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Abstract

The nonlinear driven/damped differential equation
0¢/0t +a 33¢/0td%y + b 3¢ /3%y + ¢ 0¢/dy + f $0¢/8y = —esin(Ky — Qt) — v

with @ = 0 (KdV equation) or b = 0 (drift equation) is numerically studied in a parameter
region where the energy tends to a constant, E;,, for ¢t — co. It is found that E(e) traces

a hysteresis curve when the driving amplitude € is cyclically varied.




1. Introduction

Recently, there has been interest in the properties of nonlinear systems which continuously
depend on space and time and are perturbed by periodic external driving forces. For
example, see /1 - 3/ for numerical studies of the driven-damped sine Gordon equation
and /4/ for the driven-damped nonlinear Schrédinger equation. In /1 - 4/ the transitions
chaotic +» nonchaotic, in both space and time, are investigated as functions of the initial
conditions and driving amplitudes.

Here, an analogous situation in nonlinear plasma drift wave theory is considered. We
report, however, on a nonlinear phenomenon which occurs before chaotic bahaviour sets
in: when the driving amplitude € is cyclically increased and decreased, the plasma energy
and other properties follow a hysteresis curve when the parameters of the driver are in
some finite regions of parameter space.

The equation we consider is
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with b = 0 (case 1) or @ = 0 (case 2). In case 1 eq. (1) without the driving and damping
terms on the right-hand side is the one-dimensional drift equation (also called the reg-
ularized Korteweg-deVries (rKdV) equation /6/) as used in, for example, /5/, while in
case 2 it is the KdV equation itself. Both equations have solutions in the form of solitary
waves or soliton-like structures /6/, but it is only for the KdV equation that the solitary
structures are true solitons, i.e. unchanged after collisions. Otherwise both equations
are often considered equivalent, with the substitution b = —ac, from the long-wavelength
linear approximation d¢/dt + ¢d¢/dy = 0, /6/.

Drift waves /7/ are driven by the gradient of the plasma density n. Their frequency is
in the region w & kncs << 1; = eB/m;c = jon gyrofrequency, where k£, = (dn/dz)/n is

the inverse of the density gradient scale length, ¢2 = T, /m; , T. = electron temperature
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and m; = ion mass. The usual assumptions for drift waves are that the electrons have a

Boltzmann distribution

ne(r,t) = n(z) exp| e®@(r,t)/Te(z) |, (2)

while the ion fluid is governed by the continuity equation

on;
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and both are related by the quasineutrality condition n; = n.. For propagation perpendic-
ular to the magnetic field B = BZ, i.e. /32 = 0, one has approximately v, = vg + vp,
where vg = — Zx E/B and vp = (BQ};)"'9E/dt are the E x B and polarization drifts,
respectively, with E = —V®. In the the one-dimensional limit k.(kyps)?> << kr /5/ one
obtains eq. (4) for the dimensionless potential ¢ = e®/Te:
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where p; = ¢,/Q; and k7 = (dT./dz)/T.. This is the left-hand side of eq. (1) with b = 0.
The nonlinearity is caused by the temperature gradient.

An external driving term periodic in space and time is introduced adhoc in eq. (4). Apart
from the obvious case of an externally applied electromagnetic wave, it might represent a
simple approximation to internal modes originating from effects not explicitly included in
the equation. A damping term models the absorption of energy imparted by the external
forces. Since KdV-type equations are so ubiquitous in physics, our model equation might

also be relevant in other contexts.



2. Hysteresis

We solve eq. (1) with the Fourier mode ansatz ¢(y,t) = Nz_:l ok(t) exp( tky ). The
nonlinear term is evaluated in y space by using FFT with deaﬁ::ing. N =128 is found to
be sufficient for the present purposes. Time integration is done with a simple predictor-
corrector scheme. The Fourier ansatz implies periodic boundary conditions, in conformity

with y being a poloidal angular coordinate for toroidal plasmas.

We arbitrarily select ¢ = 1, f = —6, vy = 0.1 and K = 1. In case 1 we take a =
—0.28711, b = 0 with frequency 1 = 0.525, while in case 2 we use a = 0, b = 0.28711 and

fl—023.

In the absence of external forces and damping the energy E(t) = (27)~! [ g’r[qéz(y,t) —
a(9¢(y,t)/dy)* | dy/2 is a constant of the motion. With the present parameters and
€ # 0, E(t) also asymptotivally tends to a constant, E,, for t — co. We plot E, vs. € in

Figs. 1 and 2 for cases 1 and 2, respectively.

The figures are obtained in the following way: To get started, we pick a small value of ¢
and use a profile ¢(y,t = 0) which, if undisturbed by driving and damping, would develop
into a solitary wave of speed u, namely ¢ (y) = ¢, + (ép — #a) sn?(csy, k). Here, sn is a
Jacobian elliptic function and ¢, = \/f(¢c — ¢a)/[12(va — b)] ,u = ¢ + f(Pa + ¢» + ¢c)/3
and k = \/(¢p — ¢a)/(¢c — ¢a). We arbitrarily use ¢, =0, ¢ = 0.0625, ¢, = 0.125.

Equation (1) is solved until E reaches a constant value E, as mentioned above. In this
stage the solution ¢(y,t) is also found to be a wave travelling with constant shape but
with phase velocity 1/ K. This solution ¢ is used as a new initial condition ¢(y,t = 0) for
a run with slightly increased driving amplitude e. This procedure is repeated again and
again and gives the lower branch in Figs. 1 and 2. At a critical € = €;, the energy jumps

to a higher level and continues on the upper branch in the figures.
Now, if the procedure is stopped somewhere in this upper branch and is reversed and ¢
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is decreased in small steps, it turns out that the system does not retrace the original path
in the E, - € plane. Rather, E, remains in the upper branch and jumps back to the lower
branch at a critical value ¢; which is smaller than €,. From this point onwards the system
continues down on the lower branch. This creates the hysteresis curve in Figs. 1 and 2.

Within wide margins the choice of the initial function $#(°)(y) has no effect on the
hysteresis if it is obtained by the method just described: different ¢(y,t = 0) are attracted
to the same hysteresis curve, and once a point on it is reached, ¢(y,t) is independent of its
previous history. (It is possible to derive hysteresis curves with another method, in which
the initial conditions do influence ¢; and e, see /8/.)

In further investigations /8/ we study the dependence of the hystereses on (1. Both
branches may become unstable to Hopf bifurcations and a selfsimilar structure in (¢, Q)

space develops.
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Figure captions

Fig. 1: Hysteresis curve for energy E, as a function of the driving amplitude ¢, for the

drift wave equation.

Fig. 2: Same as Fig. 1, for the Korteveg-deVries equation.
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