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Abstract

The driven/damped nonlinear drift equation 8¢/t + ad3¢/dtd%y + cd¢/dy +
f$d¢/dy = —esin(Ky — (Ut) — v¢ is solved numerically. In (¢, ) space the prop-
erties of the solutions repeat in a selfsimilar way in cells of decreasing size for {1 — 0.
Within each cell there are regions of constant, periodic, doubly periodic, etc. or chaotic
energy E(t) for t — oco. Regions of 0 with a “high” and a “low” branch solution of
E also exist simultaneously, which gives rise to hysteresis for cyclically varied e. Hopf
bifurcations may take place on both branches. The width of the hystereses depends on

the initial conditions. The space dependence of ¢ and its spectral properties are also

studied.



1. Introduction

Density or temperature gradients in plasmas lead to excitation of drift waves /1/. Their
frequency is typically of the order k,cs, where k, = d In n/dz is the inverse of the
density gradient scale length and ¢ = T, /m; is determined by the electron temperature
Te and ion mass m;. In drift wave theory the waves are found to be linearly unstable
or damped depending on the wave number vector k, the shear of the magnetic field
and the details of the plasma properties /2/, /3/. Experimental observation /4/ in
fusion plasmas reveals the presence of density fluctuations with a broad peak around
the drift wave frequency and a broad peak also in the wave number spectrum with k
perpendicular to the magnetic field in the range k1 ps<1 , indicating strong nonlinear

interaction of modes. Here ps = ¢s/();, and 2; = eB/m;c is the ion gyrofrequency.

It has long been realized /5/ that the inclusion of nonlinear terms leads to Korteweg-
deVries (KdV) type equations with soliton-like behaviour. Meiss and Horton /6/ tried to
understand observed drift wave spectra in terms of a gas of such (almost) noninteracting
one-dimensional solitons propagating in the y-direction perpendicularly to the density
gradient and the magnetic field B = BZ. The opposite approach was taken by Hasegawa
and Mima /7/ and others /8/. They consider the turbulence resulting from the nonlinear
interaction of, in principle, infinitely many modes with k; and ky being of the same
order. A system of three nonlinearly interacting drift waves was investigated in /9/ and

/10/. Chaotic behaviour may result from the deterministic system.

Here, we also explore the onset of chaos in drift waves and the existence and properties
of nonchaotic solutions, but the aspects emphasized are different to those in the work
above. We consider solutions regular and chaotic not only with respect to the time
dependence but also with regard to space. In plasma physics work along these lines has
been done mainly for Langmuir turbulence using nonlinear Schrédinger type equations.

For an overview of nonlinear equations in plasma physics see, for example, /11/. Some
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analytic properties of the nonlinear drift wave equation are also given there.

Our main aim in the present paper, however, is to understand the reaction of a plasma
with drift waves to an external perturbing force. As a simple example we use a driving
term which is periodic in space and time. Apart from the obvious case of an externally
applied electromagnetic wave, the driving term might represent a simple approximation
to internal modes originating from effects not explicitly included in the equation. A
damping term models the absorption of energy imparted by the external forces. Since
KdV type equations are so ubiquitous in physics our model equation might also be
relevant in other contexts.

We consider here the equation

¢ °¢ d¢ o :
3 - "’atazy -+ ca—y B f¢a—y = — esin(Ky—Ot) — ~¢ . (1)

In Sec. 2 we give a short derivation of this equation and discuss our numerical method of
solution. In Sec. 3 a global overview in (e, 1) space is given of the system’s reaction to
the driving term. The properties are found to repeat more or less in “cells” of decreasing
size for {1 — 0. The energy is a useful means of classifying the long-time behaviour. It
can be steady state, periodic, doubly periodic or more complicated up to chaotic. It also
turns out that the system can exist in two different states of energy (the “high” and the
“low” branch) for the very same external forces. The concomitant hysteresis is explored
in Sec. 4 together with the Hopf bifurcations from steady state to periodic state. The
steady-state potentials are presented in Sec. 5. They are found to be running waves
with the same speed as the driving term.

The choice of the initial conditions does not have an effect on the two coexisting
branches. It can, however, affect the place where the transition between them takes
place, i.e. the width of the hysteresis (see Sec. 6).

Since the driven system has a rich variety of phenomena even before chaos sets in,

we have not yet explored in detail the transition to the chaotic state. In the cases
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that we present chaotic or nonchaotic behaviour in time is connected with the same
behaviour in space. This need not always be the case, as results from other driven
nonlinear equations suggest /12/. Also, we report here on wave numbers of the driving
term K # 0 only (in fact K = 1 ). Preliminary studies with K = 0 have shown that

the system may react differently. Further investigations are required for these topics.




2. Model equation and numerical method

Closely following the discussion in Ref. /6/, we assume the magnetic field to be constant,
B = B3, and the mean density n and electron temperature Te to depend on the radial

coordinate z only. The electron density is adiabatic:
ne(r,t) = n(z) exp| e®(r,t)/Te(z) | - (2)

The ion fluid is pressureless and is governed by the equation of continuity

+V-(n,'v) = 0, (3)

where v = vz + v1. In the drift frequency regime, w << (1;, one has approximately

v | = vg+vp, where the E x B drift and the polarization drift are given by, respectively,

B zx Vo (4)
VE = ———B ’
—~1 0

= — | — . ve 5

VP = B, (6t Ll V) ; (5)

with E = —V®. The quasineutrality condition is n; = n.. As in /6/, /7/, we neglect
parallel propagation, putting /82 = 0. Also, we consider the one-dimensional limit

ky(kyps)? << k1 /6/. As a result one obtains for ¢ = e®/T.

9? 6‘35 d¢ do
— 2,—— _— -— R —
(1 P Byz) r KnCsPs — + KTCgps q&ay = o 9 (6)

where k, = (dn/dz)/n and kr = (dT./dz)/T.. The term 8},,¢ originates from
n;div vpo, the dispersive term from vg - Vn and the nonlinear term from vg - Vn,
where v po is the nonconvective part of vp and 7 corresponds to the Boltzmann fac-
tor in n.. In keeping with the model character of our investigation we omit further
nonlinearities which contain higher-order derivatives of ¢ and arise from the remaining
combinations of the terms in v and n;, in conformity with /6/, /10/ and /13/. In

contrast to the 2-d turbulence scaling k; = ky /7/, /8/, these terms are not dominant

here.



To equation (6) we introduce ad hoc a periodic driving term with amplitude €, wave
number K and frequency (1 and a linear damping term. This yields eq. (1) with
a=—p?, ¢ = —KnCsps and f = Krc,ps.

For toroidal plasma configurations y corresponds to a periodic poloidal coordinate.
Without loss of generality we assume a periodicity interval 27 and make the spectral

ansatz for ¢(y,1t):

N-1 i
. 2 .
o(y,t) = E Pr(t) exp( tky ) at ¥y = y; = r%l, Fo= 0;::eN—1: (7}
k=0

The nonlinear term is evaluated in coordinate space with N grid points by using fast
Fourier transform with dealiasing. For nonchaotic solutions N = 128 is often sufficient.
Time integration of the ordinary differential equations for d¢y/dt is performed with a
standard predictor-corrector scheme with time step At = 10~2 in most runs. To confirm

chaotic evolution, it is usually necessary to run up to ¢t ~ 10%.




3. Global results on wave energy and potential

We take the applied frequency (1 and amplitude € as two control parameters in our numeri-
cal experiment. The other parameters are kept fixed and are chosen arbitrarily (except for
a): a = —0.28711, ¢ = 1.0, f = —6.0, v = 0.1, K = 1. A negative a is not only dictated
by the physics but is also necessary for numerical stability of the drift wave equation (in
contrast to the KdV equation). In the present paper, if not otherwise stated, we always
start computation at ¢ = 0 from a solitary-wave-type solution /6/ of unperturbed eq. (1)

(namely, € = 0, = 0),

Gb(yst = 0) = ¢a + (¢b - 45&) snz(csy, k) (8)

where sn is a Jacobian elliptic function with ¢; = \/f(¢c — ¢a)/(12ua), v = ¢ + f(¢a +
oy + ¢c)/3 and k = mb - ¢G)/(¢C - ¢a)- We use ¢, = 0, ¢p = 0.0625, ¢, = 0.125,

a combination which, in order to ensure 27-periodicity of the function (8), requires the

numerical value of a quoted, for given ¢ and f. Equation (1) is then solved numerically
with periodic boundary conditions.

The behaviour of eq. (1) is explored in detail in a large region of ({1, ¢). In addition to
the potential ¢(y,t), the wave energy is also and even better suited to characterising the

behaviour of the system. It is defined as

E(t) = %7% [qs?(y,t) _ a(%)2] dy (9)

and is a constant of the motion for € = 4+ = 0. As long as the energy evolves “regularly”,
we find that ¢(y,t) does not show any signs of chaos, either.

Different types of asymptotic behaviour for E(t) are observed. Some typical results are
given in Figs. 1(a)-(e). In Fig. 1(a) an asymptotically steady state of AE(t) = E(t)— E(0)

is reached for {1 = 0.525 and € = 0.06425 (E(0) = 7.333 x 10~* in all cases). For later
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purposes it is interesting to note that initially the energy remains almost stationary at a
lower level and then suddenly jumps to a higher level E;, (the subscript s denotes steady
state). This behaviour is an indication of the coexistence of two distinct branches of
solution, as will be discussed below in detail. Figures 1(b), (c) give two examples of singly
and doubly periodic oscillations for AE(t), respectively. Figure 1(d) is an intermediate
case, at least three frequencies being distinguishable in its spectrum. In Fig. 1(e), finally,
the energy is very chaotic. In Figs. 1(b)-(e) only the stationary states are shown, the

transient periods having been omitted.

In Figs. 2(a)-(e) we give the space-time evolution of the potential ¢(y,t) in the stationary
states corresponding to Figs. 1(a)-(e). In the constant energy case, Fig. 2(a), ¢(v,t)
consists of travelling waves whose velocity exactly coincides with the phase velocity 1/ K
of the driving term. The dependence on y and ¢ is smooth, with two minima and maxima
per period. In the case 2(b) the waves do not propagate with constant shape but are
periodically twisted, so to speak, as close inspection of Fig. 2(b) reveals. This fits together
with the Fourier analysis of the energy, Fig. 3(a), and of the potential at a fixed point,
Fig. 3(b). The energy spectrum consists of one sharp line at w = wg, corresponding to
the observed periodic behaviour of E(t) with period 27 /wg. The potential spectrum, on
the other hand, is governed by the driving frequency {1, its harmonics, and, in addition,
integer combinations of (! and wg. (Note the different frequency scales in Figs. 3(a) and
3(b).)

For quasiperiodic and intermediate E(t), Figs. 2(c) and 2(d), travelling waves with the
same speed as the driving term are still the most evident global features. However, local
features and even some sloshing back and forth become more pronounced. For chaotic
energy the global character is lost. The waves split into many solitons, persisting for some
time and then interacting with each other, Fig. 2(e). The Fourier spectrum ¢(w) in this

case, see Fig. 4, has a broad background.

The different possibilities, as discussed above, are collected in Fig. 5 into a general
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view of the behaviour of E(t) in the parameter space ({1, €). In the plot, points (e)
denote asymptotic steady states of E(t), open circles (o) singly periodic cases, and crosses
(x) chaotic cases, while triangles (A) denote transition cases between singly periodic and
chaotic. They can be doubly periodic or intermediate, as in Figs. 1(c) and (d).

Figure 5 is plotted for 2 = 0 — 0.8, a region where the behaviour of E(t) shows a
rich structure. The overview is quite crude and the distinction between intermediate and
chaotic cases is somewhat arbitrary. Also, running the system for longer times might
change some of the characterizations. Nevertheless, it serves to show the existence of
repeating “cells” scaling down with (1 — 0, possibly in a selfsimilar manner.

Let us look at the first cell from the right, {1 ~ 0.4 — 0.8. There is a ground floor of
steady state E(t). At the low-frequency side of the cell this floor reaches up to high values
of € (although it may take a very long time for E to settle down). With increasing {1 there
are two big finger-like regimes, in the left part of which E(t) is chaotic and in the right
part of which E(t) is mainly periodic. In between there is a transition region. Also shown
is a bifurcation line (dashed), which will be discussed below.

Apart from some details, similar behaviour is repeated in smaller and smaller scales
when () decreases.

We also tested cases with {2 = 0.8 —2.0. The critical value of ¢ at which the asymptotic
E transits to chaos continues to increase monotonically with (1.

In the following Sections we elaborate further on some of the bifurcation lines and on

phenomena which do not show up in Fig. 5.
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4. Hystereses and Hopf bifurcations

In order to illustrate the dependence of the energy E(t) on ¢, we fix (0 at 1 = 0.525 as an
example. In the range of ¢ = 0 — 0.08, the long-time behaviour is always a steady state,
E,. If we start from initial condition (8) and increase ¢ from 0, at first E, increases
gradually as a function of ¢, but then more and more steeply, see Fig. 6, until at a critical
value €, the energy abruptly jumps to a higher level. Now, if we start the calculation
not from (8) but from the resulting high-level steady state, e.g. the asymptotic state
reached with € = 0.07 (the “high-branch” initial condition), and then decrease €, we
find that E, stays at a higher level until € reaches another critical value ¢; < €, where
E,; suddenly drops back to a lower level which is the same as that calculated directly
from initial condition (8). In other words, the variation of E, with € depends on initial
conditions, and the E;(¢) curve is a hysteresis. The same hysteresis is also obtained
/14/ with the “step-by-step” procedure: ¢ is changed in small steps and the asymptotic

state of ¢(y,t) for the “old” € is used as initial condition for the “new” e.

In Fig. 7 we give a group of curves of E; - € for {2 between 0.475 and 0.60. Hysteresis
is observed from = 0.50 to ~ 0.575 (not shown), as evidenced by the vertical sections.
In order not to crowd the plot too much, we left out the low-€ part of the high branches
of the hystereses. The width of the hystereses ¢, — ¢; reduces when (1 is decreased and
finally shrinks to zero. The upper and lower branches merge. At {0 = 0.475 hysteresis

no longer exists.

Between (1 =~ 0.475 and 0.30 no hysteresis is found. The FE,- € curves are smooth.

Possibly this has to do with the big zone of steaty-state energies around this region in

Fig. 5.

With 2 further decreased, hysteresis appears again (see Fig. 8). From (1 ~ 0.2825 to
0.2875 it shows another group of hystereses. Again, their widths decrease continuously

with decreasing () until at 2 ~ 0.275 they disappear again.
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Every cell in Fig. 5 can therefore be expected to be accompanied by a group of
hystereses. The observed critical values €}, are plotted as two dashed lines. The con-
tinuation of these lines into the upper region of the “cells” seems to be related to the
transition between the periodic and the chaotic parts. We have not yet investigated
these “backbones” of the cells in any detail, but we did make a study of the “flesh”,
namely the Hopf bifurcations, which we shall describe in the following.

For fixed 1, increasing € further can cause a steady state of energy to bifurcate into
periodic motion, as we have seen in Fig. 1(b). Such a Hopf bifurcation may occur either
in the lower branch or in the upper branch. In Figs. 7 and 8 the dashed lines denote
asymptotic states for which E(t) is not constant any more, i.e. E = const loses stability.
In these cases the average of the oscillating energy is plotted as E,. In Fig. 7 it can
be seen that for {1 = 0.6 a Hopf bifurcation occurs when the energy is still in the lower

branch, while for = 0.50 - 0.57 it occurs in the upper branch.

Furthermore, a solution with steady-state energy in the upper branch may lose its
stability at a critical ¢* which is even smaller than €. That is, as soon as the jump
takes place, it leads to oscillatory behaviour. This phenomenon can be seen in Fig. 8
for 1 = 0.2875. At the transition point e, = 0.0665, the energy in the upper branch is
already periodic. Our investigation shows that the first Hopf bifurcation of energy in
the upper branch takes place at ¢* = 0.064, in between ¢, and ¢; = 0.0634. The same

thing happens for 0.549 < 1 < 0.575.

In the region of the biggest cell we plot all these bifurcation values €5, € and € in
Fig. 9, which is partly an enlargement of Fig. 5. The dashed lines are ¢ and ¢;. The
difference between ¢;, and ¢; is the width of the corresponding hysteresis, which shrinks
with decreasing {1, as mentioned above. (We did not follow €5 and ¢ until they merge.)
For 0220.55 a clear-cut ¢; curve emerges only with the step-by-step method. Otherwise
¢; depends too much on the initial conditions; see below and Sec. 6.

The solid line €}, on the Lh.s. is the Hopf bifurcation for the upper branch. In this

region of () the lower branch does not have a Hopf bifurcation. For higher frequencies,
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however, the r.h.s. has a Hopf bifurcation ¢; which belongs to the low branch there
(see Fig. 7). We note that ¢} for the upper branch crosses €5 at {1 = 0.549. That is,
if starting from the lower branch ¢ is increased for 0.549 < 0 < 0.575, the bifurcation
line €, is crossed before € is reached. When € > €, the system therefore jumps to a
state with nonconstant energy, periodic for {1 close to the crossing point at {1 = 0.549,
or, if it encounters further bifurcations in between, more complicated or even chaotic.

At present we are investigating the behaviour of the system in the region 120.575,
where the bifurcation lines ¢ ,¢€p , €, collide with or come close to ¢;.

In Fig. 10 E* vs. €* is plotted, where E* is the value of the energy when Hopf
bifurcation appears. A pair of curves is obtained for the biggest cell, a) for the upper
branch and b) for the lower branch. This tells us that different amounts of energy
are needed to destabilize the two branches. Presumably, this can be attributed to the
different spatial patterns of ¢(y) in the two branches, which will be described in the
next section. Different pairs of such lines are expected for the other cells.

We plot E; vs. 1 in Fig. 11 for the two values ¢, € = 0.05 and 0.06. The initial
conditions (8) are used again. The pattern observed matches with the topological
features of Fig. 5. Dashed lines denote non-steady states of energy. Comparison with
Fig. 7 shows that the steep sections around the peaks correspond to the high and low
branches in the hystereses, with the jump to high energy taking place at the peaks.

Regions without hysteresis smoothly connect the sections with hysteresis.
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5. Spatial properties of the potential

Up to now we have mainly discussed the energy. In fact, when a transition of E;
between the lower and upper branches takes place, it is accompanied by a sudden
change of the spatial pattern of the potential. Here we describe it for the cases with
steady-state energy. Figures 12(a), (b) give two examples for ¢(y) belonging to the
lower and upper branches of one hysteresis. They are typical patterns on each side of
the dashed line on the right in Fig. 5. In the lower branch, Fig. 12(a), ¢(y) has two dips
and the second harmonic dominates in its spectrum ¢(k). In the transition to the upper
branch, Fig. 12(b), the third harmonic suddenly becomes strong. In Fig. 12(b) this has
caused a plateau in addition to two dips. With decreasing ) the plateau develops into
a new dip.

For every cell the group of transitions at € is accompanied by such a sudden change
of the patterns of ¢(y). As (1 decreases, ¢(y) develops more and more dips, and their
phase plots (see below) develop more and more loops. Figure 13 is an example of ¢(y)
for 11 =001,

Figure 14 gives two phase plots ¢ versus ¢ /3y with the data recorded in small time
intervals, for (a) steady-state energy, and (b) periodic energy. In case (a) the phase plot
is a closed curve with two loops. In case (b) the loops still exist but they are blurred

by the motion with the additional incommensurate period.
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6. Dependence on initial conditions

The effects of the initial conditions were studied with regard to the hystereses observed:
We start from ¢(y,t = 0) = A sin(ny + yo) and watch the transition between the two
branches for this particular initial condition. In contrast to the methods described in
Sec. 4, we do not switch here between different initial conditions, so that the critical
value of the jump, € = €., applies to coming from above or below, and ¢ = €, = ¢,

therefore applies.

Figure 15 gives the dependence of ¢, on the phase yo, the harmonic number n and
the amplitude A, for 2 = 0.525. The error bars are not intrinsic but merely reflect
the limited number of tests made. It is obvious that yo, » and A can all have a strong
effect. The highest and the lowest values of €. agree with the previously obtained values
en, = 0.064, ¢ = 0.051 (see Fig. 6). In that sense the initial condition (8) seems to
play a particular role. This is confirmed when the amplitude ¢; is varied, or, after y
is replaced by ny + yo in eq. (8), when n and yo are varied. In all cases tested €5 and
€; (for nonchaotic initial conditions) remain unchanged. Obviously, in function space
the basins of attraction to the two branches have a finite extent, with the functions (8)

lying more to the “center” than the sinusoidal trial functions used above.

In any case, while the places where the jumps between the upper and the lower
branches occur are found to vary, it is important to note that the branches themselves
do not depend on initial conditions. That is to say, the values of the energy E and the
shapes of the solution qS(Ay, t) along the remaining sections of the branches are unaffected
by the previous history. This is found to hold even when the jump to low energy occurs
from a state with chaotic E(t) and ¢(y,t), e.g. for 2 around 0.57, see the discussion in
Sec. 4. Taking chaotic ¢(y,t) at arbitrary consecutive times ¢ as initial conditions and

each time decreasing € from a large value yields a continuum of values for ¢;, but again

it is found that they lie on one branch of the E(€) curve.
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Energy AE = E(t) — E(0) as function of time. Arbitrary units. Steady-state
case;

e = 0.06425, 1 = 0.525.

Asymptotic state of AE for periodic case; € = 0.0675, {1 = 0.6.

Asymptotic state of AE for doubly periodic case; e = 0.0917, 1 = 0.55.
Asymptotic state of AE for “intermediate” case; € = 0.12, {1 = 0.35.
Asymptotic state of AE for chaotic case; e = 0.2, 1 = 0.525.

Potential ¢(y,t)

Earlier time in the foreground. Parameters as in Fig. 1a.

Potential ¢(y,t). Parameters as in Fig. 1b.

Potential ¢(y,1)

(y,1)-
(y,1).

Potential ¢(y,t). Parameters as in Fig. lc.
(y,t). Parameters as in Fig. 1d.

Potential ¢(y,t). Parameters as in Fig. le.

Spectrum FE(w) of energy, corresponding to Fig. 1b.

Spectrum ¢(w) of potential at fixed y, corresponding to Fig. 2b.

Spectrum ¢(w) of potential at fixed y, corresponding to Fig. 2e.

Global view of asymptotic behaviour of energy as function of driving parame-
ters € and (1: points (e¢) denote steady states, open circles (o) singly periodic
cases, crosses (x) chaotic cases, and triangles ( A) transition cases between
singly periodic and chaotic.

Hysteresis curve for steady-state energy E; as function of driving amplitude e.

The energy jumps into the high and the low branches at the critical values ¢

and ¢, respectively. {1 = 0.525.

Group of hystereses (indicated by the vertical sections of their right wings).

Dotted sections: the energy does not approach a steady state. {1 = 0.475—0.6.

Another group of hystereses. (1 = 0.275 — 0.3.
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15:

Critical values €, €, dashed, and €}, €;. For € > ¢, or € > ¢; the energy does
not approach a steady state any more, in the corresponding branch.
Energy E* when Hopf bifurcation sets in. Curve a) in upper branch vs. ¢,

curve b) in lower brach vs. ;.

Steady-state energy E, as function of (2. Dotted section: the energy does not

approach a steady state.

Travelling-wave solution ¢(y) in the low branch; e = 0.06375, (1 = 0.525.

(
Travelling-wave solution ¢(y) in the high branch; e = 0.06425, (1 = 0.525.
Travelling-wave solution ¢(y) for small 2; e = 0.1, 2 = 0.01.

Phase plot ¢ vs. 8¢/dy at fixed y. Constant energy case; ¢ = 0.06375, (1 =

0.525.

Phase plot ¢ vs. 8¢/dy at fixed y. Periodic energy case; e = 0.0675, {1 = 0.6.
Dependence of €. on phase yo, harmonic number n and amplitude A of initial
condition ¢(y,t = 0) = Asin(ny + yo). Figs. a), b) with A = 0.125, Figs. c),

d) with A = 0.4; 1 = 0.525.
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