamo action, which sustains the
reversal, is due to the MHD activity.

In the plots of Fig. 11 the distributions of the magnetic energy, given by eq. (17),
and of the kinetic energy, given by

1 .
EX, =5 [ lomalids,

of the perturbed spectrum are shown for case a: the radius of each circle is propor-
tional to log(Em,n - 10*/Ey,q;), where Ep, , is the magnetic (or kinetic) energy of
the (m,n) mode and E,,,, is the maximum magnetic (or kinetic) energy. While in

the magnetic spectrum the convergence is satisfactory, i.e. the energy contained in
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the high-wave-number part of the spectrum is low, this is not the case for the kinetic
spectrum, in which the energy of the m = 2 modes is comparable to the energy of the
m = 1 modes. The previously observed fact that the kinetic energy is larger for the
insufficiently resolved case a can perhaps be explained by the tendency, due to poor
poloidal resolution, towards accumulation of energy in the m = 2 modes.

If the resolution is increased (case b), the situation shown in Fig. 12 is obtained:
here again, even with this finer mesh, good convergence in the kinetic spectrum is
not obtained! In particular, it is the poloidal direction which seems to be poorly
resolved. In case ¢ poloidal mode numbers of up to m = 5 are taken into account,
the result being shown in Fig. 13. Here, finally, the kinetic spectrum seems to be
adequately resolved in m: there is a clear separation between the energy-containing
modes m = 0,1,2 and the small-scale modes m = 3,4,5. (of course, with high m
modes included, the convergence now turns out to be marginal in n: it is like a
never-ending story!)

When the magnetic and kinetic energy spectra within a single case are compared,
it appears, as far as the dominant modes are concerned, that the magnetic energy is
always greater than the kinetic one (and these modes contain by far the major part
of the perturbed energy), while for the high-wave-number modes the magnetic and
kinetic energies tend to be comparable.

It is useful to introduce the magnetic and kinetic axial spectrum functions, defined

as
)=y B, F¥(ny=3 EX..

For case ¢ these functions are shown in Fig. 14. It can be seen that in the high-n (both
positive and negative) parts of the spectra, the magnetic and kinetic mode energies
tend to be equal.

The fact that for high wave numbers the magnetic and kinetic energies are strictly
linked is easily shown by modifying the viscosity from 3-107% to 9-10~* and keeping
the resistivity constant at 3-10~%. This case is computed with a mesh of 100 x 12 x 96
points, the result being shown in Fig. 15, where for comparison the case with the
unmodified viscosity (3-107*) is reported too: the higher viscosity produces increased
dissipation not only of the kinetic energy but also of the magnetic one and there is
equipartition of the energy on small scales. It should be noted that for these Reynolds
numbers and the present marginally adequate resolution an inertial range between the
energy-containing modes and the dissipation range does not exist.

Coming back to a detailed comparison of the three initial cases, it is useful to
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introduce the so-called «a coefficient, through which the dynamo electric field is often
expressed /3/, /13/:
-~ B
ar) =< 67X 6B > =
B;
In other words, the effect of the fluctuations is taken into account in Ohm’s law as an
effective parallel electric field aBo. The a radial profile can be directly computed from
the knowledge of the magnetic and kinetic spectra. The introduction of p, defined as
Jo - Bo
[.L(T) - Bg ’

which characterizes the mean field distribution, is useful too. p is the quantity that,
in Taylor’s theory, characterizes the relaxed state. In this theory p is constant over
the plasma minor radius and is related to the pinch parameter © by the relation
ua = 20. Cylindrically symmetric Bessel function states are minimum energy states
for pa < 3.11; when 3.11 is reacherd, the minimum energy state is helically deformed
and O saturates at 1.55. The limitation on © predicted by the theory is not observed
experimentally: values of © like that adopted here, 1.7, are currently being reached
in experiments. Furthermore, the p profile is observed to vanish at the wall. This
discrepancy is generally ascribed to the boundary conditions: in a real experiment
the current density close to the wall is very small, while the constancy of x implies a
current density very different from zero. In the present simulation, too, the resistivity
profile acts in such a way as to have a small current density, i.e. small x, at the wall.

In Fig. 16 the time-averaged radial profiles of the coefficients o and p, for the three
cases, are shown. As regards «, cases b and ¢ give essentially the same result, while
case a differs considerably. In the present formulation « vanishes at the wall owing
to the boundary conditions for the velocity fields. Note that in the three cases the
peaking of the a profile is located around r = 0.8, which corresponds to the position
of the reversal, and that in case a the less pronounced reversal corresponds to a lower
value of . In the u profile the differences are less marked and the three cases look
quite similar: u tends to be flat in the inner region and is very close to zero at the
wall.

The kind of a profile shown, negative in the internal region and positive in the
outer one, characterizes the quasi-stationary turbulent state. As reported by Strauss
/13/, it is this form of a which tends to flatten the current profile, i.e. p, in the inner
region. « redistributes the current but does not sustain it in a quasi-steady state.

In some studies /14,15/ the electromotive mean field generated by the turbulence,

£ =< 6Ux 6B >, has been connected with the conservation properties of the plasma.
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In particular, it has been shown /15/ that & satisfies two properties:
/5_‘ ﬁod3z = faBgdaz =0

and

/E-J%da:c<0,

both correct to O(n). The turbulent fields £ obtained from the code satisfy these
relations in very good approximation. This means that, since the magnetic helicity

and the magnetic energy dissipations are given by

M
Wi = [ B Be's B - [ 5.7,
dt dt

the fluctuations, to O(n), do not dissipate magnetic helicity but they dissipate mag-

netic energy.
4.3. Higher Reynolds Numbers

In this section some results regarding Reynolds numbers higher than those consid-
ered so far are presented. This is done while keeping in mind the results on the limits
of the spectral resolution in the previous section.

Of particular interest is the study of the behaviour of the magnetic and kinetic
fluctuations as the Reynolds numbers are increased. In fact, as the resistivity de-
creases, the electromotive field & , which is the product of the kinetic and magnetic
fluctuations, is expected to do the same since in steady-state (or quasi-steady-state)
conditions € should be proportional to nJ. But theories able to predict the be-
haviour of the magnetic and kinetic fluctuations separately do not exist. Fluctuation
levels are important in the RFP configuration because of their possible effects on the
transport. In particular, the behaviour of the magnetic fluctuations is crucial: some
typical transport coefficients, such as the anomalous electron thermal conductivity,
are expected to be proportional to the square of the relative amplitude § B/B of the
magnetic fluctuations.

Two cases, with Reynolds numbers 10* and 3.3 - 10%, are considered here. The
total magnetic and kinetic energies of the perturbation are taken as a measure of the
global fluctuation level. The case with both the resistivity and the viscosity at 10~*
is studied first, a resolution of 100 x 12 X 96 being used. The initial state is the one
cited at the end of Section 4.1 and the case is computed up to ¢t = 1200.
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The time evolution of the field reversal parameter is shown in Fig. 17: F manifests
irregular oscillatory behaviour. The perturbed spectrum is characterized by intense
mode activity, as shown in Fig. 18 for the m = 1 internal modes, which are the most
energetic. The resulting magnetic and kinetic spectra, averaged in time, are shown
in Fig. 19: when this figure is compared with Fig. 12, which refers to the previous
case with the same mesh, it can be seen that the convergence now obtained is still
satisfactory although the energy now is more spread among the small-scale modes.
In Fig. 20 the corresponding axial spectral functions 7™ (n) and F¥(n) are given.
As regards the radial mesh, the number of points employed gives good resolution, as
shown in Fig. 21, where a contour plot of the axial current density J, at the time
t =900 is given.

In Fig. 22 the time evolution of the magnetic and kinetic energies of the perturba-
tion are shown. It can be seen that the first part of the evolution, up to t ~ 400, is
characterized by large fluctuations, in particular in the magnetic energy, and it resem-
bles a sort of relaxation process toward a lower energy level. It must be remembered
in fact that the initial state corresponds to a 3-107 case, very likely characterized by
higher energy level than the present one. After the initial stage the magnetic energy
is again subject to oscillatory behaviour, but with a smaller amplitude.

In Fig. 23 time averages of the mean magnetic field and of the u coefficient are
shown. All these averages are taken between ¢t = 500 and ¢ = 1200. The p profile
is flat in the central region, up to r ~ 0.5, the flat part reaching further out than
in the previous cases (cf. Fig. 16). This means that, at least in the inner region of
the plasma, the mean magnetic field is well described by the Bessel function model.
Furthermore, it should be noted that the “plateau” value is very close to 3.4 = 20,
i.e. the constant value which, owing to the boundary conditions, p should assume
according to the Bessel function model.

The case with resistivity and viscosity at 3-107% is treated in a somewhat different
way. Using a resolution of 100 x 12 x 96, one must obviously expect in this case a
substantial accumulation of energy in the high-mode-number part of the spectra. To

avoid, this the diffusion coefficients n and v are modified by introducing a dependence

=1+ (2)' 2)'

where mg and ng are constant. mg and ng are chosen such as to increase the dissi-

on the mode numbers:

pation of energy for the small-scale modes and to leave the energy-containing modes
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essentially unaffected. With the characteristic spectra of the problem being taken
into account, the values mo = 3 and ng = 25 are used. Of course, such a procedure is
strongly questionable without any other detailed study of the effect of the small-scale
modes. But it is very likely that the results obtained in this way are in some sense
more “realistic” than those that would be obtained with the unmodified diffusion
coefficients.

This case is computed up to ¢t = 1400. In Fig. 24 the time evolutions of the
reversal parameter and of the total magnetic and kinetic energies of the perturbation
are shown. After an initial relaxation phase, up to ¢ ~ 600, characterized by a
large-amplitude oscillation, the reversal and the energies assume the usual irregular
oscillatory behaviour. The magnetic and kinetic energy spectra are given in Fig.
25: it is clear that the artificial resistivity and viscosity employed have avoided the
accumulation of energy in the small-scale modes, allowing one to obtain rather good
convergence in both the poloidal and axial directions. The question of the reliability
of this procedure remains open and more investigations are necessary to clarify this
point.

The results so far shown afford an indication of the possible scalings of the fluctu-
ations with the Reynolds numbers. The term “indication” should be carefully noted.

Considering the time evolutions of the perturbation energies in the three cases with
diffusion coefficients 3 - 10~* (Fig. 10), 10~* (Fig. 22), and 3-107% (Fig. 24) and
making the appropriate time averages yields the result given in Fig. 26. As the
Reynolds numbers increase the magnetic perturbation decreases, while the behaviour
of the kinetic perturbation does not show any clear tendency. It should be remembered
in fact, from Section 4.2, that the value of the perturbed kinetic energy is the more
sensitive to the resolution and for this reason further conclusions regarding the kinetic
part will not be drawn here. As regards the magnetic perturbation, the result for the
3-107°% case, which is the most uncertain one, fits well with the other two cases.

If a power law of the type EM o« (RM)® is supposed, a value of —0.6 for the
exponent § is obtained. Since EM is, roughly speaking, proportional to (6B/B)?, the
magnetic fluctuations are found to scale as § B/B o (RM)~0-3,

b &



5. Conclusions

The computations presented in this work show that the main feature of the reversed
field pinch configuration, i.e. the maintenance of the toroidal field reversal, can be
explained within the framework of single-fluid resistive magnetohydrodynamics. The
reversal can be maintained in time, against resistive decay, by an externally applied
toroidal electric field. Here the boundary condition of constant poloidal magnetic field
at the wall, which in general implies a non-vanishing toroidal electric field, has been
used. The role of the fluctuations is to produce an electric field which redistributes
the current in the plasma and sustains the reversal.

Although the qualitative features of the RFP behaviour can be well reproduced by
these 3D MHD simulations, it is a major problem in dealing with these equations to
obtain an accurate solution, even at moderate values of the Reynolds numbers. This
is due to the turbulent nature of the problem, which leads to the excitation of smaller
and smaller scales.

The results presented here seem to support the fact that, to obtain an accurate
solution, all the scales of the problem, from the energy-containing range to the dis-
sipative range, must be properly resolved. It has been shown that, at low Reynolds
numbers such as 3.3-103, the inclusion of small-scale modes can have a strong effect on
a macroscopic parameter like F and on the energy content of the perturbation. The
energy contained in the small-scale modes is negligible, but very likely these modes
affect the dynamics of the system through a modification of the effective resistivity
and viscosity felt by the large scales /16,17,18/.

A direct simulation of the small-scale modes is only possible at relatively low
Reynolds numbers. As the Reynolds numbers increase the typical dissipation length
scale decreases and therefore an increasing number of modes must be taken into ac-
count, so that the simulation of all the scales involved soon becomes prohibitive. High
Reynolds numbers therefore require a distinct treatment of the large scales and of the
small scales. Like hydrodynamics /19,20/, MHD would also require subgrid modelling
of the effects of the small scales on the energy-containing scales. But, unfortunately,
such techniques are not yet well developed in MHD /21/.

A simpler approach could be afforded by a particular treatment of the dissipa-
tive terms in the equations, through modified diffusion coefficients or higher-order
differential operators. Such artificial terms avoid the accumulation of energy in the

high-mode-number part of the spectrum, which would otherwise be present with the
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use of the classical dissipative terms. An example of this approach has been given by
treating the 3 -107° case.

Some results of a study of the fluctuation behaviour with the Reynolds numbers
have been presented. While the RM = 3.3 - 103 case has been investigated in detail,
the results for the other two cases, R™ = 10% and 3.3 - 10, must be considered
preliminary. As the dissipations decrease the magnetic fluctuations, too, are found to

decrease, though not very strongly, 6 B/B « (RM)~ 3.
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Figure Captions

1- Time evolution of the field reversal parameter for the pure axisymmetric case.
2 - Time evolution of the term E, By at the wall.
3 - Time evolution of the field reversal parameter for the case n = 1073 and R = 1.

4 - Time evolutions of the magnetic energies of the modes for the case n = 108
and R = 1. (a) internal modes m = 1,2;n = —1,—5. (b) external modes
m=1,2;n=0,5. (c) m =0;n = 1,5 modes.

5 - Time evolution of the field reversal for the case n = 3-107% and R = 2.

6 - Time evolutions of the magnetic energy of the internal modes (m = 1,2;n =
—1,—10) for the case n =3-10"* and R = 2.

7 - Radial profiles of the terms in the poloidal component of Ohm’s law. (1)
poloidal voltage nJgo; (2) vroBzo term; (3) fluctuation term; the dotted line
indicates the poloidal electric field.

8 - Radial profiles of the time-averaged mean magnetic fields for case c.

9 - Time evolutions of the reversal parameter (line marked by crosses - case a;

dotted line - case b; solid line - case c).

10 - Time evolutions of the total magnetic (a) and kinetic (b) energies of the per-
turbation (lines marked by crosses - case a; dotted lines - case b; solid lines -
case c) .

11 - Distributions of the magnetic and kinetic energies for case a.
12 - Distributions of the magnetic and kinetic energies for case b.
13 - Distributions of the magnetic and kinetic energies for case c.
14 - Axial spectral functions FM (n) and FX (n) for case c.

15 - Axial spectral functions F™(n) and F¥(n) for the case v = 3-107* (a) and
v=29-10"% (b).
16 - Radial profiles of « (a) and x (b) (lines marked by crosses - case a; dotted lines

- case b; solid lines - case ¢).

17 - Time evolution of the field reversal parameter for the case n = 10~*.
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Fig. 18 - Time evolutions of the magnetic (a) and kinetic (b) energies of the m = 1

internal modes for the case n = 10™%.

Fig. 19 - Distributions of the magnetic and kinetic energies for the case n = 107%.
Fig. 20 - Axial spectral functions F™(n) and F¥ (n) for the case n = 107%,

Fig. 21 - Contour plot of the axial current density J, at the time ¢ = 900 for the case
ni= 107%,

Fig. 22 - Time evolutions of the total magnetic (upper curve) and kinetic (lower curve)
energies of the perturbation for the case n = 10~%.

Fig. 23 - Radial profiles of the time-averaged mean magnetic fields (a) and u (b) for the
case n = 1074,

Fig. 24 - Time evolutions of the field reversal parameter (a) and of the total magnetic

and kinetic energies of the perturbation (b) for the case n =3 -107°.

Fig. 25 - Distributions of the magnetic and kinetic energies for the case n = 3 - 1075,

Fig. 26 - Time-averaged total magnetic (crosses) and kinetic (diamonds) energies of the

perturbation as functions of the Reynolds numbers (R = RM = R¥).
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