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Abstract

On the basis of a variational formulation of the Vlasov-Maxwell theory it was recently
shown that, for instance, all magnetically confined plasmas allow the existence of negative
energy waves. Such waves can become nonlinearly and dissipatively unstable and might
therefore be of importance in explaining anomalous transport. The proof of this result uses
infinitely strongly localized perturbations. This is, however, not necessary: in this paper
it is shown by discussing general, homogeneous, magnetized plasmas that the necessary
localization is related to the average gyroradius ry of the relevant particle species. For
unstable plasmas the extent or wavelengths of negative energy waves can be of the order

of rg, whereas for linearly stable plasmas the extent can be a small fraction of r,.



1. Introduction

Linear negative energy waves are of interest in the context of nonlinear and dissipative
instabilities /1/, /2/. They might also have a bearing on, for example, problems of anoma-
lous transport. This paper presents conditions for the existence of negative energy waves
derived via a variational formulation of the Vlasov-Maxwell theory /3/, /4/, /5/.

In Ref. /5/ Noether’s theorem is used to obtain a second-order energy expression in the
perturbations which is the wave energy. Using localized perturbations, it is shown there

for any equilibrium that negative energy waves exist if for at least one particle species v
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holds for some # and Z and for some directions £ . This generalizes a result recently

obtained by Morrison for homogeneous isotropic plasmas /2/. Here fl(,D)(f, v) is the
unperturbed distribution function for species v in a frame of reference in which the total

energy of the equilibrium is smallest.

Since the Vlasov theory becomes invalid for length scales smaller than the Debye length,
the question is to what degree it is necessary to localize the perturbations. For a homo-
geneous plasma with B(©) = 0 no localization is necessary. For general inhomogeneous
systems with B(®) # 0 the localization needed should be similar to that for general
homogeneous magnetized plasmas, which are therefore investigated in this paper.

2. Second-order wave energy for a homogeneous magnetized plasma

The constant unperturbed magnetic field B©) and the unperturbed vector potential
A are taken as

B = (0,0, B®) , A® = (0, Bz, 0). (2)

In Ref. /5/ it is shown that for B = 0 the minimum of the second-order wave energy

E(?) is obtained for a vanishing perturbation A() of the vector potential:
A = o, (3)

which is a possible choice in the sense of an initial condition. In this paper eq.(3) is also
chosen for B(®) # 0 , which, however, might no longer correspond to the minimum of E(2)
and therefore overestimate the necessary localization. Further we take

[FS? ~ 8(va) (4)

which is possible because of {0 = £{% (v2 + v3,v.).

With egs. (2), (3) and (4) the second-order wave energy derived in /5/ becomes
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w, = e,B©)/(m,c),

e, is the unit vector in the x-direction ,

E() is the complex amplitude of the electric field perturbation and

F,Ss) = F,Sa)(f, U,t) is a generating function for the perturbation of the particle positions
and velocities in eq.(5):
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The electric field energy can be made equal to zero, being a bilinear expression of phase
space integrals involving linearly the functions F,S"), without influencing the particle con-

tributions to E(?) | see Ref. /5/. With
Flgs) ~ g k-

relation (5) becomes
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V is a large periodicity volume. |E| — > oo again yields the general condition (1). For
finite k we discuss separately parallel and perpendicular wave propagation.



3. Wave propagation parallel to B

In this case
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allows E(?) < 0 without any restriction on ]E| ;
In general, one will have conditions between (1) and (8). This is qualitatively similar to
perpendicular wave propagation, which is treated more explicitly in the next section.

4. Wave propagation perpendicular to B(0)

For this case eq. (7) becomes with k = (0, k,0)
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From eq. (9) it follows that
oF.°)
k Z 0 (10)

duy

is necessary for E(*) < 0 . Minimization of E(3) under the constraint
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with a Lagrange parameter % — 1 yields for the minimum of E(2)
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This is negative for 0 < A <1 . With the dimensionless quantities

by = —¥—, Ak}, /wl = Ak2rl = A, (13)
Vth v ’

the corresponding Hermitian eigenvalue problem is

. oY (s) 9 0) aF
A. ‘Uy a—ﬁy FV + a‘ay fy a'ﬁ'y = O . (14)

Negative E(2) are associated with

A
Ergs = 7 = & > B (15)



The smallest &k and therefore the least localization corresponds to the smallest eigenvalue
A = Mg &

—
kminrg = v Amin (16)
A > 0 requires that f£°) have a minimum with respect to 9, = /92 + 92 . The minimum

wave vector is then qualitatively given by
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frre® : the maximum of 7 )(vi,vz) , fo™ ¢ its relative minimum in Ady ,

Avy : distance between the maximum and the minimum of f(o) ,
T}'y velocity somewhere between the maximum and the minimum of f; ©)
A numerical solution of the eigenvalue problem (14), (11) was obtained for
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0xa<l | B>1. (18)

(O) has a minimum with respect to v for aff > 1. At the same time the system is linearly

stable for (see Appendix)

=1

a=f"° , -<e<l1. (19)
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Table 1 gives for a number of ¢’s and &’s in the range
05< <09 . 0.1<e<0.9. (20)

the exact numerically obtained values (kmin7g)num of kminry together with an approxi-
mation (km,-nrg)app of this quantity given by
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Relation (21) corresponds to relation (17) for the case that the minimum of £ s at
vy = 0, in which case Vy ~ Ady and 3 ( Aly)® = Hpus
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Table 1 contains for more detailed information also the values of the quantities
af , Hmaz and fmaz/fmin - The main result is that relation (21) or, equivalently, re-
lation (17) provides a reasonable approximatidn for kminrg . This is in agreement with
the character of the eigenfunctions to the lowest eigenvalue shown in Figs 1 together with
the corresponding distribution functions. As expected, the eigenfunctions are of the form

which was assumed for deriving relation (17). The only exception is the rather exotic case

€=0.1, a=0.5.Table 1 tells us, furthermore, that the localization 1 7, necessary for

negative energy waves tends to be stronger for stable plasmas than for unstable ones.

5. Conclusions

Condition (1), which is fulfilled in any magnetically confined plasma, is only obtained
with infinitely strongly localized perturbations. Negative energy waves should, however,
be dangerous only if their wavelengths are not too small. By treating a magnetized,
homogeneous plasma for illustration it is shown via a Hermitian eigenvalue problem that
the necessary localization should be generally related to the average gyroradius ry, of the
relevant particle species v . For unstable plasmas the least localization is of the order of
rgv , whereas for stable plasmas it is a smaller fraction of ry, . Since the Vlasov equation
is valid only for length scales larger than the Debye length, all such negative energy waves
should be physically meaningful if the gyroradius of the relevant species is larger than the
Debye length.
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Appendix

Stability regime for waves propagating perpendicularly to B

We discuss here waves with their electric field vectors parallel to B . In this case the

dispersion relation is
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wpy is the plasma frequency of the species v
Jn(z) is the Bessel function of order n and
fﬁp)(vi) is given by
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(see eq.(18)). With
z=Re(w) , y=Imw) (A4)

we can decompose the dispersion relation (A1), (A2) into its real and imaginary parts:
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The second equation (A5b) can only be fulfilled with zy # 0 if for some v and n
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with £ from eq. (A3) one finds
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I.(2) is the modified Bessel function of order n. From the asymptotic behaviour of I,, one
infers that « and G related by
1
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do not allow positive values of the integral (A7) even for non-monotonic distribution func-
tions, i.e. @ > 1. The latter is always fulfilled with (A9) for 8 > 1.

With (A9) we can write (A7) in the form
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If we can prove that
wy = %2 ° L4 (A11)

is a monotonically increasing function of x, then the integral (A10) is negative and the

system is stable with respect to the considered perturbations. From the equation for I,(z) ,

d?I, dr,
z? =3 T e - (z2+n¥) I, = 0, (A12)
one finds for w,, the equation
1 1
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This can also be written as
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-
from which it follows that
2wy (1) = [ S (24 22— 1) — wn(2) dz (A15)
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We need only consider » > 1 and ¢ < 1 . In this case the right-hand side of eq. (A15)
converges and vanishes for z = 0 , as required by the left-hand side. Furthermore, since
wn(z) > 0 and 1/2 < € < 1, the integrand in (A15) is positive for z > 0 and therefore it
follows that
w (z)>0 for z>0. (A1e)

This proves that (A9) describes systems that are stable sith respect to the perturbations
considered.



Table 1:

Parameters for the distribution functions (18):

a=p"°

, see eq.(19);

Hmaz = in(af)/(B — 1) : value of H = 9} /2 at which f,(v},v;) has its maximum;
fma.:n = fv(”3 maz’vz) ;

fmin = fu(O,Uz) 3

(kminTg)app @ approximation of kminry given by eq. (21)

: numerical value of kminrg

(kminrg)num

£ « Jé;
0.1 0.5 1024.00
0.7 35.40

0.9 2.87

0.3 0.5 10.08
0.7 3.28

0.9 1.42

0.5 0.5 4.00
0.7 2.04

0.9 1.23

0.7 0.5 2.69
0.7 1.66

0.9 1.16

0.9 0.5 2.16
0.7 1.49

0.9 1.12

af

512.00
24.78
2.58

5.04
2.30
1.28

2.00
1.43
111

1.35
1.17
1.05

1.08
1.04
1.01

Hmaz

0.0061
0.093
0.51

0.18
0.36
0.58

0.23
0.34
0.45

0.18
0.23
0.28

0.066
0.081
0.094

fma.:/fmin.

1.99
2.95
3.92

1.51
1.61
1.65

1.19
1.21
1.21

1.05
1.06
1.06

1.005
1.005
1.005

(kmintg)app

17.82
3.73
1.46

4.21
2.74
2:31

5.64
4.46
3.85

11.71
9.99
9.02

61.34
54.44
50.33

(kminrg ) num

11.43
3.34
1.49

4.01
2.71
2.12

5.58
4.45
3.85

11.84
10.11
9.13

64.53
56.99
52.54



Figs. la-b
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Figs. lc-d
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