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Abstract

We present a fully three-dimensional theory of antenna coupling to Ion Bernstein
Waves near the first harmonic of the ion cyclotron resonance in tokamak plasmas. The
boundary conditions in vacuum are solved analytically for arbitrary orientation of the
antenna and Faraday screen conductors. The wave equations in the plasma, which
include Finite Larmor Radius and finite electron inertia effects, cyclotron and harmonic
damping by the ions, and Landau and collisional damping by the electrons, are solved
numerically using a Finite Elements discretisation with cubic Hermite interpolating

functions.

Applications to Alcator C give reasonably good agreement between the calculated
and measured radiation resistance in the range in which efficient heating is observed;
outside this range the calculated resistance is lower than the experimental one. In
general, the coupling efficiency is found to be very sensitive to the edge plasma den-
sity, good coupling requiring a low density plasma layer in the vicinity of the Faraday
screen. Coupling also improves with increasing scrape-off ion temperature, and is ap-
preciably better for antisymmetric than for symmetric toroidal current distributions in

the antenna.




1. - Introduction.

Plasma heating with ion Bernstein Waves has been proposed as a viable alternative
to Fast Wave heating in the ion cyclotron frequency domain [1]-[4]. Several moderate
power experiments have shown promising efficiency [5] - [13]; for a recent review and
additional references, cfr. [14]. The theory of antennas designed for Bernstein wave
launching, however, has received relatively little attention. Analytic estimates of the
plasma surface impedance for BW have been made by Puri [15]. Skiff et al. [16] have
considered the parasitic excitation of BW due to density gradients in a FW launching
experiment, using an expansion valid for steep gradients. The evaluation of direct
launching of BW, however, requires the numerical solution of the full wave equations in
the plasma. This has been done in a two dimensional approximation by Sy et al. [17].

In this paper we present a fully three dimensional code for the same purpose.

A BW antenna must be rotated by 7 /2 with respect to a conventional FW antenna,
so that the current flows along the static magnetic field, while the Faraday shield screens
the poloidal electric field of the wave. This configuration rules out two approximations
which considerably simplify the theoretical description of FW launching in the same
frequency range, namely that the component of the h.f. electric field E, parallel to the
static magnetic field vanishes everywhere in the plasma, and that, as a consequence,
reflection and trasmission of a plane wave at the plasma boundary can be described by
a scalar surface impedance, Zr = E(0)/B,(0). On the contrary, launching Bernstein
waves requires a finite E,(0); thus the full tensor surface impedance must be evaluated,
taking into account both finite Larmor radius (FLR) and finite electron inertia terms

in the wave equations in the plasma.

The geometry we have adopted for this purpose is similar to the one used for most
FW coupling calculations [18-22]. The real configuration is approximated by a slab
model: the static magnetic field is in the 2z direction, and its intensity, as well as the
plasma parameters, vary only in the z direction. In other words, Cartesian coordinates
(z,y, z) simulate the radial, poloidal and toroidal directions, respectively, of a tokamak,
but curvature and shear of the magnetic field lines are neglected. The wave field is

decomposed in a double Fourier sum
a: yYs Z,t) Z EE (nz,ny, T Jet st Eyy-ot) (1)
Ny

The toroidal and poloidal wavenumbers n, = ck./w and ny = cky/w are for convenience
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discretised as appropriate in the equivalent toroidal problem:

ny = (ETZ;JT) (—o0 < ng < 00)
" my (2)
ny = (2a) (—o0 < my < 00)

where ng and my are integers, and Ry and a are the major and minor radius of the
plasma, respectively. In the simplified slab geometry adopted, each partial wave can be

treated separately, since both the fields and the power flux are additive.

The solution in vacuum is presented in the next section. The circumstance that this
solution can be obtained analytically for an arbitrary orientation of the antenna and
Faraday conductors with respect to the direction of the static magnetic field will be
useful to extend the present work in several directions. In the first place, a selfconsis-
tent evaluation of the current distribution J%(y,2) in the antenna using the variational
formulation of Teilhaber and Jacquinot [22] becomes possible without much additional
effort; here however it was not attempted, and J*(y, 2) is supposed known. Secondly,
the same method can be applied to treat BW coupling using waveguides, one of the
most attractive features of this heating scheme. Applications are possible to situations
in which the conductors cannot be easily aligned with the static magnetic fields, as in
Stellarators. Finally, the code can be used to investigate parasitic effects in conventional
FW coupling, such as density gradient coupling to the BW [17], or surface absorption
due to the presence of the Lower Hybrid resonance in the scrape-off plasma [23]. Some

of these applications will be presented in forthcoming reports.

The main originality of this work lies in the treatment of propagation in the plasma,
which is presented in Section 3. To describe Bernstein waves, FLR effects and finite
electron inertia have to be taken into account, so that a sixth order differential system of
equations has to be solved. Of the three waves formally described by this system, how-
ever, only two are physically meaningful, namely the fast wave, and a shorter wavelength
mode whose dispersion characteristics depend sensitively on the plasma parameters. In
order to follow the transformation of this mode [14] from a cold plasma wave (the shear
Alfven wave or its kinetic modification) near the plasma edge to the BW proper in the
hotter plasma core, while rejecting the spurious solution of the wave equations, a finite

element discretisation with cubic Hermite interpolation functions [24] has been used.

The solution is made unique by assuming that outward radiation conditions can be
imposed at sufficiently high density in the plasma. This requires that the plasma is
sufficiently large and lossy to exclude the excitation of global eigenmodes. It can easily

be relaxed in principle, and we have actually done it to test wether the code can be
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applied to situations where this assumption is justified for the Bernstein waves, but does
not hold for the Fast Wave. It turns out that BW coupling is little affected if a large
standing wave ratio is assumed for the Fast Wave. It should be noted however that the

slab shearless model is often inadequate to describe the plasma as a whole.

Some applications of our code to the simulation of the experimental results obtained
in Alcator C [13] are presented in Section 4. Agreement is on the whole sarisfactory,
although not all details can be reproduced. According to the code, Bernstein waves can
be efficiently launched only if the first harmonic cyclotron resonance is locate behind the
antenna, and sufficiently close to it, so that BW near the plasma edge have a relatively
large wavelength. In this range, which coincides with the domain in which efficient
heating is observed in the experiment, we find a radiation resistance comparable to the
one measured. On the other hand the radiation resistance predicted far from the region
of efficient heating is appreciably smaller than the one measured, even when collisional

damping is taken into account.

We also find that the radiation resistance of a BW antenna is very sensitive to the
value of the density, and to a lesser extent of the temperature, near the plasma edge.
For good coupling, the plasma in the immediate vicinity of the antenna must have a
sufficiently low beta, # << m, /m;. We show that the most important parameter in
this respect is the edge plasma density: when it is large, the electrons screen efficiently
the component of the wave electric field parallel to the static magnetic field, which is
essential for coupling to slow plasma waves. This suggests that protecting the antenna
with lateral auxiliary limiters protruding somewhat into the scrape-off plasma might
considerably improve coupling. The value of the edge density gradient on the other
hand has no influence on the coupling within the range explored. An increase in the
scrape-off ion temperature improves matching by increasing the BW wavelength. We
also find that a quadrupole T-antenna with central feeder and shorts at the ends is

better matched than a dipole one with feeders at the ends and short in the middle.
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2 - The field in vacuum.

In vacuum we must distinguish three regions, as indicated in Fig. 1. For convenience,
we will use throghout units of length such that w/c = 1. In each layer, the fields of each
partial wave in Eq. (1) can be written as follows:

a) Between the plasma edge and the Faraday shield (—s < z < 0):

Ey =E! cosh (v5z) — iv, B sinh (v,z)
B, =[- nynzB; + (1 — n2)B?] cosh (v,z)
+iv (1 - nZ)ES + nyn,EY] sinh (v,7)
E, =E! cosh (vzz) + iung sinh (v, z)
By =[(1- nj)Bg — nyn,B?] cosh (v;z)
— v [nyn, B} + (1 — n2) EY] sinh (v,z)

b) Between the Faraday shield and the antenna (—a < z < —s):

Ey =E| cosh (vz(z + a)) — tv.Bj sinh (v;(z + a))
B; =[—nyn.Bj + (1 — n2)BZ] cosh (vz(z + a))
+1v; (1 = n2)E] + nyn,EZ] sinh (v;(z + a))
E, =E; cosh (vz(z + a)) + iv; By sinh (vz(z + a))
By =[(1 — n2)Bj — nyn,BZ] cosh (vz(z + a))
— v, ' [nyn.Ey + (1 — n2)EZ] sinh (vz(z + a))

¢) Between the antenna and the plasma edge (—w < z < —a)

_ sinh (vz(w + z))

sinh (vz(w — a))
_, & cosh (vz(w + z)) 2V E® + non.E°®
Bz — +Uz SiIlh (V_.,;(w € (I)) [(1 z)Ey + y zEz]

_sinh (vz(w + z))

a
y EL‘

a

a= sinh (vz(w — a)) E;
1 cosh (vz(w + z)) p o e
By B Ve sinh (u._,;(w _ a)) [nyany + (1 ny)Ez]

In these equations —v2 = 1 — n — n2, with the convention that if v2 < 0, v, —
—i\ﬂ — n2), so that trigonometric instead of hyperbolic functions would appear in

these equations.

Although not making explicit reference to TE and TM modes, this representation of

the vacuum field facilitates the task of imposing the appropriate matching conditions.
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In writing Egs. (3)-(5), we have already taken into account that both Ey, and E; are
continuous at the antenna and vanish at the wall. We now list the other conditions
which determine the eigth constants Ef’l to B.

a) Conditions at the antenna. Let the current in the antenna flow in the direction
making an angle « with the vertical (poloidal) direction (a = 0 for Fast Wave excitation,
o = m /2 for Bernstein Wave excitation). Let further

J= Z {Ja(ny,nz)ei(nywnﬂ)} - &,
ng s (6)
€a = (cos agy — sin aey)
be the Fourier decomposition of the current distribution in the antenna plane z = —a;
€y and € are unit vectors in the y and z direction, respectively (the most common types
of antennas and the Fourier transform of their current distributions are presented in
Appendix C). The jump conditions for the magnetic field at this plane are:

_iCOSh (Vz (w i 0‘.)) — n2)\ge non.B®
Vg sinh (v (w — a)) [(1 z)Ey +ny zEz]

+[(1=n2)BE —nyn.Bg] = 2T 12 cona

t_cosh (vz(w — a))
v sinh (vz(w — a))

[nyan“ + (1 —nj)Eg]

4
+[-nyn,B2 + (1 - ni)B;] = -cl.l”1 sin o

b) Conditions at the Faraday Shield. The Faraday shield is usually modelled as a sheet
with anysotropic conductivity, infinite in one direction, and zero in the orthogonal
one. In most cases, the shield conductors are orthogonal to those of the antenna; we
will however allow for an arbitrary orientation, making an angle 8 to the horizontal

(toroidal) direction. The electric field component E - €s must vanish on both sides of
the shield:

cosh (vzs)[E} sin B + E® cos ]
+iv, sinh (v,s) [Bg cosf— Bbsing] =0
cosh (vz(a — s))[E} sin § + E2 cos ]
—tvgsinh (vz(a — 8))(By cos f — B2sin§] = 0

(8)

Further, we must require the continuity of the component of E x €p in the shield plane:
cosh (vzs) [ES cos B — E!sin fi]
+1v, sinh (v, s) [Bz sin 8 — B® cos Bl =
= cosh (vz(a — s))[E} cos 8 — E2sin g
—tvgsinh (vz(a — s))[By sin 8 + B2 cos f]

(9)
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and of the component B- e€p of the wave magnetic field:

cosh (vzs)[gy B) + 9= B2]
—iv; !sinh (st)[_ng: +g,E%) =
= cosh (vz(a — s))[gy By + 9-B;]

(10)

+iv, !sinh (v;(a — s))[~g-E] + gy EZ]

where
gy = (1L —nl)sinf — nyn,cos B

: 2 (11)
gz = —nyn,sinfB + (1 — n;)cosf

This model for the Faraday shield is well justified in the case of FW antennas: E, is
anyhow very small also in the plasma, so that the presence of the additional constraint
E. =0 at the screen amounts to eliminate E, altogether. In the case of BW launching,
on the contrary, plasma and Faraday shield screen orthogonal components of Ef; if
the latter extends over the whole plane z = —s, a kind of waveguide with anisotropic
walls is created between this plane and the plasma surface. Excitation of guided modes
in this layer, combined with the effective periodicity attributed to the system by the
discrete Fourier expansion (1), gives rise to strong resonances in the coupling resistance
of the antenna, which obviously do not exist in the real configuration. In this case it is
therefore imperative to take into account that the Faraday screen exists only in front of

the antenna.

To do this exactly is quite difficult, since it would require to give up the Fourier
decomposition (1) of the field. Thus we have assumed the above description of the
Faraday shield to be valid for modes with small n, (for n, = 0 obvously the presence of
a single point at which Ey, = 0 implies that E, vanishes everywhere), while for large n,
we have neglected the presence of the screen altogether, assuming (3) to be valid up to
the antenna plane z = —a. The radiation resistance is then a monotonically decreasing
function of the distance between the antenna and the plasma, and does not depend on
the precise value of n, above which the screen is neglected, provided it is low enough
to avoid the excitation of guided modes in vacuum. It should also be noted that guided
modes disappear when the plasma is in direct contact with the shield, in which case the

infinite and the localised shield give almost identical results.

¢) Conditions at the plasma edge. The boundary conditions at the plasma edge
are most easily written in terms of the surface impedance matrix of the plasma. This
matrix expresses the linear relation between electric and magnetic field components at

the plasma surface for the waves satisfying the appropriate outward radiation conditions
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far from the antenna:

Ey(0) = E} = Z11B,(0) + Z12B,(0)

(12)
E.(0) = E} = Z51B,(0) + Z22B,(0)

(all quantities in this equation have to be understood as functions of ny and n;). If the

matrix Z;; is known, the continuity of the magnetic field can be imposed as a condition
relating Ej and E® to B® and B;:

Ey = [(1-n2)Z11 — nyn.Z13] B + [-nyn,Z11 + (1 — n2) 23] B

y y
(13)
Eg = [(1 — nz)Zgl — ﬂ.ynz222:| B: + [_nynzz2l 1 (1 - n3)222] Bg

Egs. (7) to (13) completely determine the unknown coefficients in Egs. (3) to (5)
in terms of the antenna current spectral decomposition, J *(ny,nz), the angles o and
B, and the surface impedence matrix of the plasma, Zij. In spite of its complicated
appearence, this system can be easily solved analytically, as sketched in Appendix A.
The explicit solution is useful to gain insight into the mechanism of wave launching,
and advantageous over numerical inversion. Moreover, its availability makes it possible
in principle to determine the current distribution in the antenna selfconsistently by the

variational approach of Teilhaber and Jacquinot [22].

3 - Propagation in the Plasma.

a) The wave equations. The next step is the evaluation of the surface impedance
matrix (12). The set of equations to be solved in the plasma can be deduced from the
work of Swanson [25], Colestock and Kashuba [26], and Brambilla and Ottaviani [27].

For each partial plane wave they are:

d d

_(E + ny) [U(E - "'y)(Ez T z.Ey)] i+ (nz +n2 - S)E,
—f—iny% +1DE, - inzdiz =0
(o +my) 0(o — ny) (Bx +iB,)] +in, = _iDE, (14)
—d;f: + (n2 — S)Ey — nyn.E, =0
inzdciz nyn. By, — d;,f: +(n2 - P)E, =0




Introducing Stix notations [28] for the Zero Larmor radius limit of the dielectric tensor

elements, and approximations approriate to the ion cyclotron frequency range,

2

¢ (1 — t%)) - Z :2 Zoi Z(215)

_ AR o S
.R«—].'i‘n2 (1 2&))) antw_‘i_nm (15)
2
P = w2 (1 - 2@—) 22,2 (zoe)
_R+1L _R-L
5= 2 = 2

Among FLR corrections, it is justified to retain only the one which is resonant near the

first harmonic of the ion cyclotron frequency (for a discussion, cfr. [29)):

Z Wpi ”“" ki (_z0i7(224)) (16)

Here (o
1
Z(z) = ﬁ[ u_Idu+t\/—e (17)
—oo
is the Plasma Dispersion Function [30], with
W — nﬂc,-
R O i 18
o e vns (18)

Finally v, is the electron collision frequency; we have used the correct form for collisional
damping in the cold plasma limit, which is adequate as long as |z, .| >> 1, a condition

always satisfied near the plasma edge where collisional damping is most important.

To these equations we may add the definitions of the magnetic field components in
the plasma, which follow from Maxwells equation VXE =1 %ﬁ, and are needed to
impose the boundary conditions at the plasma edge:

dE, .dE,

B,=—-i—Y —n,E, (19)

Bz == nyEz ot any; By =Nz d_’]: dz

In the particular case ny = 0 Eqs. (14) are similar, but not identical, with those
solved in Ref. [17]. The difference is in the form of the FLR corrections, which are
here in a form which is, as it should, selfadjoint when the dielectric tensor is Hermitean,
i.e. the plasma is dissipationless. This form has been obtained in Refs. [25] - [26] by
integrating Vlasov equation in the same geometry as the one used here.
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The power balance equation associated with Eqgs. (14) is:

dP,
= =W, (20)

where the power flux P, and the power dissipated per unit volume W, are respectively:

P —C——{Re(E;Bz — E}By) + Im[(E,, +1Ey)* [a(Ed; —ny)(Ez + iE,,)]] } (21a)

- 8w
and

d . .
W, = é {—Im(a)l(@ —ny)(Ez +iEy)|* + Im(L)| Bz + i Ey|*+

(21b)
- Im(P)IE,,P}

The last term in P, is the kinetic contribution of the power flux, which in the case
of BW excitation is usually larger than the electromagnetic part. In W, we recognise
successively first harmonic ion cyclotron damping (HICD), ion cyclotron damping at
the fundamental (ICD), and electron Landau damping (ELD). Magnetic Pumping of
the electrons has been neglected, since it is normally very small in the outer layers of
the plasma, but the relevant terms could be easily added to Egs. (14) and (21).

b) The WKB limst. To understand the physics beyond these equations, and to impose
the appropriate radiation conditions to the solution, it is useful to discuss briefly the
dispersion relation which is obtained where the WKB approximation can be applied

(d/dz — inz; nd = n2 +nl):

(nd — P){—onl+[(n] — S)n] +20(n] — R) + (n] — R)(n} — L)]}

(22)
—nini[(1+0)n] + (n] - S5)]
The three roots of this equation can with good accuracy be approximated as
2 2
5 e iy 7 s = R)nE — 5
nJ_:ﬂ-J_)F—‘ = ng_g)
P

nZ—8§
nl 2ny), = -8

The subscripts stay for fast, or compressional wave, slow or torsional wave, and Bern-
stein wave, respectively. The slow wave is strongly evanescent if |zo.| = |w/(kjvene)| >>
1, but goes over into a short wavelength propagating wave, known as Kinetic Alfven
wave, in the opposite limit, |z,.|] << 1. The Bernstein wave propagates at frequencies

below the first harmonic of the IC frequency, and is evanescent above. As well known,
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the above factorisation fails only in the vicinity of the layer w = 2Q.;, where the Bern-
stein wave has a confluence with the fast wave (Cfr. Weynants, [31], or the discussion in
[29]), and near ion-ion resonances. At frequencies larger than the majority ion cyclotron
frequency, moreover, it can fails at the Lower Hybrid resonance near the Faraday screen

if the density decreases sufficiently rapidly in the scrape off plasma [23].

For our purposes it is important to realize that, in all cases, only two of the three
WXKB solutions (23) are simultaneously acceptable. The largest root always corresponds
to a wavelength shorter than one ion Larmor radius, and therefore violates the assump-
tion k1 p; << 1, under which Egs (14) and (22) have been obtained. An investigation of
the complete hot plasma dispersion relation shows that in the vast majority of cases it
has only two solutions, both satisfying the conditions for FLR expansion; when a third
root exists for which this is not true (e. g. the backward Bernstein wave near higher

cyclotron harmonics), it has nothing to do with the spurious root of Egs. (22).

Which root has to be discarded depends on the plasma pressure: it is not difficult
to show ([29], [31]) that the physically relevant wave is the slow cold plasma wave if
f << m./m;, and the Bernstein wave as soon as f approaches or exceeds m./m;.
As stressed e.g by Ono [14], there is a continuous transition from one wave into the
other as the plasma pressure increases. It is therefore impossible to find a meaningful
approximation to the system (14) which eliminates the spurious wave by reducing its
order by two, yet is valid uniformly for plasma all pressures. The usual solution to
this problem is to take the limit m./m; — 0, or |P| — oo, thereby eliminating the
slow cold plasma wave altogether, on the ground that the condition 8 2 m./m; is
usually well satisfied in a tokamak, even relatively close to the plasma edge. The zero
electron inertia limit is well justified when investigating coupling and propagation of
the compressional wave, but is inadequate in the present case. More precisely, when
the plasma is so dense that this approximation is justified down to its boundary, no
appreciable coupling through external currents flowing in the direction of the static
magnetic field is possible. The reason is that under this conditions the plasma is for
all purposes a perfect conductor along the field lines, so that image currents on the
plasma surface will completely screen out any external By (the parallel component of
the wave field, E,, does not vanish when FLR effects are taken into account, but is
then completely determined by the values of the perpendicular components). Under
these conditions, only the compressional wave can be excited. Thus to make launching
of Bernstein waves possible, a low density plasma layer must exist near the antenna. In
turn, to describe this situation, the full system (14) has to be retained, and the spurious

solution must be eliminated by imposing the appropriate boundary conditions.
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¢) Radiation and edge boundary conditions. To exclude explicitly the cold plasma

wave at the high density point we write the outward radiation conditions in the form

E = TFEF +TBEB
dE (24)

—d-; =tn,pTrEr +in.pTBEB

The sign to be attributed to n,r, n.p, and the ratio of the field components in the am-
plitudes EF and Ep of the Fast and Bernstein wave, respectively, are easily determined
by examining the WKB limit of Egs. (15) and (23) with m./m; << 1:

E; _ngny —i(D +on})
E, on}+nl+nl-S8 (25)
L g en)

The system (14) must then be integrated backwards toward the plasma edge, with a
sufficient accuracy to ensure that the solution will remember conditions (25) throughout.
The unknown transmission amplitudes 77 and 75 must be finally determined from the

conditions at the plasma-vacuum interface z = 0.

To evaluate the surface impedance matrix Z;; as required by the formulation of the

previous section, Eqs. (14) have to be solved twice, imposing successively
a) (By(0) =1,B:(0) =0); b) (By(0) =0,B:(0) = 1) (26)

Using Egs. (19), these conditions are immediately translated into boundary conditions
appropriate to the system (14). The values of the electric field at z = 0 are then directly
the elements of Z;;.

Because the system (14) is formally of sixth order, however, the boundary conditions
(24) and (26) are still not sufficient to determine the solution uniquely. The additional
condition to be imposed is easily determined by integrating Egs. (14) over an infinites-
imal interval across the plasma-vacuum boundary. In addition to the continuity of E,,
E,, By, B., it is found in this way that the condition

o@{ (220 1 B0 (5, (0) +iB, () } = 0 (27)

must be explicitly imposed upon the solution whenever o(0) does not vanish. Inspection
of Eq. (21) shows that this condition makes the kinetic part of the power flux vanish
at the plasma boundary, and thereby ensures the continuity ot the total flux there, in

spite of the discontinuity of the wave equations coefficients.
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It would be clearly hopeless to attempt the solution of Eqs. (14) with the boundary
conditions (24) - (27) using a Runge-Kutta method. Instead, we have used a Finite El-
ement (FE) discretisation with cubic Hermite interpolating functions, which is ideally
suited to this problem. As shown in Appendix C, the FE discretization, if properly for-
mulated, automatically tries to satisfy the energy balance equation (20) as accurately as
possible; this in turn minimizes pollution by solutions not allowed by the boundary con-
ditions. Thus for example numerical instabilities due to unwanted exponential solutions
never arise. Moreover, accuracy can be efficiently achieved by adapting the mesh locally
to the shorter wavelength which needs to be resolved: for this purpose, a superficial ex-
amination of the dispersion relation is sufficient, even where the WKB approximation
is obviously non valid. By taking 5 to 10 mesh points per wavelength (somewhat more
near the plasma edge), a relative accuracy of 107° is easily obtained. Finally, all the
boundary conditions arising in the present problem are of the so-called natural type
(involving explicitly a first derivative), which are most easily enforced within the FE

formalism.

4. - Coupling to Bernstein waves.

As an application of our code we have tried to simulate coupling of Bernstein waves
in the Alcator C tokamak [13]. The parameters of the plasma and of the antenna
are listed in Table 1. For the simulation, the asymptotic radiation conditions where
imposed 4.5 cm inside the limiter edge: this is certainly enough for the Bernstein wave,
but possibly not for the fast one. To make sure that this does not influence the results,
we have run a few cases assuming a high standing wave ratio for the fast wave. For the

purpose, Egs. (24) was replaced by

EITF(1+P)EF+TBE‘B

dE . = = (28)
E = MNzpTE (1 s p) EF + ‘n:cBTBEB

where |p| was taken close or equal to unity, and the phase of p was estimated with a

simple WKB model. The radiation resistance of the antenna was little affected (less
than 10%), and the part due to BW not at all.
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a) Variations with magnetic field intensity. The Alcator experiment were performed
at a fixed frequency (183.6 Mhz), varying the intensity of the static magnetic field. The
set of parameters used in our code for a similar a magnetic field scan are listed in Table
1. We have supposed throughout that the scrape-off plasma extends out to the Faraday
shield. For a scrape-off width of 0.5 cm and a density decay length of 0.25 cm from
the limiter value of 0.60 - 10!® ¢cm™2, this means a density of 8.12 - 10!! c¢cm—3 at the
screen. Fig. 3 is a plot of the radiation resistance of the antenna versus the ratio w/Q,;
at the limiter radius r = @ under these assumptions. For the frequency chosen, the
first harmonic resonance of Hydrogen is located at r = a when B(0) = 6.845 Tesla.
At fields lower than this value the radiation resistance is quite small (< 0.05 Ohms):
this is to be expected, since Bernstein waves are evanescent, and the antenna has the
wrong orientation to launch the fast wave efficiently. The radiation resistance raises
to a peak of somewhat less than 1.3 Ohms at the value of the magnetic field which
puts the resonance just behind the antenna, and decreases slowly again as the field
increases further. The slow decrease at higher magnetic fields can be explained by the
decrease in the wavelength of the Bernstein waves, which makes matching increasingly
difficult. The value of the radiation resistance when the first harmonic resonance is just
behind the antenna is close to the measured one; this is also the range in which efficient
heating was observed. Outside this range, however, the calculated value is almost an
order of magnitude smaller than the observed one. Even multiplying the Coulomb
collision frequency by a factor 10 increases the computed R, by 10 to 20% only. Other
parasitic absorption mechanisms, or nonlinear effects [33] might be responsible for the

discrepancy.

Fig. 4 shows the fraction of power coupled to Bernstein waves, and the fraction
absorbed by electrons and ions in the near field region (i.e. integrated from the antenna
to the point at which the radiation conditions are imposed; this point is of course to
some extent arbitrary). To the left of the resonance, practically all the power is found in
the fast wave, as expected. Optimum coupling to the Bernstein waves occurs just above
the resonance peak in the ion absorption. For still higher magnetic fields the fraction
of power launched in the fast mode increases again, and is close to 30% at w/Q.; = 1.9.
Electron absorption is almost absent at low magnetic fields, and accounts for about
15% of the power when Bernstein waves are present. It should be noted that electron
Landau damping is a strongly increasing function of density and temperature; therefore
more of it is found if the asymptotic point is displaced towards the plasma interior, at
the expense of the power in the Bernstein waves. In addition, the power deposited in
the electrons includes about 5% collisional damping localised mainly very close to the

plasma boundary.
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It is perhaps more appropriate to compare the different power channels at a constant
value of the current in the antenna; this is done in Fig. 5. The existence of an optimum
magnetic field for Bernstein waves launching is made even more obvious by this repre-
sentation of the results. The amount of electron heating is closely proportional to the
power in the Bernstein waves; the power coupled to the Fast wave, on the other hand, is
roughly constant over the whole range explored, except for a dip corresponding to the
domain where ion damping is strong and partial waves with small n, are evanescent in

the immediate vicinity of the antenna ([31],[32]).

It is also interesting to investigate the spectral distribution of the power among
the partial waves in the superposition (1). From the physical point of view, the most
informative is the n, spectrum (summed over ny), shown in Fig. 6a, 7a and 8a for
the cases w/Q.; = 2.02, 1.99 and 1.96 at r = a, respectively. The overall shape of
the spectrum is almost frequency independent; the distribution of the power among
the various channels is however different in the three cases, as one would expect from

elementary considerations.

It is interesting to remark that for an antenna oriented along the static magnetic
field the width of the n, spectra corresponds roughly to that of the Fourier spectrum of
the antenna current itself. This is due to the fact that Bernstein waves are propagative
from the very edge of the plasma; in this respect they differ drastically from the Fast
wave, which is evanescent up to the R cut-off, a feature which strongly suppresses waves

with large |n.| from the radiated spectrum.

The Alcator antenna has a central feeder and shorts at the ends, so that the current
distribution is of the quadrupole type, and has an antisymmetric n, spectrum. This is
however not the only cause of the deep minimum in the spectra near n, = 0: Bernstein
waves with n, = 0 cannot be directly coupled from outside, since they have E, identi-
cally zero, as easily seen from Egs. (14). As a consequence, the n, spectrum launched
by a dipole antenna (feeders at the extremes and central short, current in the same
direction in the whole conductor), but otherwise of the same dimensions and for the
same plasma parameters as in Figs. 9a, is also depleted near n, = 0, as shown in Fig.
9. The poor coupling of low n, modes has the consequence that the dipole antenna has
a radiation resistance of only 0.15 Ohms, less than one third of that of the quadrupole
antenna under the same conditions. In other words, although accessibility in the sense
which applies to the coupling of Lower Hybrid waves [34] plays no role here, the rough
proportionality of Ez to n, imposes similar requirements on the antenna design for

efficient coupling.
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The ny spectra for given n,, on the contrary, are sharply limited towards larges
|ny| by the decrease of the surface admittance of the plasma, and are therefore much
narrower than the corresponding Fourier spectrum of the antenna current. This implies
that the poloidal distribution of the field in the plasma will be relatively broad, in spite
of the very thin antenna used.

Figs. 6b, 7b and 8b show the absorption per unit volume as a function of radial
position (averaged over the whole magnetic surface, and for one MW coupled power).
As already mentioned, ELD is negligible near the plasma edge, and increases towards
the plasma interior when Bernstein waves are excited. Collisional damping is in all
cases sharply localised near the plasma boundary, essentially where the h.f. electric
field component parallel to the static magnetic field is also large. This means that
collisions are much more efficient in dissipating the parallel electron motion than their
E x B drift. HICD on the other hand is localised around the second harmonic. If only
the fast wave is launched (fig. 6b), HICD is much weaker than when Bernstein waves

are also excited (fig. 7b), since its efficiency is proportional to k% p2.

Finally, Figs. 6 to 8 ¢ and d show the the components ¥, and E, of the electric
field, along a radius starting from the antenna at 2 /3 of its half length from the centre
(the reason to choose this position rather than the center of the antenna is that E,
vanishes there in the quadrupole case, E, in the dipole case). The numerical values in
these figures (in kV/cm) correspond to the fields required to launch one MW into the
plasma; the two curves are the real and imaginary part, respectively. The difference

between situations with propagating and evanescent Bernstein waves is clearly seen.

Beyond the first one or two centimeters from the plasma edge the parallel component
E. agrees extremely well with the second of Egs. (25), with n, estimated from the
logarithmic derivative of the solution. One can roughly locate the wave transformation
from the shear cold plasma wave to the Bernstein wave at the point where Egs. (25)
begin to be accurate. The values of E, and E, fields associated with the cold plasma
wave are clearly much larger than those associated with the Bernstein wave for the same

trasmitted power flux.

b) Dependency on the plasma edge parameters. To investigate how coupling depends
on the conditions in the boundary layer, we have kept the magnetic field at the value
B, = 6.98 Tesla (w = 1.961); at the edge) and we have first varied the distance of the
antenna from the limiter assuming that the density and temperature at r = ¢ and their
e-folding lengths remain constant. Under this assumption, both n, and T.,; decrease at
the Faraday shield radius. Fig. 10 shows that the radiation resistance increases rapidly
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as the boundary density decreases. This illustrates again the essential role of the parallel
component of the electric field in coupling to Bernstein waves. The amplitude of E. in
the plasma for a given antenna current is roughly inversely proportional to the density;
in the limit of very large edge density the antenna sees an almost perfectly conducting

surface and cannot radiate.

To show that the important parameter is the edge density rather than for example
the density gradient, we have run a series in which the width of the scrape-off plasma
was kept constant, but the e-folding lengths of both n. and T, ; where varied instead,
so as to have the same values at the Faraday shield as in the previous series, but with
sharper and sharper gradients. When plotted on the same scale (Fig. 11), this series
is almost identical to the previous one. Finally, Fig. 12 shows a series in which the
scrape-off width and the e-folding lengths were varied simultaneously so as to keep n.
and T, ; constant in front of the shield: in this case the radiation resistance is almost

constant.

No experiment in which the scrape-off plasma parameters were varied in a controlled
way is available for comparison with these code predictions. In addition, the density
and temperature in the scrape-off layer could be influenced by the HF power itself, and
be different from those measured when the HF is turned off. It is therefore risky to
attempt to anticipate how coupling would evolve when the plasma moves away from the
antenna during the heating pulse, as it happens at the transition from L to H regimes.
Nevertheless it is tempting to suggest that a BW antenna could tolerate this transition
much better than conventional FW antennas ([35]). Also, an effort to keep the plasma
density in contact with the Faraday screen as low as possible, for example using lateral
protections protruding somewhat into the scrape-off layer, might well pay in terms of

antenna loading.

Increasing the ion temperature in the scrape-off plasma also favors coupling, as seen
from Fig. 13. The reason for this is the fact that the wavelength of the slow waves

increases with T}, thereby facilitating matching.

Conclusions. The coupling resistance of an antenna designed to launch Bernstein
waves is found to be very sensitive to the details of the density profile near the Faraday
screen. For good matching, a low density layer should exist near the plasma edge.
A quite clear-cut prediction of this theory is that coupling will be very poor if the
discharge moves towards the antenna so that a high density plasma comes in direct

contact with the Faraday screen. This might explain the high density cut-off observed
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in some experiments, although other effects, such as large edge density fluctuations,
probably also play a role [13].

Under conditions for optimum matching, comfortably large values of the radiation
resistance can be achieved, comparable or even larger than those typical for Fast Wave
launching. To help achieving these conditions relatively independently from the plasma
dendity, lateral protection of the antenna could be useful. We have also shown that a
quadrupole antenna (central feeder, shorts at the ends, antisymmetric current distribu-
tion) is appreciably better matched than a dipole antenna (feeders at the end, central

short, symmetric current distribution).
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Appendix A - The transmission line model for the antenna current.

In principle, the current distribution j;(y, z) in the antenna is one of the unknowns
of the problem. In most cases however, a plausible assumption can be made about .f;,
thereby circumventing a lengthy selfconsistent evaluation. For antennas with thin and
long elements, each conductor can be approximately treated as a segment of transmission
line, with appropriate boundary conditions to be applied at feeders and shorts. This
approach has been widely used in the literature; moreover, the selfconsistent solution of
Tailhaber and Jacquinot [22| also uses a transmission line representation of the antenna
current distribution, in which however the characteristics of the line are evaluated via
a variational principle, and harmonics of the basic line propagation wavenumber are
admitted.

In this Appendix we sketch the transmission line model in its simplest form, and
we give a few examples of the most common experimental set-ups. The goal is in each
case to compute the Fourier transform of the antenna current with respect to the two

directions y and z to be used in Eq. (1).

a) Periodicity form factor along the torus. Let us first of all assume that N, identi-
cal antennas are symmetrically disposed around the torus, and that adiacent ones are
excited with a phase difference ¥,. It is immediately seen that this has the effect of in-
troducing in the Fourier spectrum J,(ny,n;) an additional factor (length are measured
in units of ¢/w):

sin %2 (Yo + 2 RE

Na Ny (A1)

F,(n;) =
a(nz) sin%(z,ba—i-%’f%;)

Since ng = n,Rr is an integer, when 1, is zero or 7 this factor amounts to a set of
selection rules. On the other hand the individual spectrum of each antenna is usually so
broad that this factor has no other appreciable influence on the global spectrum. In the
ion cyclotron frequency range spectrum shaping has to be implemented by dephasing
closely spaced conductors belonging to one and the same antenna; different antennas

distributed around the tokamak are only weakly coupled to each other.

b) Orientation of the antenna. We want to consider antennas whose conductor are
arbitrarily oriented with respect to the static magnetic field. For this purpose, with
reference to Fig. 2, it is convenient to introduce coordinates n and ¢ in the plane of the

antenna such that 7 is along the antenna conductors (J, = &,J,). We also assume that
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in the 7, ¢ plane the current is factorised, so that

J(q,g) — Z J('?) (nn)_](s_)(ng)ei(nnn-i-nﬁ) (AZ)

npy,n,

(suffixes within parentesis do not mean vector components). Since
n=ycosa—¢sina ¢ =ysina+ ¢cosa (A3)
it is immediately clear that

Jy.z) = z J(n)(ny cos @ — n, sin @) J() (ny sin a + n, cos a)e’ (Pv¥+n:2) (A4)

Ny,Nx

It is thus sufficient to work out the two factors J(,)(ny) and J(¢)(n;), where

Ny = Ny COS @ — N sin ne = nysina +n,cos a (A5)

¢) Spectrum in the direction perpendicular to the conductors. Assuming the current
to be uniformly distributed in the cross-section of each conductor, the Fourier transform
J(s)(n¢) is trivial. In the case of a dipole antenna with a single conductor of width w

one has:
2Rt sin(n.w/2)

Jie)(ne) = Tw (n,w/2) (46)

In the case of a quadrupole antenna with two parallel conductors excited with a phase
difference 1, one has:

4R7 cos (n;(g +w) — 1,b)) sin(n,w/2)

Ty (rs) = Tw 2 (new/2) (47)

If w is relatively large, the current generally has a tendency to peak towards the edges;

this can be easily taken into account [19] but has usually little influence on the results.

d) Spectrum in the direction parallel to the conductors. The transmission line equa-

tion for each conductor are:

dE, dJ, .

ks zJ, e —9E, (A8)
with

Z2=R— 1wl 7= —iwC (A9)
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(here R,L,C are the resistance, inductance and capacitance per unit length). Hence in

each homogeneous section of conductor we can write

E, .
E; = E,cosk(n—n,) Iy = —_ sin k(n — no) (A10)
a
whith
R L R
5 Hninll APSRY et R R 1
r=wVIC(1+i—) Z o) (A11)

(generally R is so small that it is neglected altogether). The constants E, and 7, have
to be determined from the conditions at the feeders and at the shorts. We will now give

two examples.

Central feeder, shorts at the ends. In this case, denoting with h the half-length of

the conductor, we must impose:

E.(0)=E, E.(£h)=0 (A12)
Hence in (k- [n)
sink(h — |n
e = Eo——X—= Al3
E °  sinkh ALS)
) cosk(h — |n])
_ cosx(h — |n]) Al
Jn = Josign(n) s (A14)
where J, = —(E,/Z,) cot kh. From the latter it is immediate to obtain:
Jn)(ng) = —j-Jo e (cosnyh — coskh) (A15)
L T "n? — k2 "

Central short, feeders at the ends in push-pull. In this case the boundary conditions

are:
E:(+h) = FE, E.(0)=0 (A1e)
Hence )
sinkn COS K1)
= RN il ALT
Ba Pe sinkh ) =l cos kh AL
where again J, = —(E,/Z,) cot kh. It is then immediate to obtain:

sin (ny — k)b sin (ng + 'C)h} (A18)

h
T () = ;J"{ (nn — k)R (nn + K)h

More complicated cases can be similarly treated.
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Appendix B - Solution for the field in vacuum.

We sketch here the analytic solution of Egs. (7) to (12) for the vacuum fields,
assuming that the surface impedance matrix Z;; is known.

a) With Faraday shield. Beginning at the Faraday shield, the first three conditions
there are satisfied if

E: + 2T (s)BE = E, cos B

A

A

E} — iv2T(s)B} = —E,sin

By — i (o - ) B2 = + ) cos (B1)
cosh (vs)

~ " cosh (vz(a — 8)) Zeing

]

E? + 2T ((a — s))B

< e

where E; is an auxiliary unknown related to the electric field at z = —s, and ff'( ) =
sinh (vzz)/(vz cosh (vzz)). It is convenient to regard these equations as defining E}, B},

E}, EZ; they can be used to rewrite Eq. (9) for the parallel magnetic field component
at the Faraday shield as:

1
cosh (vz(a — s))

1
) (9Bt + gy BE) — (¢2B2 + g,B2) =

cosh (vzs

sinh (v, a) 2
vz cosh (vz(a — s)) vk

whith v = 1 — (nysin 8 + n, cos §)2.

Turning next to the plasma edge, we use (B1) into (12) to obtain B.(0) and B,(0)
in terms of E,:

E,
B:(0) = +—— (Z{3sinpB + Z;, cos §)
A,
> (B3)
By(0) = —— (2, sin 8 + Z£, cos )
where R R
Zih =2Zu+1i(1 - nz)T(s) Ziy = Zyg + inyn,T(s) (B5)
Z3) = Za1 — inyn,T(s) Z3) = Za3 —i(1 — n2)T(s)
and
A, = Zf1Z;2 % Zi’zz'.fl (BG)
In particular therefore
9:B + gyBg = B,(0)cos 8 + By(0)sin 8 =T, E, (B6)
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with
1
| g — ~ A Ziq sin? f — (27, — Z3,) cos Bsin B — Z3, cos® B (B7)

8

At the antenna, using (B1) again, the magnetic field on the plasma side can be

written:

Ba(ap) = (1—n3)B; —nynsBy  By(aw) = —nynsBi +(1-n})B;  (BS)

while on the wall side it is given by:

Ba(ay) =+ iv; *F(w — a) [(1 — n2)ES + nyn E2] = — ;‘:((Z — Sa)) B.(a)
i (e — a cosh (vzs)
= L )cosh (vz(a — s)) o ) (B9)
By(aw) = — i *T(w — a) [nyn.E2 + (1 — n2)E2] = _;1((: _3 By(a)

Wy h (vzs)
8 20 cosh (v !
weve T g) cosh (vz(a — s)) g

Taking the appropriate linear combination gives:

g:BZ + gyB; = B.(ap)cos B + By(a-}-) sinf =

sinh (vz(w — a)) V5 cosh (u_,._s)E } (B10)

== il = 3)) {Jﬂ cosh (vz(a — s)) cos (e — B) + ;-U—g f‘(w -

Finally, (B9) and (B10) can be substituted into (B3) to obtain E, in terms of J°:

sinh (v (w — a)) J®
_ o _ B11
Es sinh (vz(w — s)) Ty co8 (g ) ( )
where
| 8 . o cosh (vzw)
= — B12
* " cosh (vzs) Py sinh (vz(w — s)) (B12)

It is now possible to use the same equations in the reverse order to determine all
the unknowns coefficients used to represent the field in vacuum. In particular, Eqs (B4)
and Eq. (13) give the fields at the plasma edge. At the antenna we need explicitly only

the electric field along the conductors, wich is given by

Ejcosa—E;sina =

sinh (v, (w — a)) {

sindi( (3 — 5)) E,cos (a— )+ —sinh (vz(a — s))J“} (B13)

z
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The complex radiation resistance of the antenna is therefore
, 47r2Ra sinh (vz(w — a))\?
R, +1iX, = Je|3
&5 ZX:(smh (w— s))) 7

.{ﬂr(yz--lcos2 a— f) +iv; ' sinh (vg(w — a))}

(B14)

where I, is the total antenna current. Note that the vacuum field at the plasma bound-
ary and the radiated power vanish if @ — 8 = 7/2, i.e. if the conductors of the F araday
screen and the antenna are parallel to each other: in this case the whole field is trapped
between the wall and the screen, and no coupling to the plasma is possible; more gen-
erally, Eq. (B14) shows that the Faraday shield acts as a polarising filter.

The radiation resistance can alternatively be expressed in terms of the power flux
at the plasma edge:

R=Eyy {Zu|B (O)FF = Z22| By (0)|* + 2Z12 Re B, (0) B (0 )]} G

ny, n,

where we have taken into account that Z; = —Z,;. The equality between (B15) and
the real part of (B14) must actually hold separately for each term in the sums.

b) Without Faraday shield. The expressions (3) for the fields will in this case be
valid up to the antenna, z = —a, so that:

E} = cosh (v;a) (Eg + iV:T(a)Bg)

(B16)
E; = cosh (vza) (Eg - iuﬁ’f‘(a)B;)
For the magnetic field we find on the plasma side:
B.(ap) = cosh (v;a) [B 0) —iT(a) (1 —n )Eb + nyan ] -
By(ap) = cosh (vza [B (0) +iT'(a (nyan +(1—n? ] B0
and on the wall side:
Bi(ay) = +W——0) (1= n)EL + nyn E2) =
= (;?Sh 4 [T( w2 ((1- n:‘;)E; + nyan;’,)}
; (B18)
By(aw) = +m (nyany etz nf,)E{,‘) =
= +}°?%(:’*;‘?‘)l [T(a)By (0) +iv; % (nyn Eb + (1 - nf,)Ej)]
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The jump conditions at the antenna can therefore be written:

J? cos a = By(ap) — Bz(aw) =

_ sinh(vew) | S i o

N sinh (Vx (w = a)) _Bz(o) Ugf‘(‘w‘) ((]‘ nz)Ey + nyany) -
J®sin a = By(ap) — By(aw) =

_ sinh (wa) ; S g " .

= simh (va(w - @) | VOt Jafgy (omeEr + - m)E) |

Using here the boundary conditions at the plasma edge, one is led to define

Z{ = (1= n2)Zy1 + nynyZay + 2T (a)
Zf2 = (1 - nZ)le + nynzZn

Z3 =nyn.Zy + (1 — n:,)Z22

Zg3y=(1- nf,)Zm +(1- n;)Zzz — iuﬁf‘(a)

and

Ay = Zflzgz e Zfzzz?l

The fields at the plasma edge are then given by

.Vzsinh (v;w — a)
By (0) AL coih o) (Z33cosa+ Z7ysine) J*
h
B.(0) Lesiah (awi=a) (Z{;sina+ Z3, cosa) J*

~""A, cosh (vzw)

Finally to evaluate the antenna resistance we obtain:

Ejcosa—EZsina = cosh(vza)
{ (Z11 + ¢( i)f(a)) cos o — ((Z21 - inynzf‘(a,)) sin a] B.(0)+
+ [((Zlg +inyn,T(a )) cos o — ((Zzz —1(1— nz)’f‘(a)) sina] By(O)}

Eq. (B15) for the power flux at the plasma edge holds unchanged.
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Appendix C - Numerical integration.

The starting point for the FE discretisation is the Galerkin variational formulation

of Egs. (15). After an appropriate integration by parts, it can be written:

X

[l )l (& )i s8]

0

F; [i(ny% + DEy) + (n} + n2 — S)E, + in, diz] } =

- F;{a(:—x ~ny) (B + iEy)}:

[ m bl -m)ie ]

(C1)
%(% T nyEy) it F; [_iDEz B (ni o S)Ey + _nyanz] } B

Gl oy ()
X

j’ dF“‘

0
()

e E,,) + [_nyany +(n2 - P)Ez] } =

where X is the high density point at which the radiation conditions (24)-(25) have to
be imposed. It is required that these equations hold for all F belonging to a suitable
test function vector space. Note that if F = E, the power balance equation (20) is

recovered: indeed, the integration by parts is performed with this goal in mind.

Cubic Hermite interpolating functions [24] are used to implement the discretisation
of Egs. (C1). By ensuring the continuity of both the dependent functions and of
their derivatives at each mesh point, these elements are particularly well suited to the
solution of system of second order differential equations of the wave type, and provide
fast convergence and excellent accuracy.

The Hermite interpolating functions, 1, are defined on the master interval —1 e
€ < +1 as:

Yo(€) = (I€] —1)*(2¢[+1)  ¥1(6) = (1¢| —1)2%¢ (C2)
Let (z;, 7=1,...,N) be the mesh points. Then

Eo(z) =) Z EX() F; 0 (&) (C3)

+ v=0
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where
§i=(z—z)/(zi1—z) if z<z<zip

= (:l: — .'c,-)/(.":,- — z‘-_l) if- @1 £ 2L % (04)

and the two basic functions F; , associated to each mesh point are defined in terms of
the Hermite functions (C3) as

Fio(&) = ¥o(€) (1 £ zi <11)
Fi1(&) = (i1 — z:)1(€) (0<¢<1) (Cs)
= (z; — zi—1)¥1(€) (-1<¢£<0)

within each element, and vanish outside it. With this normalisations, E,(¢) and

E4 1(t) are the values of E, and of its first derivative at z = z;.

By identifying F in Eq. (C1) in turn with each of the basis functions used in (C3),

a linear algebraic system with block tridiagonal matrix is obtained for the mesh values
Ea,u:

+1 1
Y > Mapliyi+r)-Ep(i+1) = V(i) (C6)

r=—1p=0

To evaluate the stiffness matrix M explicitly, let

Qi(d’a"l’ﬁ) = / d:a:{I‘(o O)Ibalbﬁ +I‘(0 l)wa ;l)ﬁ ( )
z; cr

N dWEd
+I‘(1,o)izpﬁ+r(1 1) ;l; ;’f}

be the appropriate integrals over the element i (z; < £ < z;4;). Then M can be

constructed by making the following attributions:

Qi (¥al(£), ¥s(8))

Qi (Ya(8),¥5(—1+¢))
Q:i(Ya(—1+ £),95(8))

Qi (Yal(-1+€),¥p(-1+€))

LR

(diagonal blocks get two contributions, out of diagonal only one). The non-zero coeffi-
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cients in Eq. (C7) can be esily read from Eq. (C1):
I;.(0,0) = n;‘; +n2 — S + on?

v
I;2(0,1) =T;:(1,0) = —ony
By ollsl] =0
T2,y(0,0) = —T'y,;(0,0) = i(onZ + D)
I:y(0,1) = —Ty ;(1,0) =i(1 — o)n,
I:y(1,1) = -Ty .(1,1) = to
I'z,:(0,1) = -T, 2(1,0) = in, (C10)
Tyy(0,0) = n; — S +on}
Ty,y(0,1) =Ty,y(1,0) = —on,
Tyy(1,1)=1+4+0
ry,:(0,0) =T ,(0,0) = —nyn,
T.:(0,0)=n2—P
I‘z,z(l, 1=1

As well known, the boundary terms ff'a on the r.h. side eliminate each other between

adiacent elements, except at the extremes z = 0 and z = X, where they are easily

expressed in terms of the boundary conditions (24) to (26). In particular, V, (0) is the

only non-vanishing terms on the r.h. side of the discretized system. Taking into account

the properties of the Hermite interpolating functions, we find at z = 0:

Vz,0(0) =0 Vy,0(0) = —1B,; Vz,0(0) =B,

- (C11)
Vi=0

To impose the radiation condition (24), 77 and 75 have to be considered as two addi-

tional unknowns; they can easily be taken into account simply adding Egs. (24) to the

stiffness matrix.

It is perhaps worth mentioning in this context that it would be possible in principle
to combine the vacuum equations (7) to (13) and the discretized equations in the plasma
into a single linear system: a single inversion would then determine the solution satisfy-
ing the radiation conditions (24) and the jump conditions at the antenna which specify
the excitation. This procedure however would couple the vacuum constants Eo s~y B
directly to 77 and 7p, thereby irrimediably perturbing the block-tridiagonal structure
of the stiffness matrix. The introduction of the surface impedance matrix, although
requiring the determination of two independent solutions in the plasma instead of one
only, is nevertheless advantageous also from the numerical point of view, as it makes

the inversion much simpler.
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Table 1

Standard Alcator C parameters.

Torus radius

Plasma radius

Magnetic field on axis
Central electron density
Limiter electron density
Central electron temperature
Limiter electron temperature
Plasma composition

Central ion temperature

Limiter ion temperature

Width of the scrape-off plasma
Density e-folding length
Temperature e-folding length

Applied frequency

Single T-antenna (central feeder, short at the ends)
Effective propag. constant LG

Width of the antenna conductor

Half length of the antenna

Distance antenna-wall

Distance antenna-Faraday shield

Distance Faraday shield-plasma

31

64 cm

12 cm

6.5 to 8 Tesla
1.0 104 ¢cm—8
0.6 10'% cm~—3

1.5 keV
0.050 keV

100% Hydrogen
0.2 B, - 0.5 keV

0.050 keV

0.5 cm
0.25 cm

1.4 cm

183.6 Mhz

1,73

1.6 cm
12.5 cm
3.8 cm
1-1 ‘cm

Ocm




Figure Captions.
Fig. 1. - Antenna geometry for Bernstein wave coupling.

Fig. 2 - Antenna and Faraday shield seen from the plasma, arbitrary orientation of
the conductors. For BW coupling a = 8 = 90°.

Fig. 3 - Radiation resistance versus w/Q; at the limiter radius (for this and all
the following figures the plasma and antenna parameters are those of Table 1, unless
explicitly otherwise stated).

Fig. 4 - Fraction of power in the various channels versus w /Qeci at the limiter radius.

Fig. 5 - Power radiated in the various channels versus w /Q¢; at the limiter radius, at
constant antenna current (arb. units; the power in the Fast Wave and in the electrons

have been multiplied by 10 for clarity).

Fig. 6 - w/Qci = 2.02 at the limiter radius. a) n, spectre (normalised to unity); b)
power deposition profile (W/cm™2 per MW); c), d) Electric field components (kV/cm
at 1 MW).

Fig. 7- w/€c; = 1.99 at the limiter radius. a) n, spectre (normalised to unity); b)
power deposition profile (W/cm™2 per MW); c), d) Electric field components (kV/cm
at 1 MW).

Fig. 8 - w/Qc; = 1.96 at the limiter radius. a) n, spectre (normalised to unity); b)
power deposition profile (W/cm™2 per MW); c), d) Electric field components (kV/em
at 1 MW).

Fig. 9 - n, spectre of a dipole antenna of the same dimensions as the standard one;
w/Qe; = 1.96 at the limiter radius.

Fig. 10 - Radiation resistance versus scrape-off thichness, keeping the values of n,
and T, ; at the limiter radius and their e-folding lengths constant.

Fig. 11 - Radiation resistance versus density e-folding length, keeping the values of
ne and T, ; at the limiter radius and the scrape-off thickness constant.

Fig. 12 - Radiation resistance versus scrape-off thichness, keeping the values of n,
and T.,; at the limiter radius constant, but varyying the e-folding lengths so that n,
and T}, at the Faraday screen are also constant.

Fig. 13 - Radiation resistance versus edge temperature. Scrape-off thickness and
e-folding lengths as in the standard case.
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ANTENNA AND FARADAY SHIELD

SEEN FROM THE PLASMA
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